• No results found

σ-Convergent difference sequence spaces of second order defined by Orlicz function

N/A
N/A
Protected

Academic year: 2020

Share "σ-Convergent difference sequence spaces of second order defined by Orlicz function"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

J. Math. Comput. Sci. 7 (2017), No. 2, 237-248 ISSN: 1927-5307

σ-CONVERGENT DIFFERENCE SEQUENCE SPACES OF SECOND ORDER

DEFINED BY ORLICZ FUNCTION

KHALID EBADULLAH

College of Science and Theoretical Studies, Saudi Electronic University, Kingdom of Saudi Arabia

Copyright c2017 Khalid Ebadullah. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract.In this paper, we introduce the sequence spaceVσ(M,p,r,42),whereMis an Orlicz function,p= (pm)

is any sequence of strictly positive real numbers andr≥0 and study some of the properties and inclusion relations

that arise on the said space.

Keywords:invariant mean; paranorm; Orlicz function and difference sequences.

2010 AMS Subject Classification:40F05, 40C05, 46A45.

1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively. We write

ω ={x= (xk):xk∈R or C},

the space of all real or complex sequences.

Let`∞, candc0denote the Banach spaces of bounded, convergent and null sequences

respec-tively.

The following subspaces ofω were first introduced and discussed by Maddox [12-13].

E-mail address: khalidebadullah@gmail.com

Received September 4, 2016; Published March 1, 2017

(2)

`(p) ={x∈ω :∑

k

|xk|pk<},

`∞(p) ={x∈ω : sup

k

|xk|pk<∞},

c(p) ={x∈ω : lim

k |xk−l|

pk=0, for somelC},

c0(p) ={x∈ω : lim

k |xk|

pk=0},

where p= (pk)is a sequence of striclty positive real numbers.

The concept of paranorm is closely related to linear metric spaces.It is a generalization of that of absolute value.(see[13])

Let X be a linear space. A functiong:X −→Ris called paranorm, if for allx,y,z∈X,

(PI)g(x) =0i f x=θ,

(P2)g(−x) =g(x),

(P3)g(x+y)≤g(x) +g(y),

(P4) If(λn)is a sequence of scalars withλn→λ (n→∞)andxn,a∈X withxn→a(n→∞), in the sense thatg(xn−a)→0(n→∞), in the sense thatg(λnxn−λa)→0(n→∞).

An Orlicz function is a function M:[0,∞)→[0,∞), which is continuous, non-decreasing and

convex withM(0) =0,M(x)>0 forx>0 andM(x)→∞asx→∞.

Lindenstrauss and Tzafriri[10] used the idea of Orlicz functions to construct the sequence space

`M={x∈ω :

k=1

M(|xk|

ρ )<∞,for someρ>0}

The space`M is a Banach space with the norm

||x||=inf{ρ >0 :

k=1

M(|xk| ρ )≤1}

The space`Mis closely related to the space`pwhich is an Orlicz sequence space withM(x) =xp for 1≤ p<∞.

An Orlicz functionMis said to satisfy42condition for all values ofxif there exists a constant

K>0 such thatM(Lx)≤KLM(x)for all values ofL>1.

(3)

of scalars(αk)with|αk|<1 for allk∈N.

For Orlicz function and related results see([2],[8],[17]).

Letσ be an injection on the set of positive integers N into itself having no finite orbits and T be

the operator defined on`∞byT(xk) = (xσ(k)).

A positive linear functionalΦ, with||Φ||=1, is called aσ-mean or an invariant mean ifΦ(x) = Φ(T x)for allx∈`∞.

A sequencexis said to beσ-convergent, denoted byx∈Vσ, ifΦ(x)takes the same value, called σ−limx, for allσ-meansΦ. We have

Vσ ={x= (xk):

m=1

tm,n(x) =Luniformly in n, L =σ−limx},

where form≥0,n>0.

tm,n(x) =xk+xσ(k)+...+xσm(k)

m+1 ,andt−1,n=0.

whereσm(k)denotes the mthiterate ofσ at n. In particular, ifσ is the translation, aσ-mean is

often called a Banach limit andVσ reduces to f, the set of almost convergent sequences.

Subsequently the spaces of invariant mean and Orlicz function have been studied by various authors. See( [1],[11],[15],[16],[19]).

The idea of Difference sequence sets

X4={x= (xk)∈ω :4x= (xk−xk+1)∈X},

whereX =`, c orc0was introduced by Kizmaz [9].

Kizmaz [9] defined the sequence spaces,

`∞(4) ={x= (xk)∈ω :(4xk)∈`∞},

(4)

c0(4) ={x= (xk)∈ω :(4xk)∈c0},

where4x= (xk−xk+1). These are Banach spaces with the norm

||x||4=|x1|+||4x||∞.

After then Mikael [14] defined the sequence spaces,

`∞(42) ={x= (xk)∈ω :(42xk)∈`∞},

c(42) ={x= (xk)∈ω :(42xk)∈c},

c0(42) ={x= (xk)∈ω :(42xk)∈c0},

and showed that these are Banach spaces with norm

||x||4=|x1|+|x2|+||42x||∞.

For difference sequences see([3-5],[8],[9]).

Recently Ebadullah[6] introduced and studied the sequence space

Vσ(M,p,r) ={x= (xk):

m=1

1

mr[M(

|tm,n(x)|

ρ )]

pm<uniformly in n,ρ>0}.

WhereMis an Orlicz function, p= (pm)is any sequence of strictly positive real numbers and

r≥0 .

After then Ebadullah[7] introduced the sequence space

Vσ(M,p,r,4) ={x= (xk):

m=1

1

mr[M(

|tm,n(4x)|

ρ )]

pm<uniformly in n,ρ >0}.

and discussed the following sequence spaces ;

ForM(x) =xwe get

Vσ(p,r,4) ={x= (xk):

m=1

1

mr|tm,n(4x)|

(5)

Forpm=1, for all m, we get

Vσ(M,r,4) ={x= (xk):

m=1

1

mr[M(

|tm,n(4x)|

ρ )]<∞uniformly in n,ρ>0}

For r = 0 we get

Vσ(M,p,4) ={x= (xk):

m=1

[M(|tm,n(4x)|

ρ )]

pm<uniformly in n,ρ >0}

ForM(x) =xand r=0 we get

Vσ(p,4) ={x= (xk):

m=1

|tm,n(4x)|pm<∞uniformly in n,ρ >0}

Forpk=1, for all m and r=0, we get

Vσ(M,4) ={x= (xk):

m=1

[M(|tm,n(4x)|

ρ )]<∞uniformly in n,ρ >0}

ForM(x) =x, pm=1, for all m and r=0, we get

Vσ(4x) ={x= (xk):

m=1

|tm,n(4x)|<∞uniformly in n}.

2. Main results

In this article we introduce the sequence space

Vσ(M,p,r,42) ={x= (xk):

m=1

1

mr[M(

|tm,n(42x)|

ρ )]

pm<uniformly in n,ρ>0}.

WhereMis an Orlicz function, p= (pm)is any sequence of strictly positive real numbers and

r≥0 .

(6)

ForM(x) =xwe get

Vσ(p,r,42) ={x= (xk):

m=1

1

mr|tm,n(4

2x)|pm<

∞uniformly in n}

Forpm=1, for all m, we get

Vσ(M,r,42) ={x= (xk):

m=1

1

mr[M(

|tm,n(42x)|

ρ )]<∞uniformly in n,ρ >0}

For r = 0 we get

Vσ(M,p,42) ={x= (xk):

m=1

[M(|tm,n(4 2x)|

ρ )]

pm<uniformly in n,ρ>0}

ForM(x) =xand r=0 we get

Vσ(p,42) ={x= (xk):

m=1

|tm,n(42x)|pm<∞uniformly in n,ρ>0}

Forpk=1, for all m and r=0, we get

Vσ(M,42) ={x= (xk):

m=1

[M(|tm,n(4 2x)|

ρ )]<∞uniformly in n,ρ>0}

ForM(x) =x, pm=1, for all m and r=0, we get

Vσ(42x) ={x= (xk):

m=1

|tm,n(42x)|<∞uniformly in n}.

Theorem 2.1.The sequence spaceVσ(M,p,r,42)is a linear space over the field C of complex

numbers.

Proof.Letx,y∈Vσ(M,p,r,42)and

α,β ∈Cthen there exists positive numbersρ1andρ2such

that

m=1

1

mr[M(

|tm,n(42x)|

ρ1

(7)

and

m=1

1

mr[M(

|tm,n(42y)|

ρ2

)]pm<

uniformly in n.

Defineρ3= max(2|α|ρ1, 2|β|ρ2).

Since M is non decreasing and convex we have

m=1

1

mr[M(

|αtm,n(42x) +βtm,n(42y)|

ρ3

)]pm

m=1

1

mr[M(

|αtm,n(42x)|

ρ3

+|βtm,n(4 2y)|

ρ3

)]pm

m=1

1

mr 1 2[M(

tm,n(42x)

ρ1

) +M(tm,n(4 2y)

ρ2

)]<∞

uniformly in n.

This proves thatVσ(M,p,r,42)is a linear space over the field C of complex numbers.

Theorem 2.2.For any Orlicz function M and a bounded sequence p= (pm)of strictly positive real numbers,Vσ(M,p,r,42)is a paranormed space with

g(x) = inf

n≥1{ρ pn H :(

m=1

1

mr[M(

|tm,n(42x)|

ρ )]

pm)H1 1, uniformly in n}

where H = max(1, suppm).

Proof.It is clear thatg(42x) =g(−42x).

SinceM(0) =0,we get inf{ρpmH }= 0, forx=0

Now forα=β=1, we get

(8)

For the continuity of scalar multiplication letl 6=0 be any complex number. Then by the defi-nition we have

g(l42x) = inf

n≥1{ρ pn

H :(

m=1

1

mr[M(

|tm,n(l42x)|

ρ )]

pm)H1 ≤1, uniformly in n}

g(l42x) = inf

n≥1{(|l|s) pn H :(

m=1

1

mr[M(

|tm,n(l42x)|

(|l|s) )]

pm)H1 ≤1, uniformly in n}

wheres= |ρl|.

Since|l|pmmax(1,|l|H), we have

g(l42x)≤max(1,|l|H)inf n≥1{s

pn H :(

m=1

1

mr[M(

|tm,n(42x)|

(|l|s) )]

pm)H1 ≤1, uniformly in n}

g(42lx)≤max(1,|l|H)g(42x)

Thereforeg(42x)converges to zero wheng(42x)converges to zero inV

σ(M,p,r,42).

Now letxbe fixed element inVσ(M,p,r,42). There existsρ >0 such that

g(42x) = inf

n≥1{ρ pn

H :(

m=1

1

mr[M(

|tm,n(42x)|

ρ )]

pm)H1 1, uniformly in n}

. Now

g(l42x) =inf

n≥1{ρ pn H :(

m=1

1

mr[M(

|tm,n(l42x)|

ρ )]

pm)H1 1, uniformly in n} →0 asl0.

(9)

Theorem 2.3.Suppose that 0<pm<tm<∞for eachm∈N andr>0. Then

(a)Vσ(M,p,42)V

σ(M,t,42).

(b)Vσ(M,42)V

σ(M,r,42)

Proof.(a) Suppose thatx∈Vσ(M,p,42).

This implies that[M(|ti,n(42x)| ρ )]

pm)1

for sufficiently large value of i, sayi≥m0for some fixedm0∈N.

SinceMis non decreasing, we have

m=m0

[M(|ti,n(4 2x)|

ρ )]

tm

m=m0

[M(|ti,n(4 2x)|

ρ )]

pm<.

Hencex∈Vσ(M,t,42).

(b) The proof is trivial.

Corollary 2.4.0< pm≤1 for each m, thenVσ(M,p,42)⊆Vσ(M,42)

If pm≥1 for all m , thenVσ(M,42)V

σ(M,p,42).

Theorem 2.5.The sequence spaceVσ(M,p,r,42)is solid.

Proof.Letx∈Vσ(M,p,r,42). This implies that

m=1

1

mr[M(

|tm,n(42x)|

ρ )]

pm<

∞.

Letαmbe a sequence of scalars such that|αm| ≤1 for allm∈N. Then the result follows from the following inequality.

m=1

1

mr[M(

|αmti,n(42x)|

ρ )]

pm

m=1

1

mr[M(

|ti,n(42x)|

ρ )]

(10)

Henceαx∈Vσ(M,p,r,42)for all sequence of scalars(αm)with|αm| ≤1 for allm∈N when-everx∈Vσ(M,p,r,42).

Corollary 2.6.The sequence spaceVσ(M,p,r,42)is monotone.

Theorem 2.7.LetM1,M2be Orlicz function satisfying42condition and r,r1,r2≥0.Then we have

(a) Ifr>1 thenVσ(M1,p,r,42)⊆Vσ(M0M1,p,r,42),

(b)Vσ(M1,p,r,42)∩Vσ(M2,p,r,42)⊆Vσ(M1+M2,p,r,42),

(c) Ifr1≤r2thenVσ(M,p,r1,42)⊆Vσ(M,p,r2,42).

Proof. (a) Since M is continuous at 0 from right, for ε >0 there exists 0<δ <1 such that

0≤c≤δ impliesM(c)<ε.

If we define

I1={m∈N:M1(|tm,n(4 2x)|

ρ )≤δ for someρ>0},

I2={m∈N:M1(|tm,n(4 2x)|

ρ )>δ for someρ>0},

when

M1(|tm,n(4 2x)|

ρ )>δ

we get

M(M1(

|tm,n(42x)|

ρ ))≤ {

2M(1) δ }M1(

|tm,n(42x)|

ρ )

Hence forx∈Vσ(M1,p,r,42)andr>1

m=1

1

mr[M0M1(

|tm,n(42x)|

ρ )]

pm=

m∈I1

1

mr[M0M1(

|tm,n(42x)|

ρ )]

pm+

m∈I2

1

mr[M0M1(

|tm,n(42x)|

ρ )]

(11)

m=1

1

mr[M0M1(

|tm,n(42x)|

ρ )]

pmmax(

εh,εH)

m=1

1

mr +max({

2M1 δ }

h,{2M1

δ }

H)

where 0<h=infpm≤pm≤H=sup m

pm<∞

Conflict of Interests

The author declares that there is no conflict of interests.

REFERENCES

[1] Ahmad,Z.U., Mursaleen,M. An application of Banach limits. Proc. Amer. Math. Soc. 103 (1983), 244-246.

[2] Chen,S.T. Geometry of Orlicz spaces. Dissertation Math. The Institute of Mathematics, Polish Academy of

Sciences.(1996)

[3] Ebadullah,K. On certain class of sequence spaces of invariant mean defined by Orlicz function. J. Math.

Comput. Sci. 4 (2) (2014), 267-277.

[4] Ebadullah,K. Difference sequence spaces of invariant mean defined by orlicz function. Int. J. Math. Sci. Engg.

Appl. 6 (6) (2012), 101-110.

[5] Ebadullah, K. On Certain Class of Difference Sequence Spaces. Glob. J. Sci. Frontier Res. Math. Decision

Sci.,12 (11) (2012), 59-68.

[6] Ebadullah,K. σ- Convergent Sequence Spaces Defined by Orlicz Function. J. Math. Comput. Sci. 6 (6)

(2016), 965-974.

[7] Ebadullah,K.σ- Convergent Difference Sequence Spaces Defined by Orlicz Function. J. Math. Comput. Sci.

7 (1) (2017) 1-11.

[8] Khan,V.A., Ebadullah,K. On a new difference sequence space of invariant mean defined by Orlicz functions.

Bulletin Of Allahabad Mathematical Society. 26 (2) (2011), 259-272.

[9] Kizmaz,H. On Certain sequence spaces, Canad.Math.Bull.24 (1981), 169-176.

[10] Lindenstrauss,J. Tzafriri,L. On Orlicz sequence spaces. Israel J. Math.,101 (1971), 379-390.

[11] Lorentz,C.G. A contribution to the theoty of divergent series. Acta Math.,80 (1948), 167-190.

[12] Maddox,I.J. Elements of Functional Analysis, Cambridge University Press.(1970)

[13] Maddox,I.J. Some properties of paranormed sequence spaces., J.London. Math.Soc.1 (1969), 316-322.

(12)

[15] Mursaleen, M. Matrix transformation between some new sequence spaces. Houston J. Math., 9 (1983),

505-509.

[16] Mursaleen, M. On some new invariant matrix methods of summability. Quart. J. Math. Oxford, 34 (2) (1983),

77-86.

[17] Musielak, J. Orlicz spaces and Modular spaces. Lecture notees in Math.(Springer-Verlag)1034: (1983).

[18] Raimi, R.A. Invariant means and invariant matrix methods of summability. Duke J. Math.,30 (1963), 81-94.

References

Related documents

Additional data may provide insights into other consumption patterns, such as episodic heavy drinking, which could further clarify the cardiovascular disease risk associated

Furthermore, consistent with previous studies which have examined frequent tense and voice used in research article abstracts in social sciences (Tankó, 2017, Tseng, 2011, Khany

Research outcomes and analysis have indicated that the Canadian market for care has been shaped largely by discourses that devalue women's work and commodify migrant

Min. Total Stress vs. Total Stress vs. Total Stress vs. 9) in comparison with normal operating conditions, which makes practical grounds for crack development not

Severe acute malnutrition (SAM) is currently defined by the World Health Organization (WHO) and the United Nations Children ’ s Fund (UNICEF) by a mid-upper arm circumference

In this study, the relative CI values of un- treated and HT-treated wheat straw (cultivar Robigus ) leaves and stems and the change after hydrolysis were measured (Table 4).. Wide

In Sullivan, the New York Times published an editorial-type advertise- ment criticizing the police force for its actions during a civil rights dem- onstration. 7 3 In

extreme obesity. : The cardiorespira- tory syndrome of obesity. D., et al.: Alveolar gas exchange in clinical pulmonary embolism. : Regulation of pulmonary artery blood pressure. :