Vol. 11, 2017, 21-28
ISSN: 2349-0632 (P), 2349-0640 (online) Published 11 December 2017
www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/jmi.v11a4
21
Journal of
On the Ternary Quadratic Diophantine Equation
3(x
2+y
2)-5xy+2(x+y)+4=15z
2K.Selva Keerthana1 and S.Mallika2
Department of Mathematics, Shrimati Indira Gandhi College Trichy-2, Tamilnadu, India. 1e-mail: [email protected]
2
e-mail: [email protected]
Received 1 November 2017; accepted 8 December 2017
Abstract. The ternary non-homogeneous quadratic equation is analysed for its non-zero distinct integer solutions. A few interesting relations between the solutions and special polygonal and pyramidal numbers are presented.
Keywords: Ternary quadratic, integer solutions, non-homogeneous quadratic, polygonal numbers, pyramidal numbers.
AMS Mathematics Subject Classification (2010):11D09
1. Introduction
The Diophantine equation offer an unlimited field for research due to their variety
[ ]
1−3 . In particular, one may refer[
4−12]
for quadratic equation with three unknowns. The communication concerns with yet another interesting equation(
2 2)
(
)
215 4 2
5
3x +y − xy+ x+y + = z representing non-homogeneous quadratic equation with three unknowns for determining its infinitely many non-zero integral points. Also, a few interesting relations among the solutions are presented.
2. Notations
1. Polygonal number of rank n with side m
(
)(
)
− −
+ =
2 2 1 1
,
m n n tmn
2. Gnonomic number of rank n
(
2 −1)
= n
Gn
3. Pronic number of rank n
(
+1)
=nn PRn4. Centered Hexagonal pyramidal number of rank n
3 6
, n
22
(
)
2 2 1
,
+ − = mn n Ctmn
6. Stella Octangular number of rank n
(
2 2−1)
=n n SOn3. Method of analysis
The equation representing the ternary quadratic equation to be solved for its non-zero distinct integer solution is
(
2 2)
(
)
215 4 2
5
3x +y − xy+ x+y + = z (1) The substitution of linear transformations
0 ,
, = − ≠ ≠
+
=u v y u v u v
x (2)
in
( )
1 leads to2 2 2
15
11v z
U + = (3)
where 2
− =u
U (4)
Assume that
2 2
b a
z= + (5)
3.1. Pattern-1
Write 15 as
(
2 11)(
2 11)
15= +i −i (6)
Substituting
( ) ( ) ( )
4, 5, 6 in( )
3 and using the method of factorization we get,(
U +i 11v)(
U−i 11v) (
= a+i 11b) (
2 a−i 11b) (
2 2+i 11)(
2−i 11)
(7) Equating the positive and negative factors, the resulting equations are(
) (
)(
)
211 11
2
11v i a i b
i
U + = + + (8)
(
) (
)(
)
211 11
2
11v i a i b
i
U − = − − (9)
Equating the real and imaginary parts in
( )
8ab b a v
ab b
a U
4 11
22 22 2
2 2
2 2
+ − =
− −
= (10)
In view of
( )
4ab b a v
ab b
a u
4 11
2 22 22 2
2 2
2 2
+ − =
− − −
= (11)
Substituting
( )
11 in( )
2 ,( )
( )
( )
2 22 2
2 2
11 ,
2 26 11 ,
2 18 33 3 ,
b a b a z z
ab b
a b a y y
ab b
a b a x x
+ = =
− − − = =
− − − = =
(
2 2)
(
)
215 4 2
5
3 x +y − xy+ x+y + = z
23
Properties:
1.x
(
a,a+1)
−3y(
a,a+1)
−60PRa =02.y
( ) ( )
a,a −z a,a +48t4,a ≡0(
mod2)
3.x
( ) ( )
a,1 +z a,1 −t10,a ≡9(
mod15)
3.2. Pattern- 2
Instead of
( )
6 , 15 can be written as(
)(
)
4
11 7 11 7
15= +i −i
Proceeding as in Pattern: 1, the non-zero distinct integral solutions to
( )
1 as( )
( )
( )
2 22 2
2 2
11 ,
2 18 33 3 ,
2 4 44 4 ,
b a b a z z
ab b
a b a y y
ab b a b a x x
+ = =
− − − = =
− − − = =
Properties:
1.x
( )
a,1 +4z( )
a,1 −t18,a ≡1(
mod3)
2.x
( ) ( )
a,1 −ya,1 −t4,a −aSO2 ≡0(
mod11)
3.z
( )
a,a −12t4,a =03.3. Pattern-3
The substitution of linear transformation
σ
2 , 15 ,
11 = + =
+
= X T V X T U
z (12)
in
( )
3 leads to2 2 2
165 +σ
= T
X
2 2
2
165T
X −σ = (13)
Write
( )
13 as(
)(
)
2165T
X
X +σ −σ = (14)
The equation
( )
14 is written as the system of two equations as followsSystem 1 2 3 4 5 6
σ
+
X 15 T 15 165 55 T 55 2
55T σ
−
X 11 T 2
11T 2
T 3 T 2
3T 3
System 1:
Consider T X+σ =15
T X−σ =11
24
= = =
k T
k 2 4
σ (15)
Substituting
( )
15 in( )
12 and( )
2 , we get the corresponding non-zero distinct integersolutions to
( )
1 as( )
( )
( )
k k zk k
y
k k x
48 2 48
2 64
− =
− − =
− =
Properties:
1.6
(
x( ) ( )
1 +y1)
is a nasty number 2.z( )
k −Gk −1≡0(
mod46)
3.
( ) ( ) ( )
624, 0(
mod2)
2 2
2 + + − ≡
k
t k z k y k x
System 2:
Consider 15
= +σ
X
2
11T
X −σ =
And solving we get
+ =
+ − − =
+ + =
1 2
2 22 22
30 8 22
2 2
k T
k k
k k X
σ (16)
Substituting
( )
16 in( )
12 and( )
2 , we get the corresponding distinct non-zero integral solutions to( )
1 as( )
( )
( )
22 44 24 26 96 6630 8 22
2 2 2
+ + =
− − − =
+ + − =
k k k z
k k k
y
k k k
x
Properties:
1.x
( ) ( )
k −y k −t90,k ≡56(
mod147)
2.x
( ) ( )
k +yk +176t3,k ≡0(
mod4)
3.x
( ) ( )
k +z k −Gk ≡5(
mod50)
System 3:
Consider 165
= +σ
X
2
T X−σ =
(
2 2)
(
)
215 4 2
5
3 x +y − xy+ x+y + = z
25
− =
+ + − =
+ − =
1 2
82 2 2
83 2 2
2 2
k T
k k
k k X
σ (17)
Substituting
( )
17 in( )
12 and( )
2 , we get the corresponding non-zero distinct integer solution to( )
1 as( )
=−2 2+32 +230k k k x
( )
=−6 2 −24 +94k k k y
( )
=2 2+20 +72k k k z
Properties: 1.y
( )
1 −CP4,6 =02.x
( ) ( )
k +yk +16t3,k ≡4(
mod16)
3.x
( ) ( ) ( )
k −y k −z k −t6,k ≡27(
mod37)
System 4:
Consider T X+σ =55
T X−σ =3
And solving we get,
= = =
k T
k k X
2 52
58
σ (18)
Substituting
( )
18 in( )
12 and( )
2 , we get the corresponding distinct non-zero integralsolutions to
( )
1 as( )
k =192k−2 x( )
k =16k−2 y( )
k k z =80Properties:
1.y
( )
k −Gk +1≡0(
mod14)
2.x
( ) ( )
k −y k +2Ct176,k −176PRk ≡2(
mod176)
3.
( ) ( )
644, 0(
mod2)
2
2 − − ≡
k
t k y k z
System 5:
Consider 55
= +σ
X
2
3T
X −σ =
26
+ =
+ − − =
+ + =
1 2
26 6 6
29 6 6
2
k T
k k
k k X
σ (19)
Substituting
( )
19 in( )
12 and( )
2 , we get the corresponding non-zero distinct integer solutions to( )
1 as( )
=−6 2+24 +94k k k x
( )
=−18 2−48 +6k k k
y
( )
=6 2 +28 +40k k k z
Properties:
1.x
( ) ( )
k −y k −24t3,k ≡ 28(
mod60)
2.y
( ) ( )
1 +z1 −SO2 =03.x
(
2k−1) (
+z 2k−1)
−52Gk ≡0(
mod134)
System 6:
Consider
2
55T
X +σ = 3
= −σ
X
And solving we get,
+ =
+ + =
+ + =
1 2
26 110 110
29 110 110
2 2
k T
k k
k k
X
σ (20)
Substituting
( )
20 in( )
12 and( )
2 , we get the corresponding distinct non-zero distinct integral solutions to( )
1 as( )
=330 2+330 +94k k
k x
( )
=110 2+80 +6k k k
y
( )
=110 2+132 +40k k
k z
Properties:
1.z
(
k(
2k−1)
)
−y(
k(
2k−1)
)
−52t6,k ≡0(
mod2)
2.y
( )
1 −t4,14 =03.x
( ) ( ) ( )
k −y k −z k −110PRk ≡10(
mod38)
3.4. Pattern- 4
( )
3 can be rewritten as(
2 2)
2 2
15
4v z v
U − = − (21)
(
2 2)
(
)
215 4 2
5
3 x +y − xy+ x+y + = z
27
(
)
, 02 15 2 ≠ = − − = + + β β α v U v z v z v U
which is equivalent to the following two equations,
(
2 −)
− =0+ v z
Uβ β α α
(
15 −2)
−15 =0+ β α β
α v z
U
On employing the method of cross multiplication, we get
2 2
30 30
2α − αβ+ β
= U 2 2 15β α − = v 2 2 15
4αβ β
α − +
= z
In view of
( )
4 ,2 2 2 2 2 2 15 4 15 2 30 30 2 β αβ α β α β αβ α + − = − = − + − = z v u (22)
Substituting
( )
22 in( )
2 , we get( )
( )
( )
+ − = = − + − = = − + − = = 2 2 2 2 2 2 15 4 , 2 45 30 , 2 15 30 3 , β αβ α β α β αβ α β α β αβ α β α z z y y x x (23)Thus
( )
23 represent non-zero distinct integral solutions of( )
1Properties:
1.x
( ) ( )
α,1 −yα,1 −2t4,α ≡0(
mod3)
2.z
(
α,α)
−12t4,α =03.3x
( ) ( )
α,1 −yα,1 −t18,α ≡49(
mod53)
4. Conclusion
In this paper, we have made an attempt to obtain all integer solutions to ternary quadratic
equation
(
2 2)
(
)
215 4 2
5
3x +y − xy+ x+y + = z .One may search for other patterns of solutions and their corresponding properties.
REFERENCES
1. L.E.Dickson, History of Theory of Numbers and Diophantine Analysis, Dover Publications, New York 2005.
2. L.J.Mordell, Diophantine Equations, Academic Press, New York 1970.
3. R.D Carmicheal, The Theory of Numbers and Diophantine Analysis, Dover Publications, New York 1959.
4. M.A.Gopalan and D.Geetha , Lattice Points on the Hyperboloid of Two Sheets
4 5
2 6
6 2 2
2 − + + − + = +
z y x y xy
x , Impact J Sci Tech, 4 (2010) 23-32.
5. 5.M.A.Gopalan , S.Vidhyalakshmi, A. Kavitha, Integral points on the homogeneous
cone 2 2 2
7
2x y
28 of one sheet4 2 =2 2+3 2−4
y x
z . The Diophantus J Math 1(2) 2012 109-115.
7. M.A.Gopalan , S.Vidhyalakshmi.,K. Lakshmi, Integral points on the hyperboloid of two sheets 3 2=7 2− 2+21
z x
y . The Diophantus J Math 1(2) (2012) 99-107.
8. M.A.Gopalan, S.Vidhyalakshmi and S.Mallika, Observations on hyperboloid of one sheet 2+2 2− 2 =2
z y
x . Bessel J Math., 2(3) (2012) 221-226.
9. M.A.Gopalan , S.Vidhyalakshmi,T.R. Usha Rani ,S. Mallika, Integral points on the homogeneous cone6 2 +3 2−2 2 =0
x y
z , The Impact J Sci Tech., 6(1) (2012) 7-13. 10. M.A.Gopalan, S.Vidhyalakshmi and G.Sumathi, Lattice points on the elliptic
paraboloid 2 2
4
9x y
z= + , Advances in theoretical and Applied Mathematics, 7(4) (2012) 379-385.
11. M.A.Gopalan, S.Vidhyalakshm and T.R.Usha Rani, Integral points on the non-homogeneous2 2 +4 +8 −4 =0
z x xy
z . Global Journal of Mathematics and Mathematical sciences, (1) (2012) 61-67.
12. M.A.Gopalan, S.Vidhyalakshmi and K. Lakshmi, Lattice points on the elliptic paraboloid 16y2+9z2 =4x