CALCULATOR
TECHNIQUES
THE MEMORY VARIABLES
MEMORY CALCULATOR BUTTONS
A ALPHA (-)
B ALPHA O ‘ “
C ALPHA hyp
D ALPHA sin
E (ES PLUS only) ALPHA cos F (ES PLUS only) ALPHA tan
X ALPHA )
Y ALPHA S D
M ALPHA M+
HOW TO CLEAR MEMORY
• SHIFT 9 1 =
– This means you will automatically go to MODE 1
• SHIFT 9 2 =
– All values stored in the memory variables will be
erased
• SHIFT 9 3 =
– This means you will automatically go to MODE 1
and all values stored in the memory variables will be erased.
MODE 1 :
GENERAL
Sec) Min (Degree DMS to . Convert237 6150
HOW TO CONVERT BETWEEN
DEGREES, RADIANS AND GRADIANS
BASICS " 54 ' 36 237 237.615 : 0 O DISPLAY
degrees. decimal to 47'12" 21 Convert 0
HOW TO CONVERT BETWEEN
DEGREES, RADIANS AND GRADIANS
BASICS 7 21.7866666 12 47 21 : 0 0 0 DISPLAY
. 1200 to radians Convert
HOW TO CONVERT BETWEEN
DEGREES, RADIANS AND GRADIANS
BASICS 3 2 120 : 0 DISPLAY
degrees. to radians 2 π Convert
HOW TO CONVERT BETWEEN
DEGREES, RADIANS AND GRADIANS
BASICS
90
2
:
r
DISPLAY
system? centesimal in 120 is What 0
PAST CE BOARD EXAM
BASICS ENTER
3
400
20
1
:
0DISPLAY
HOW TO GET THE POLAR AND
RECTANGULAR COORDINATE OF A
POINT IN THE CARTESIAN PLANE
BASICS
30993247
.
56
,
211102551
.
7
)
6
,
4
(
:
r
Pol
DISPLAY
PAST CE BOARD EXAM
6). -(4, point the of coordinate polar the Find
HOW TO GET THE POLAR AND
RECTANGULAR COORDINATE OF A
POINT IN THE CARTESIAN PLANE
BASICS
PAST ECE BOARD EXAM
P(-3,-4) point the contains side terminal the if cos of value the Find
: SolutionHOW TO GET THE POLAR AND
RECTANGULAR COORDINATE OF A
POINT IN THE CARTESIAN PLANE
BASICS
PAST ECE BOARD EXAM
8698976 . 126 , 5 ) 4 , 3 ( :
r Pol DISPLAY Y. to and X lly to automatica stored is r : NOTE
5 3 ) cos( : Y DISPLAYBASICS ). (3,120 is coordinate polar whose point a of coordinate r rectangula the Find 0 59807621 . 2 , 5 . 1 Rec(3,120) : DISPLAY Y X
HOW TO SOLVE COMBINATION
AND PERMUTATION PROBLEMS.
BASICS
PAST ECE BOARD EXAM
collinear? are which of three no points distinct 10 by formed are gles many trian How 10C3. is points collinear non 10 from formed be can that triangles of number The : Solution 120 3 10 : DISPLAY C
BASICS contest? essay student a in finalists 10 the among from up runner first the and winner the choose judges can the ways different many how In here important is order : Note time. a at 2 taken finalists 10 are There : Solution 90 2 10 : DISPLAY P
HOW TO EVALUATE FACTORIAL
NUMBERS
BASICS10!
of
value
the
Find
3628800 ! 10 : DISPLAY6
5
3
3
6
) if f(x)
x
4
x
2-
x
(
Evaluate f
HOW TO EVALUATE
FUNCTIONS
BASICS 3972 6 5 3 3 : DISPLAY 2 4 x x x3 2 2 2 3 2 3 4 , 3 , 4 ) if f(x y) x y x y- xy y ( Evaluate f
HOW TO EVALUATE
FUNCTIONS
BASICS2. by x divided is 4 x 4x -2x 3x when remainder the Find 4 3 2
PAST ME BOARD EXAM
BASICS ) f(-remainder , x x -x x f(x) Solution: 2 4 4 2 3 4 3 2 18 4 4 2 3 : DISPLAY 2 3 4 x x x x
18
Remainder
:
Answer
? x -x -x x of x ) a factor Is (x 3 6 6 5 8 4 6 3 9 2
HOW TO EVALUATE
FUNCTIONS
BASICS 2 3 4 5 6 9 6 8 6 of factor a is 3 then x 0, f(-3) Since : x -x -x x x Conclusion HOW TO USE THE ∑ SIGN
BASICS 20 ... 3 2 1 sum. the Find 210
:
DISPLAY
20 1x
x
)
4
(
5
)
3
(
4
x
x
SOLVE
HOW TO SOLVE LINEAR
EQUATIONS
? , 9 , 2 , 4 ), 2 2 ( 7 Y of value the is what A and D X Y X D A If
HOW TO SOLVE A
SPECIFIC VARIABLE
BASICSHOW TO USE MULTILINE FUNCTION
BASICS 12m. 8m, 6m, are sides whose triangle a of area the Find:
ENTER
PAST EE BOARD EXAM
2 c b a s c) -b)(s -a)(s -s(s A : Formula s Heron' Using : Solution
HOW TO USE MULTILINE FUNCTION
BASICS:
ENTER
C) -B)(X -A)(X -X(X : 2 C B A X : DISPLAY PAST EE BOARD EXAM
13 2 C B A X : DISPLAY 455 ) )( )( ( : DISPLAY C X B X A X X
HOW TO USE LOGARITHMIC EQUATIONS
BASICS 10 5) (x log x log in for x Solve 2 2 :
ENTER
PAST ME BOARD EXAM
0
R
-L
9
29.5975076
X
10
5)
(x
log
x
log
:
DISPLAY
2 2
BASICS
HOW TO GET THE
DERIVATIVE AT A POINT
. 3 when 3 of derivative the Find x3 x2 x :
ENTER
45
)
3
(
:
DISPLAY
3 2 3
xX
X
dx
d
PAST ECE BOARD EXAM
) 1 ( 2 . 2 . ) 1 ( . ) 1 ( 2 . 1 equation the ate Differenti 2 2 2 2 x x d x c x x b x x x a x x y d. substitute is x of value same when choices the of value the to value this compare and 2 say x x, of any value at y ate Differenti : Technique :
ENTER
8888888889 . 0 2 1 : DISPLAY 2 x x x dx d ADVANCEPAST ECE BOARD EXAM
d. substitute being is x of value the as choices the it to Compare : Note 2 x Substitute ) 1 ( 2 ) 2 2 x x x a:
ENTER
8888888889 . 0 ) 1 ( 2 : DISPLAY 2 2 x x x 3 4 ) 1 ( . 4 2 . 3 2 ) 1 ( . : follows as summarized are 2 when x choices the of rest the of values The 2 2 2 2 x x x x x d x c x x b 2 2 ) 1 ( 2 a. : Answer x x x ADVANCEx
0
1 cos x
lim
sin x
HOW TO GET THE LIMIT
OF A FUNCTION
ADVANCE
0
:
Answer
HOW TO GET THE LIMIT
OF A FUNCTION
ADVANCE3/7
:
Answer
3
3
x
3x
4x
2
lim
7x
5
BASICS
HOW TO INTEGRATE
2 1 5 ) 1 3 ( Evaluate x x dx:
ENTER
16
1
3
:
DISPLAY
2 1 5dx
x
x
3 2 2 xdx 4 x 2 1 C 4 x 2 x C 4 x 2 3 C 2 4 x 2 1 C 2 4 xx x
e
dx
e
1
2.ln
1
C. ln
1
.ln
1
D.ln
1
x x x xA
e
C
e
C
B
e
C
e
C
MODE 2 :
COMPLEX NUMBER
CALCULATIONS
HOW TO SOLVE COMPLEX NUMBERS
BASICSargument.
the
Find
b.
value.
absolute
the
Find
a.
4i
-3
z
number
complex
For the
0 53.13 is argument the and 5 is value absolute The : Answer 13010235 . 53 5 4 3 : DISPLAY i r HOW TO SOLVE COMPLEX NUMBERS
BASICSproduct.
the
find
2i),
3i)(5
-(2
:
Given
i i i 11 16 ) 2 5 )( 3 2 ( : DISPLAY :
ENTER
HOW TO SOLVE COMPLEX NUMBERS
BASICS2i
-5
3i
4
:
Simplify
i i i 29 23 29 14 2 5 3 4 : DISPLAY :
ENTER
HOW TO GET THE COMPONENT OF A
FORCE AND RESULTANT OF FORCES
BASICS 0 37 300N F force the of components y and x the Find i 5445069 . 180 590635 . 239 37 300 : DISPLAY 0
:
ENTER
N. 180.54 is component y the and N 239.5 is component x The : AnswerADVANCE number? imaginary an is where ) 1 ( of value the Find i 5 i
:
ENTER
PAST CE/ECE BOARD EXAM
2 3 ) 1 ( ) 1 ( as Rewrite : Technique i i
:
ENTER
i i i 4 4 ) 1 ( ) 1 ( : DISPLAY 2 3 MODE 3 :
STATISTICAL AND
REGRESSION
HOW TO FIND THE MEAN AND
STANDARD DEVIATION
BASICS mean. the Find hrs. 888 and 852, 840, 859, 867, lasting after out burned bulbs light Five 2 . 861 : DISPLAY x 888 5 852 4 840 3 859 2 867 1 : DISPLAY xBASICS
PAST ME BOARD EXAM
197 183 176 164 156 144 132 112 : Data deviation. standard the determine data, l statistica following Given the ENTER 197 8 183 7 176 6 164 5 156 4 144 3 132 2 112 1 : DISPLAY x 21545346 . 26 x : DISPLAY
ADVANCE 10... 7, 4, n progressio arithmetic the of term 30 the Find th
:
ENTER
PAST CE/ECE BOARD EXAM
:
ENTER
7 2 2 4 1 1 y x : DISPLAY 91 Yˆ 0 3 : DISPLAYIf the first term of an arithmetic
progression is 3 and its tenth term is 39:
a. Find the fourth term
ADVANCE term. 8 the Find 1944. is 6th term the and 216 is GP the of term 4 The th th