• No results found

Computing the Set of Approximate Solutions of an MOP with Stochastic Search Algorithms

N/A
N/A
Protected

Academic year: 2021

Share "Computing the Set of Approximate Solutions of an MOP with Stochastic Search Algorithms"

Copied!
24
0
0

Loading.... (view fulltext now)

Full text

(1)

MOP with Stochastic Search Algorithms

Oliver Schuetze, Carlos A. Coello Coello, El-Ghazali Talbi

To cite this version:

Oliver Schuetze, Carlos A. Coello Coello, El-Ghazali Talbi. Computing the Set of Approximate

Solutions of an MOP with Stochastic Search Algorithms.

research report.

2007.

<inria-00157741v2>

HAL Id: inria-00157741

https://hal.inria.fr/inria-00157741v2

Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not.

The documents may come from

L’archive ouverte pluridisciplinaire HAL, est

destin´

ee au d´

epˆ

ot et `

a la diffusion de documents

scientifiques de niveau recherche, publi´

es ou non,

´

emanant des ´

etablissements d’enseignement et de

(2)

inria-00157741, version 2 - 23 Oct 2007

a p p o r t

d e r e c h e r c h e

9

-6

3

9

9

IS

R

N

IN

R

IA

/R

R

--?

?

?

?

--F

R

+

E

N

G

Thèmes COM et COG et SYM et NUM et BIO

Computing the Set of Approximate Solutions of an

MOP with Stochastic Search Algorithms

Oliver Schütze

1

, Carlos A. Coello Coello

2

, and El-Ghazali Talbi

1

1

INRIA Futurs, LIFL, CNRS Bât M3, Cité Scientifique

e-mail: {schuetze,talbi}@lifl.fr

3

CINVESTAV-IPN, Electrical Engineering Department

e-mail: ccoello@cs.cinvestav.mx

N° ????

(3)
(4)

Unité de recherche INRIA Futurs

OliverS hütze

1

, CarlosA. CoelloCoello

2

, and El-GhazaliTalbi

1

1

INRIAFuturs, LIFL, CNRS Bât M3,Cité S ientique

e-mail: {s huetze,talbi}li.fr

3

CINVESTAV-IPN, Ele tri alEngineering Department

e-mail: oello s. investav.mx

ThèmesCOMetCOGet SYMetNUM etBIOSystèmes ommuni antsetSystèmes

ognitifsetSystèmessymboliquesetSystèmesnumériquesetSystèmesbiologiques

ProjetsApi set Opéra

Rapportdere her he n°???? June200720pages

Abstra t: Inthisworkwedevelopaframeworkfortheapproximationof theentire setof

ǫ

-e ient solutionsof a multi-obje tiveoptimization problem with sto hasti sear h

algo-rithms. For this,weproposethesetofinterest,investigateitstopologyandstatea

onver-gen eresultforageneri sto hasti sear halgorithmtowardthissetofinterest. Finally,we

presentsomenumeri alresultsindi atingthepra ti abilityofthenovelapproa h.

Key-words: multi-obje tiveoptimization, onvergen e,

ǫ

-e ientsolutions,approximate

solutions,sto hasti sear halgorithms.

Partsofthismanus riptwillbepublishedinthepro eedingsofthe6thMexi anInternationalConferen e

(5)

Résumé: Pasderésumé

(6)

1 Introdu tion

Sin ethenotionof

ǫ

-e ien yformulti-obje tiveoptimizationproblems(MOPs)hasbeen

introdu edmorethantwode adesago([7℄),this on epthasbeenstudiedandusedbymany

resear hers,e.g. to allow (or tolerate)nearlyoptimal solutions([7℄, [16℄), to approximate

thesetofoptimalsolutions([10℄),orinordertodis retizethisset([6℄,[14℄).

ǫ

-e ient

solu-tionsorapproximatesolutionshavealsobeenusedtota kleavarietyofrealworldproblems

in ludingportfoliosele tionproblems([17℄),alo ationproblem([1℄),oraminimal ostow

problem([10℄). Theexpli it omputationofsu happroximatesolutionshasbeenaddressed

in severalstudies (e.g.,[16℄, [1℄, [3℄),in allof thems alarizationte hniqueshavebeen

em-ployed.

The s opeof this paper is to develop aframework for the approximationof the set of

ǫ

-e ient solutions (denote by

E

ǫ

) with sto hasti sear h algorithms su h as evolutionary

multi-obje tive(EMO)algorithms. This allsforthedesignofanovelar hivingstrategyto

storethe`required'solutionsfoundbyasto hasti sear hpro ess(thoughtheinvestigation

ofthe set ofinterestwill bethemajorpartin this work). Oneinterestingfa t isthat the

solutionset (the Pareto set) is in ludedin

E

ǫ

for all (small)values of

ǫ

, and thus the

re-sultingar hivingstrategyforEMOalgorithms anberegardedasanalternativetoexisting

methodsfortheapproximationofthisset (e.g,[4℄,[8℄, [5℄,[9℄).

Theremainder ofthis paperisorganizedasfollows: in Se tion 2,wegivetherequired

ba kgroundfortheunderstandingofthesequel. InSe tion 3,weproposeaset ofinterest,

analyzeits topology, andstate a onvergen eresult. Wepresentnumeri alresultson two

examplesin Se tion4and on ludeinSe tion 5.

2 Ba kground

Inthefollowingwe onsider ontinuousmulti-obje tiveoptimizationproblems

min

x∈

R

n

{F (x)},

(MOP)

where the fun tion

F

is dened as the ve tor of the obje tive fun tions

F :

R

n

R

k

,

F (x) = (f

1

(x), . . . , f

k

(x)),

and where ea h

f

i

:

R

n

R is ontinuously

dieren-tiable. Laterwewill restri tthesear htoa ompa tset

Q ⊂

R

n

,thereadermaythink of

an

n

-dimensionalbox.

Denition2.1 (a) Let

v, w ∈

R

k

. Then the ve tor

v

islessthan

w

(

v <

p

w

), if

v

i

< w

i

for all

i ∈ {1, . . . , k}

. The relation

p

isdenedanalogously.

(b)

y ∈

R

n

isdominatedbyapoint

x ∈

R

n

(

x ≺ y

)withrespe tto(MOP)if

F (x) ≤

p

F (y)

and

F (x) 6= F (y)

,else

y

is alled nondominatedby

x

.

( )

x ∈

R

n

is alledaParetopointifthereisno

y ∈

R

n

(7)

(d)

x ∈

R

n

is weakly Pareto optimal if there does not exist another point

y ∈

R

n

su h that

F (y) <

p

F (x)

.

Wenowdeneaweaker on eptofdominan e, alled

ǫ

-dominan e,whi histhebasisof

theapproximation on eptusedin thisstudy.

Denition2.2 Let

ǫ = (ǫ

1

, . . . , ǫ

k

) ∈

R

k

+

and

x, y ∈

R

n

.

x

issaidto

ǫ

-dominate

y

(

x ≺

ǫ

y

)

withrespe tto(MOP )if

F (x) − ǫ ≤

p

F (y)

and

F (x) − ǫ 6= F (y)

.

Theorem2.3([11℄) Let(MOP)begivenand

q :

R

n

R

n

bedenedby

q(x) =

P

k

i=1

α

ˆ

i

∇f

i

(x)

, where

α

ˆ

isasolutionof

min

α∈

R

k

(

k

k

X

i=1

α

i

∇f

i

(x)k

2

2

; α

i

≥ 0, i = 1, . . . , k,

k

X

i=1

α

i

= 1

)

.

Then either

q(x) = 0

or

−q(x)

is a des ent dire tion for all obje tive fun tions

f

1

, . . . , f

k

in

x

. Hen e, ea h

x

with

q(x) = 0

fullls the rst-order ne essary ondition for Pareto

optimality.

In ase

q(x) 6= 0

itobviouslyfollowsthat

q(x)

isanas entdire tionforallobje tives. Next,

weneedthefollowingdistan es betweendierentsets.

Denition2.4 Let

u ∈

R

n

and

A, B ⊂

R

n

. The semi-distan e dist

(·, ·)

andthe Hausdor

distan e

d

H

(·, ·)

aredenedasfollows:

(a) dist

(u, A) := inf

v∈A

ku − vk

(b) dist

(B, A) := sup

u∈B

dist

(u, A)

( )

d

H

(A, B) := max {

dist

(A, B),

dist

(B, A)}

Denoteby

A

the losureofaset

A ∈

R

n

,by

A

itsinterior,andby

∂A = A\

A

theboundary

of

A

.

Algorithm 1givesaframework of ageneri sto hasti multi-obje tiveoptimization

al-gorithm,whi h will be onsidered in this work. Here,

Q ⊂

R

n

denotesthe domain ofthe

MOP,

P

j

the andidateset(orpopulation)ofthegenerationpro essatiterationstep

j

,and

A

j

the orrespondingar hive.

Denition2.5 A set

S ⊂

R

n

is alled not onne tedif there existopen sets

O

1

, O

2

su h

that

S ⊂ O

1

∪ O

2

,

S ∩ O

1

6= ∅

,

S ∩ O

2

6= ∅

,and

S ∩ O

1

∩ O

2

= ∅

. Otherwise,

S

is alled onne ted.

(8)

Algorithm1Generi Sto hasti Sear hAlgorithm 1:

P

0

⊂ Q

drawnatrandom 2:

A

0

= ArchiveU pdate(P

0

, ∅)

3: for

j = 0, 1, 2, . . .

do 4:

P

j+1

= Generate(P

j

)

5:

A

j+1

= ArchiveU pdate(P

j+1

, A

j

)

6: endfor

3 The Ar hiving Strategy

Inthisse tionwedenethesetofinterest,investigatethetopologyofthisobje t,andnally

statea onvergen eresult.

Denition3.1 Let

ǫ ∈

R

k

+

and

x, y ∈

R

n

.

x

is said to

−ǫ

-dominate

y

(

x ≺

−ǫ

y

) with

respe tto(MOP) if

F (x) + ǫ ≤

p

F (y)

and

F (x) + ǫ 6= F (y)

.

Thisdenitionisof ourseanalogoustothe` lassi al'

ǫ

-dominan erelationbutwithavalue

˜

ǫ ∈

R

k

. However,wehighlightit heresin eit willbeused frequently in thiswork. While

the

ǫ

-dominan eisaweaker on eptofdominan e,

−ǫ

-dominan eisastrongerone.

Denition3.2 Apoint

x ∈ Q

is alled

−ǫ

weakParetopointifthereexistsnopoint

y ∈ Q

su hthat

F (y) + ǫ <

p

F (x)

.

Nowweareabletodenethesetofinterest. Ideally,wewouldliketoobtainthe` lassi al'

set

P

c

Q,ǫ

:= {x ∈ Q|∃p ∈ P

Q

: x ≺

ǫ

p}

1

,

(1)

where

P

Q

denotestheParetoset(i.e.,thesetofParetooptimalsolutions)of

F

Q

. Thatis,

everypoint

x ∈ P

c

Q,ǫ

is` lose'toatleastonee ientsolution,measuredinobje tivespa e.

However,sin ethissetisnoteasyto at hnotethatthee ientsolutionsareusedinthe

denition,wewill onsideranenlargedsetofinterest(seeLemma3.9):

Denition3.3 Denote by

P

Q,ǫ

the set of points in

Q ⊂

R

n

whi h are not

−ǫ

-dominated

byany other pointin

Q

,i.e.

P

Q,ǫ

:= {x ∈ Q| 6 ∃y ∈ Q : y ≺

−ǫ

x}

2

(2)

Example3.4 (a) Figure1shows twoexamples forsets

P

Q,ǫ

,onefor the single-obje tive

ase(left), andonefor

k = 2

(right). Inthe rst asewehave

P

Q,ǫ

= [a, b] ∪ [c, d]

.

1

P

c

Q,ǫ

is loselyrelatedtoset

E

1

onsideredin[16℄.

2

P

Q,ǫ

is loselyrelatedtoset

E

5

(9)

Figure1: Twodierentexamplesforsets

P

Q,ǫ

. Left for

k = 1

andinparameterspa e,and

rightanexamplefor

k = 2

inimagespa e.

(b) Consider the MOP

F :

R

R

2

,

F (x) = ((x − 1)

2

, (x + 1)

2

)

. For

ǫ = (1, 1)

and

Q

su iently large, say

Q = [−3, 3]

, we obtain

P

Q

= [−1, 1]

and

P

Q,ǫ

= (−2, 2)

. Note

that the boundary of

P

Q,ǫ

,i.e.

∂P

Q,ǫ

= P

Q,ǫ

\

P

Q,ǫ

= [−2, 2]\(2, 2) = {−2, 2},

isgiven

by

−ǫ

weak Pareto points whi h are not in luded in

P

Q,ǫ

(see also Lemma 1): for

x

1

= −2

and

x

2

= 2

it is

F (x

1

) = (9, 1)

and

F (x

2

) = (1, 9)

. Sin e there exists no

x ∈ Q

with

f

i

(x) < 0, i = 1, 2

,thereisalsonopoint

x ∈ Q

whereallobje tivesareless

than at

x

1

or

x

2

. Further,sin e

F (−1) = (4, 0)

and

F (1) = (0, 4)

there exist points

whi h

−ǫ

-dominatethese points, andtheyarethusnot in ludedin

P

Q,ǫ

.

Firstwestudythe onne tednessof

P

Q,ǫ

. The onne tednessoftheset ofinterestisan

importantproperty,inparti ularwhenta klingtheproblemwithlo alsear hstrategies: in

that ase,theentireset anpossiblybedete tedwhenstartingwithonesingleapproximate

solution. Example3.4(a)showsthatthe onne tednessof

P

Q,ǫ

annotbeexpe tedin ase

F (Q)

isnot onvex. However,inthe onvex asethefollowingholds.

Lemma3.5 Let

ǫ ∈

R

k

+

. If

Q

is onvexand all

f

i

, i = 1, . . . , k

are onvex,then

P

Q,ǫ

and

F (P

Q,ǫ

)

are onne ted.

Proof: The proof is based on the fa t that in this ase

P

Q

is onne ted (e.g., [2℄).

Assume that

P

Q,ǫ

is not onne ted, that is, there exist open sets

O

1

, O

2

R

n

su h that

P

Q,ǫ

⊂ O

1

∪O

2

,

P

Q,ǫ

∩O

1

6= ∅

,

P

Q,ǫ

∩O

2

6= ∅

,and

P

Q,ǫ

∩O

1

∩O

2

= ∅

. Sin e

P

Q

is onne ted,

itmustbe ontainedinoneofthesesets,withoutlossofgeneralityweassumethat

P

Q

⊂ O

1

.

Byassumptionthereexistsapoint

x ∈ P

Q,ǫ

∩ O

2

,andhen e,

x 6∈ P

Q

. Further,thereexists

anelement

p ∈ P

Q

su hthat

F (p) ≤

p

F (x)

. Sin e

Q

is onvex,thefollowingpath

γ : [0, 1] → Q

(10)

PSfragrepla ements

x

p

O

1

O

2

γ([0, 1])

P

Q,ǫ

Figure2: ...

iswell-dened (i.e.,

γ([0, 1]) ⊂ Q

). Sin e

F

is onvexand bythe hoi eof

p

itholdsforall

λ ∈ [0, 1]

:

F (γ(λ)) = F (λx + (1 − λ)p) ≤ λF (x) + (1 − λ)F (p) ≤ F (x),

(4) andthusthat

γ(λ) ∈ P

Q,ǫ

,whi hisa ontradi tiontothe hoi eof

O

1

and

O

2

.

The onne tedness of

F (P

Q,ǫ

)

follows immediately sin e images of onne ted sets under

ontinuousmappingsare onne ted,andtheproofis omplete.

Thenextlemmades ribesthetopologyof

P

Q,ǫ

inthegeneral ase,whi hwillbeneeded

fortheup oming onvergen eanalysis ofthesto hasti sear hpro ess.

Lemma3.6 (a) Let

Q ⊂

R

n

be ompa t. Under the following assumptions

(A1) Letthere beno weak Pareto pointin

Q\P

Q

,where

P

Q

denotes the setof Pareto

pointsof

F |

Q

.

(A2) Lettherebeno

−ǫ

weak Pareto pointin

Q\P

Q,ǫ

,

(A3) Dene

B := {x ∈ Q|∃y ∈ P

Q

: F (y) + ǫ = F (x)}

. Let

B ⊂

Q

and

q(x) 6= 0

for all

x ∈ B

,where

q

isasdenedin Theorem 2.3 ,

itholds:

P

Q,ǫ

= {x ∈ Q| 6 ∃y ∈ Q : F (y) + ǫ <

p

F (x)}

P

Q,ǫ

= {x ∈ Q| 6 ∃y ∈ Q : F (y) + ǫ ≤

p

F (x)}

∂P

Q,ǫ

= {x ∈ Q|∃y

1

∈ P

Q

: F (y

1

) + ǫ ≤

p

F (x) ∧ 6 ∃y

2

∈ Q : F (y

2

) + ǫ <

p

F (x)}

(5)

(b) Letinaddition tothe assumptionsmade abovebe

q(x) 6= 0 ∀x ∈ ∂P

Q,ǫ

. Then

(11)

Proof: Dene

W := {x ∈ Q| 6 ∃y ∈ Q : F (y) + ǫ <

p

F (x)}

. We show the equality

P

Q,ǫ

= W

by mutual in lusion.

W ⊂ P

Q,ǫ

follows dire tly by assumption (A2). To see

theother in lusion assumethat there existsan

x ∈ P

Q,ǫ

\W

. Sin e

x 6∈ W

there existsan

y ∈ Q

su h that

F (y) + ǫ <

p

F (x)

. Further, sin e

F

is ontinuous there exists further a

neighborhood

U

of

x

su hthat

F (y) + ǫ <

p

F (u),

∀u ∈ U

. Thus,

y

is

−ǫ

-dominatingall

u ∈ U

(i.e.,

U ∩ P

Q,ǫ

= ∅

),a ontradi tiontotheassumptionthat

x ∈ P

Q,ǫ

. Thus, wehave

P

Q,ǫ

= W

as laimed.

Nextweshowthat theinteriorof

P

Q,ǫ

isgivenby

I := {x ∈ Q| 6 ∃y ∈ Q : F (y) + ǫ ≤

p

F (x)},

(7)

whi h we doagainby mutualin lusion. Toseethat

P

Q,ǫ

⊂ I

assumethat there existsan

x ∈

P

Q,ǫ

\I

. Sin e

x 6∈ I

wehave

∃y

1

∈ Q :

F (y

1

) + ǫ ≤

p

F (x).

(8) Sin e

x ∈

P

Q,ǫ

there exists no

y ∈ Q

whi h

−ǫ

-dominates

x

, and hen e,equality holds in

equation(8). Further,byassumption(A1) itfollowsthat

y

1

mustbein

P

Q

. Thus,we an

reformulate(8)by

∃y

1

∈ P

Q

:

F (y

1

) + ǫ = F (x)

(9)

Sin e

x ∈

P

Q,ǫ

there exists a neighborhood

U

˜

of

x

su h that

U ⊂

˜

P

Q,ǫ

. Further, sin e

q(x) 6= 0

byassumption(A1),thereexistsapoint

x ∈ ˜

˜

U

su hthat

F (˜

x) >

p

F (x)

. Combining

thisand(9)weobtain

F (y

1

) + ǫ = F (x) <

p

F (˜

x),

(10)

andthus

y

1

−ǫ

x ∈ ˜

˜

U ⊂

P

Q,ǫ

, whi his a ontradi tion. Itremainstoshowthat

I ⊂

P

Q,ǫ

:

assumethereexistsan

x ∈ I\

P

Q,ǫ

. Sin e

x 6∈

P

Q,ǫ

thereexistsasequen e

x

i

∈ Q\P

Q,ǫ

, i ∈

N

,

su h that

lim

i→∞

x

i

= x

. That is, there exists asequen e

y

i

∈ Q

su hthat

y

i

−ǫ

x

i

for

all

i ∈

N. Sin e all the

y

i

are inside

Q

, whi h is a bounded set, there exists a

subse-quen e

y

i

j

, j ∈

N, and an

y ∈ Q

su h that

lim

j→∞

y

i

j

= y

(Bolzano-Weierstrass). Sin e

F (y

i

j

) + ǫ ≤

p

F (x

i

j

),

∀j ∈

N

,

itfollowsfor thelimitpoints thatalso

F (y) + ǫ ≤

p

F (x)

,

whi h isa ontradi tionto

x ∈ I

. Thus, wehave

P

Q,ǫ

= Iasdesired.

Fortheboundaryweobtain

∂P

Q,ǫ

= P

Q,ǫ

\

P

Q,ǫ

= {x ∈ Q|∃y

1

∈ Q : F (y

1

) + ǫ ≤

p

F (x)

and

6 ∃y

2

∈ Q : F (y

2

) + ǫ <

p

F (x)}

(11)

Sin eby(A1)thepoint

y

1

in(11)mustbein

P

Q

,weobtain

(12)

Itremainsto showthese ond laim. Itis

P

Q,ǫ

=

P

Q,ǫ

∪ ∂P

Q,ǫ

. Assume that

P

Q,ǫ

6= P

Q,ǫ

,

i.e.,thatthereexistsan

x ∈ ∂P

Q,ǫ

andaneighborhood

U

of

x

su hthat

U ∩

P

Q,ǫ

= ∅

. Sin e

x ∈ ∂P

Q,ǫ

there exists apoint

y ∈ P

Q

su h that

F (y) + ǫ ≤

p

F (x)

. Byassumption it is

q(x) 6= 0

, and thus there exists an

x ∈ U

¯

su h that

F (¯

x) <

p

F (x)

. Sin e

x 6∈

¯

P

Q,ǫ

there

existsan

¯

y ∈ Q

su hthat

F (¯

y) + ǫ ≤

p

F (¯

x) <

p

F (x)

,whi h ontradi tstheassumptionthat

x ∈ ∂P

Q,ǫ

. Thus, wehavethat the losureof theinteriorof

P

Q,ǫ

isequalto its losure as laimed.

Remark3.7 (a) Notethat ingeneral

P

Q,ǫ

isneitheran open nora losed set,andthat

P

Q,ǫ

gets` ompleted'by

−ǫ

weak Pareto points(seealso Example 1).

(b) Sin efor

x

and

y

1

inequation(12)itmustholdthatthereexistsanindex

j ∈ {1, . . . , k}

su hthat

f

j

(y

1

) + ǫ

j

= f

j

(x)

. Thus, theboundaryof

P

Q,ǫ

an be hara terizedby the

set of

−ǫ

weak Pareto pointswhi h areboundedin obje tivespa efrom

P

Q

by

ǫ

.

The next example shows that the losure of the interior of

P

Q,ǫ

does in general not

havetobeequalto its losure,whi h ausestroubleto approximate

∂P

Q,ǫ

usingsto hasti

sear halgorithms. However,thefollowingLemmashowsthatthisisdespitefortheoreti al

investigationsnotproblemati sin e

P

Q,ǫ

,whi h anbeapproximatedinany ase,already

ontainsalltheinterestingparts.

Example3.8 Figure3shows an examplewhi h is amodi ation of the MOPin Example

3.4(a). Wehave

P

Q,ǫ

= {x

} ∪ [c, d]

andhen e

P

Q,ǫ

= [c, d] 6= P

Q,ǫ

.

Note that here we have

f

(x

) = 0

, and thus that (A3) is violated. The problem with the

approximation of the entire set

P

Q,ǫ

in this ase is the following: assume that argmin

f

is

alreadyamemberofthear hive,thenevery andidatesolutionnear

x

willbereje tedbyall

furtherar hives. Thus, the entireset

P

Q,ǫ

anonly beapproximatedif

x

isamember ofa

population

P

i

, i ∈

N, andthe probability for this eventiszero. Su hproblems do not o ur

for points in

P

Q,ǫ

(seeproof ofTheorem3.10).

Lemma3.9

P

c

Q,ǫ

P

Q,ǫ

Proof: Assume there exists an

x ∈ P

c

Q,ǫ

\

P

Q,ǫ

. Sin e

x ∈ P

c

Q,ǫ

there exists a Pareto

optimalpoint

p ∈ P

Q

with

p ≺

ǫ

p

. Further,sin e

x 6∈

P

Q,ǫ

there existsan

y ∈ Q

su h that

F (y) + ǫ ≤

p

F (x)

. Combiningbothweobtain

F (y) ≤

p

F (x) − ǫ ≤ F (p),

and

∃j ∈ {1, . . . , k} : f

j

(y) ≤ f

j

(x) − ǫ < f

j

(p) (⇒ F (y) 6= F (p)),

(13)

Figure3: Exampleofaset

P

Q,ǫ

wherethe losureofitsinteriorisnotequalto its losure.

whi h meansthat

y ≺ p

,a ontradi tionto

p ∈ P

Q

,andwearedone.

Havinganalyzedthetopologyof

P

Q,ǫ

weare nowin thepositionto statethefollowing

result. Thear hiving strategyissimplythe onewhi hkeepsallobtainedpointswhi h are

not

−ǫ

-dominatedbyanyothertestpoint.

Theorem3.10 LetanMOP

F :

R

n

R

k

begiven,where

F

is ontinuous,let

Q ⊂

R

n

be

a ompa tset and

ǫ ∈

R

k

+

. Furtherlet

∀x ∈ Q

and

∀δ > 0 :

P (∃l ∈

N

: P

l

∩ B

δ

(x) ∩ Q 6= ∅) = 1

(14)

Then,under the assumptions madeinLemma3.6 , an appli ationof Algorithm1 , where

ArchiveU pdateP

Q,ǫ

(P, A) := {x ∈ P ∪ A : y 6≺

−ǫ

x ∀y ∈ P ∪ A},

(15)

isusedtoupdatethe ar hive, leads toasequen eof ar hives

A

l

, l ∈

N, with

lim

l→∞

d

H

(P

Q,ǫ

, A

l

) = 0,

withprobability one. (16)

Proof: Sin e

dist(A, B) = dist(A, B)

for allsets

A, B ⊂

R

n

and sin e

P

Q,ǫ

= P

Q,ǫ

(see

Lemma3.6),itissu ienttoshowthattheHausdordistan ebetween

A

l

and

P

Q,ǫ

vanishes

inthelimitwithprobabilityone.

Firstweshowthat

dist(A

l

,

P

Q,ǫ

) → 0

withprobabilityonefor

l → ∞

. Itis

dist(A

l

,

P

Q,ǫ

) = max

a∈A

l

inf

p∈

P

Q,ǫ

ka − pk.

Wehavetoshowthatevery

x ∈ Q\P

Q,ǫ

willbedis arded(ifaddedbefore)fromthear hive

afternitelymanysteps,andthatthispointwillneverbeenaddedfurtheron.

(14)

point

p ∈ P

Q,ǫ

su h that

F (p) + ǫ <

p

F (x)

. Further, sin e

F

is ontinuous there exists a

neighborhood

U

of

x

su hthat

F (p) + ǫ <

p

F (u),

∀u ∈ U.

(17)

By(14)it follows that there exists withprobability one anumber

l

0

Nsu h that there

exists apoint

x

l

0

∈ P

l

0

∩ U ∩ Q

. Thus, by onstru tion of

ArchiveU pdateP

Q,ǫ

, the point

x

will be dis arded from the ar hiveif it is a memberof

A

l

0

, and neverbe added to the

ar hivefurtheron.

Nowwe onsiderthelimitbehaviorof

dist(

P

P,ǫ

, A

l

)

. Itis

dist(

P

Q,ǫ

, A

l

) = sup

p∈

P

Q,ǫ

min

a∈A

l

kp − ak.

Let

p ∈

¯

P

Q,ǫ

. For

i ∈

Nthereexistsby(14)anumber

l

i

andapoint

p

i

∈ P

l

i

∩ B

1/i

p) ∩ Q

,

where

B

δ

(p)

denotesthe openball with enter

p

and radius

δ ∈

R

+

. Sin e

lim

i→∞

p

i

= ¯

p

andsin e

p ∈

¯

P

Q,ǫ

thereexistsan

i

0

Nsu hthat

p

i

P

Q,ǫ

forall

i ≥ i

0

. By onstru tion of

ArchiveU pdateP

Q,ǫ

, all the points

p

i

, i ≥ i

0

, will be added to the ar hive (and never

dis ardedfurtheron). Thus,wehave

dist(¯

p, A

l

) → 0

for

l → ∞

asdesired,whi h ompletes

theproof.

Remark3.11 (a) In order toobtain a ` omplete' onvergen eresult wehave postulated

some (mild) assumptions in order toguaranteethat

P

Q,ǫ

= P

Q,ǫ

,whi h isin fa t an

importanttopologi al property neededfor the proof. However, if we drop the

assump-tions we an still expe tthat the interiorof

P

Q,ǫ

 the `interesting' part (see Lemma

3.9)willbeapproximatedinthelimit. Tobemorepre ise,regardlessofassumptions

(A1)(A3) itholdsinthe above theoremthat

lim

l→∞

dist(

P

Q,ǫ

, A

l

) = 0,

withprobability one.

(b) Note the analogy of the approa h proposed above toone approa h to approximate the

Paretofront( ompareto[13 ℄): in aseallthenondominatedsolutionswhi harefound

sofar are keptin thear hive,i.e., when

ArchiveU pdateN D(A, P ) := {x ∈ A ∪ P : y 6≺ x ∀y ∈ A ∪ P }

is used, one an show that  under similar assumptions as in Theorem 3.10  an

appli ation of Algorithm1leadstoasequen eof ar hives

{A

i

}

i∈

N

,su hthat

lim

l→∞

d

H

(F (P

Q

), F (A

l

)) = 0

with probability one,

where

P

Q

denotes the Pareto set of

F

Q

,i.e.

(15)

4 Numeri al Results

Here we demonstrate the pra ti ability of the novel ar hiver on two examples. For this,

we ompare

ArchiveU pdateP

Q,ǫ

against the ` lassi al' ar hiving strategy whi h storesall

nondominated solutions obtained during the sear h pro edure (

ArchiveU pdateN D

). To

obtain a fair omparison of the two ar hiverswe have de ided to take a random sear h

operatorforthegenerationpro ess(thesamesequen eofpointsforallsettings).

4.1 Example 1

Firstwe onsider theMOP suggestedbyTanaka([15℄):

F :

R

2

R

2

,

F (x

1

, x

2

) = (x

1

, x

2

)

(18) where

C

1

(x) = x

2

1

+ x

2

2

− 1 − 0.1 cos(16 arctan(x

1

/x

2

)) ≥ 0

C

2

(x) = (x

1

− 0.5)

2

+ (x

2

− 0.5)

2

≤ 0.5

Figure4showstwo omparisonsfor

N = 10, 000

and

N = 100, 000

pointswithin

Q = [0, π]

2

asdomain

3

,indi atingthatthemethodis apableofndingallapproximatesolutions.

4.2 Example 2

Next,we onsiderthefollowingMOPproposed in[9℄:

F :

R

2

R

2

F (x

1

, x

2

) =



(x

1

− t

1

(c + 2a) + a)

2

+ (x

2

− t

2

b)

2

(x

1

− t

1

(c + 2a) − a)

2

+ (x

2

− t

2

b)

2



,

(19) where

t

1

=

sgn

(x

1

) min

 |x

1

| − a − c/2

2a + c



, 1



, t

2

=

sgn

(x

2

) min

 |x

2

| − b/2

b



, 1



.

TheParetoset onsistsofnine onne ted omponentsoflength

a

withidenti alimages. We

have hosenthe values

a = 0.5

,

b = c = 5

,

ǫ = (0.1, 0.1)

, thedomain

Q = [−20, 20]

2

, and

N = 10, 000

randomly hosenpointswithin

Q

. Figures 5and 6displaytwotypi alresults

in parameterspa eand imagespa e respe tively. Seemingly, theapproximationqualityof

the Pareto set obtained by the limitset of

ArchiveU pdateP

Q,ǫ

is better than by the one

obtained by

ArchiveU pdateN D

, measured in the Hausdor sense. This example should

indi ate that it anbeadvantageousto store morethan just non-dominated pointsin the

ar hive,evenwhen`only'aimingforthee ientset.

Figure7showsaresultwith

N = 100, 000

randomly hosenpointswithin

Q

,andallother

values hosenasabove.

3

Totintoourframework,we onsiderinfa tthe( ompa t)domain

Q

:= [0, π]

2

∩ {x ∈

R

n

: C

1

(x) ≥

(16)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

1

= f

1

x

2

= f

2

(a)

N

= 10, 000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

1

= f

1

x

2

= f

2

(17)

−8

−6

−4

−2

0

2

4

6

8

−6

−4

−2

0

2

4

6

x

1

x

2

(a)

ArchiveU pdateN D

−8

−6

−4

−2

0

2

4

6

8

−6

−4

−2

0

2

4

6

x

1

x

2

(18)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f

1

f

2

(19)

−8

−6

−4

−2

0

2

4

6

8

−6

−4

−2

0

2

4

6

x

1

x

2

(a)Parameterspa e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f

1

f

2

(b)Imagespa e

N = 100, 000

(20)

4.3 Example 3

Finally,we onsidertheprodu tionmodelproposedin [12℄:

f

1

, f

2

:

R

n

R,

f

1

(x) =

n

X

j=1

x

j

,

f

2

(x) = 1 −

n

Y

j=1

(1 − w

j

(x

j

)),

(20) where

w

j

(z) =

(

0.01 · exp(−(

20

z

)

2.5

)

for

j = 1, 2

0.01 · exp(−

z

15

)

for

3 ≤ j ≤ n

Thetwoobje tivefun tions havetobeinterpretedasfollows.

f

1

representsthesumof

the additional ost ne essaryfor amore reliable produ tion of

n

items. These items are

neededforthe ompositionofa ertainprodu t. Thefun tion

f

2

des ribesthetotalfailure

ratefortheprodu tionofthis omposedprodu t.

Here we have hosen

n = 5

,

Q = [0, 40]

n

, and

ǫ = (0.1, 0.001)

whi h orresponds to

10

per entof one ostunit for oneitem(

ǫ

1

),and to

0.1

per ent ofthe totalfailurerate (

ǫ

2

).

Figure8displaysoneresultfor

N = 1e6

randomly hosenpointswithin

Q

andwhen hoosing

ArchiveU pdateP

Q,ǫ

forthe ar hiver. In this ase atotal of

47, 369

elementsare stored in

thenal ar hive(i.e., almost

5

per entof all onsidered points),whi hshowstheneedfor

asuitablesele tionme hanismforthear hiverleadingto aredu ednumberof elementsin

thear hive.

5 Con lusion and Future Work

We have proposed and investigated anovel ar hiving strategy for sto hasti sear h

algo-rithms whi hallowsundermild assumptionsonthegenerationpro essto approximate

theset

P

Q,ǫ

whi h ontainsall

ǫ

-e ientsolutionswithin a ompa tdomain

Q

. We have

proventhe onvergen eofthealgorithmtowardthissetintheprobabilisti sense,andhave

giventwoexamplesindi atingtheusefulnessoftheapproa h.

Sin etheset ofapproximate solutionsformsan

n

-dimensional obje t,asuitablenite size

representation of

P

Q,ǫ

and therelated ar hiving strategy are of majorinterest for further

investigations.

A knoledgements

(21)

(a)Parameterspa e(proje tion)

0

20

40

60

80

100

120

140

160

180

200

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

f

1

f

2

(b)Imagespa e

N = 1e6

(22)

Referen es

[1℄ R. Blanqueroand E.Carrizosa. A. d. . biobje tivelo ation model. Journalof Global

Optimization,23(2):569580,2002.

[2℄ M.Ehrgott. Multi riteriaOptimization. Springer,2005.

[3℄ A. Engauand M. M.Wie ek. Generatingepsilon-e ient solutionsin multiobje tive

programming. EuropeanJournalof Operational Resear h,177(3):15661579,2007.

[4℄ T. Hanne. On the onvergen e of multiobje tive evolutionary algorithms. European

Journal OfOperational Resear h,117(3):553564,1999.

[5℄ J. Knowlesand D. Corne. Properties of an adaptive ar hiving algorithm for storing

nondominated ve tors. IEEE Transa tions on Evolutionary Computation, 7(2):100

116,2003.

[6℄ M.Laumanns,L.Thiele,K.Deb, andE.Zitzler. Combining onvergen eanddiversity

inevolutionarymultiobje tiveoptimization.EvolutionaryComputation,10(3):263282,

2002.

[7℄ P. Loridan.

ǫ

-solutions in ve tor minimization problems. Journal of Optimization,

Theory andAppli ation, 42:265276,1984.

[8℄ G.RudolphandA.Agapie. Onamulti-obje tiveevolutionaryalgorithmandits

onver-gen eto theParetoset. InCongress onEvolutionary Computation (CEC2000),pages

10101016,2000.

[9℄ G.Rudolph,B.Naujoks,andM.Preuss. CapabilitiesofEMOAtodete tandpreserve

equivalent Pareto subsets. pages 3650, 2007. Pro eedings of Evolutionary

Multi-Obje tiveOptimization(EMO2007).

[10℄ G. Ruhe and B. Fruhwirt.

ǫ

-optimalityfor bi riteria programsand its appli ation to

minimum ostows. Computing,44:2134,1990.

[11℄ S. S haeer, R. S hultz, and K. Weinzierl. Sto hasti method for the solution of

un onstrainedve toroptimizationproblems. Journalof OptimizationTheory and

Ap-pli ations, 114(1):209222,2002.

[12℄ S. S häer, R. S hultz, and K. Weinzierl. A sto hasti method for the solution of

un onstrainedve toroptimizationproblems. Journalof OptimizationTheory and

Ap-pli ations, 114(1):209222,2002.

[13℄ O. S hütze, C. A. CoelloCoello, S. Mostaghim, , E.-G. Talbi, and M. Dellnitz.

Hy-bridizing evolutionarystrategieswith ontinuationmethodsforsolvingmulti-obje tive

(23)

[14℄ O.S hütze,M.Laumanns,E.Tantar,C.A.CoelloCoello,andE.-G.Talbi.Convergen e

of sto hasti sear h algorithmsto gap-freePareto frontapproximations. Pro eedings

of theGeneti andEvolutionaryComputationConferen e(GECCO-2007),2007.

[15℄ M. Tanaka. GA-based de ision support system for multi- riteria optimization. In

Pro eedingsofInternationalConferen eonSystems,ManandCyberneti s,pages1556

1561, 1995.

[16℄ D. J. White. Epsilon e ien y. Journal of Optimization Theory and Appli ations,

49(2):319337,1986.

[17℄ D. J.White. Epsilon-dominating solutionsin mean-varian eportfolio analysis.

(24)

4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

References

Related documents

[r]

(statement of Asst. In determining whether and what to charge a corporation with, in connection to foreign corruption, the Principles of Federal Prosecution of Business Organizations

While Imd pathway activation was fully comparable to that observed in the wild-type control line, TEPq Δ flies showed a defect in Toll pathway activation in response to

Patients with moderate to severe AD dementia were consecutively enrolled and randomized into three groups; groups 1 and 2 are dose-titration groups during the first 4 weeks using

Complete a Department of Teaching and Learning, College of Education, application for admission to the Elementary Education Post-Baccalaureate Certificate Program by one of

The members of the Hutchinson Health Community Benefit Work Group, the 780 people who took the time to complete our electronic survey, and the 60 people who participated in

1.10 Sjak Smulders, Yacov Tsur and Amos Zemel – Uncertain Climate Policy and. the

The relatively large increases in price levels in the new Member States may be explained not only by the generally higher levels of wage and price inflation in these countries,