• No results found

tert But­oxy­carbonyl L leucyl L alanine tri­chloro­ethyl ester (Boc L Leu L Ala OTce)

N/A
N/A
Protected

Academic year: 2020

Share "tert But­oxy­carbonyl L leucyl L alanine tri­chloro­ethyl ester (Boc L Leu L Ala OTce)"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o3864

Okuet al. C

16H27Cl3N2O5 doi:10.1107/S160053680502636X Acta Cryst.(2005). E61, o3864–o3866 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

tert

-Butoxycarbonyl-

L

-leucyl-

L

-alanine

trichloroethyl ester (Boc-

L

-Leu-

L

-Ala-OTce)

Hiroyuki Oku,* Teruya Endo, Keiichi Yamada and Ryoichi Katakai

Department of Chemistry, Gunma University, Kiryu, Gunma 376-8515, Japan

Correspondence e-mail: oku@chem.gunma-u.ac.jp

Key indicators

Single-crystal X-ray study

T= 173 K

Mean(C–C) = 0.009 A˚

Rfactor = 0.043

wRfactor = 0.079

Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C16H27Cl3N2O5, which is an enantiopure dipeptide trichloroethyl ester, adopts an extended conforma-tion. The molecules are linked via –NH O C hydrogen bonds into a unique-spiral assembly along thecaxis.

Comment

The 2,2,2-trichloroethyl group (-OTce) is useful for carboxyl protection in peptide synthesis (Marinieret al., 1973; Olsenet al., 1986; Pastuszaket al., 1982; Yamadaet al., 2003). By using the -OTce group, the selective removal from other carboxyl protection, such as benzyl (-OBzl), can be carried out by treating the peptide with zinc powder in acetic acid under mild conditions.

There are two problems for -OTce protection, despite its usefulness. One is the significant racemization that can occur during the -OTce esterification toN-benzyloxycarbonyl- (Z-) and N-tert-butoxycarbonyl- (Boc-) -amino acids (Dhaon et al., 1982; Neises & Steglich, 1978; Athertonet al., 1981). The other is the oily property and difficult crystallinity of N-protected peptide trichloroethyl esters such as Z-Ala-OTce (Dhaon et al., 1982),Z-Leu-Ala-OTce (Marinieret al., 1973) and Boc-Val-Leu-OTce (Yamada et al., 2003). Therefore, in this paper, to assess the enantiopurity and crystallinity, we have studied the crystal structure of the title compound, (I), as one of our synthetic fragments of cyclosporin O derivatives (Endoet al., 2003).

The molecular structure of (I) is shown in Fig. 1. The mol-ecule adopts an extended-sheet conformation and molecules are tightly linked together by N—H O C hydrogen bonds (Table 2), to form a-spiral assembly along thecaxis (Fig. 2). Packed in the unit cell (Fig. 3), they are tightly linked together by N—H O C hydrogen bonds, forming an infinite spiral along thecaxis. The-helical structure is not common, but it is

(2)

sometimes observed in short peptides (Doiet al., 1994; Go¨rbitz & Gundersen, 1996; Okuet al., 2003).

Experimental

The title peptide, (I), was prepared by the coupling of Boc-Leu-OH (4.88 g, 19.0 mmol) and HClAla-OTce (5.68 g, 22.8 mmol) as solu-tion-phase synthesis. Yield 7.44 g (90%). Crystals of (I) were grown by slow diffusion of hexane vapor into a diethyl ether solution. Analytical data (melting point,1H NMR, ESI-MS and []D

20 ) are in accordance with the expected structure; []D20 = 46.2 (c 0.1, methanol), m.p. = 415–417 K.

Crystal data

C16H27Cl3N2O5

Mr= 433.75

Hexagonal,P65

a= 12.1055 (14) A˚

c= 26.939 (5) A˚

V= 3418.8 (8) A˚3

Z= 6

Dx= 1.264 Mg m 3

CuKradiation

Cell parameters from 21563 reflections

= 3.3–68.2

= 3.85 mm1

T= 173.1 K Needle, colorless 0.300.010.01 mm

Data collection

Rigaku R-AXIS RAPID diffractometer !scans

Absorption correction: none 29240 measured reflections 4134 independent reflections

1326 reflections withF2> 2(F2)

Rint= 0.097

max= 68.2

h=14!14

k=14!14

l=31!32

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.043

wR(F2) = 0.079

S= 1.06 4134 reflections 263 parameters

H-atom parameters constrained

w= 1/[0.1(Fo2) + 2.0]/(4Fo2)

(/)max< 0.001

max= 1.14 e A˚

3

min=0.65 e A˚

3

Absolute structure: Flack (1983), 1992 Friedel pairs

Flack parameter: 0.05 (2)

organic papers

Acta Cryst.(2005). E61, o3864–o3866 Okuet al. C

[image:2.610.56.460.67.396.2]

16H27Cl3N2O5

o3865

Figure 1

A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.

Figure 2

A packing diagram of (I), projected down thecaxis.

Figure 3

[image:2.610.292.561.70.280.2]
(3)

Table 1

Selected torsion angles ().

C302—O401—C401—C402 150.4 (5) C401—O401—C302—C301 178.1 (4) C105—N201—C201—C202 91.6 (6) C201—N201—C105—O101 177.2 (6)

C202—N301—C301—C302 61.6 (6) C301—N301—C202—C201 178.0 (4) N201—C201—C202—N301 130.6 (4) N301—C301—C302—O401 151.8 (4)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N201—H10 O102i

0.95 1.97 2.907 (5) 171 N301—H21 O201ii

0.95 1.89 2.829 (6) 170

Symmetry codes: (i)þy;xþy;þzþ1

6; (ii)þxy;þx;þz 1 6.

The ratio of observed/unique reflections was relatively low (32%), although the X-ray measurement was carried out at 173 K with Cu

Kradiation. H atoms were positioned geometrically, with C—H = N—H = 0.95 A˚ , and refined using a riding model, with Uiso(H) initially assigned to be 1.2Ueq of the carrier atom. The absolute configuration of (I) agrees with the fact that the1H NMR spectro-scopic data detected no racemization in the preparation.

Data collection: RAPID-AUTO(Rigaku, 2003); cell refinement:

RAPID-AUTO; data reduction: CrystalStructure (Rigaku, 2003); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure:CRYSTALS(Betteridgeet al., 2003); molecular graphics:ORTEP(Johnson, 1965); software used to prepare material for publication:CrystalStructure.

HO is grateful for grants-in-aid for Scientific Research on Priority Areas (Nos. 14078101 and 16033211, Reaction Control of Dynamic Complexes) from the Ministry of Education Culture, Sports, Science and Technology, Japan.

References

Atherton, E., Benoiton, N. L., Brown, E., Sheppard, R. C. & Williams, B. J. (1981).J. Chem. Soc. Chem. Commun.7, 336–337.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003).J. Appl. Cryst.36, 1487.

Burla, M. C., Camalli, M., Carrozzini, B., Casarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003).J. Appl. Cryst.36, 1103.

Dhaon, M. K., Olsen, R. K. & Ramasamy, K. (1982).J. Org. Chem.47, 1962– 1965.

Doi, M., In, Y., Inoue, M. & Ishida, T. (1994).Int. J. Pept. Protein Res.44, 532– 538.

Endo, T., Oku, H., Yamada, K. & Katakai, R. (2003).Peptide Science,2002, edited by T. Yamada, pp. 313–316. Osaka: The Japanese Peptide Society. Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Go¨rbitz, C. H. & Gundersen, E. (1996).Acta Chim. Scand.50, 537–543. Johnson, C. K. (1965).ORTEP. Oak Ridge National Laboratory, Tennessee,

USA.

Marinier, B., Kim, Y. C. & Navarre, J.-M. (1973).Can. J. Chem.51, 208– 214.

Neises, B. & Steglich, W. (1978). Angew. Chem. Int. Ed. Engl. 17, 522– 524.

Oku, H., Yamada, K. & Katakai, R. (2003).Acta Cryst.E59, o1581–o1583. Olsen, R. K., Apparao, S. & Bhat, K. L. (1986).J. Org. Chem.51, 3079–

3085.

Pastuszak, J., Gardner, J. H., Singh, J. & Rich, D. H. (1982).J. Org. Chem.47, 2982–2987.

Rigaku (2003). CrystalStructureand RAPID-AUTO. Rigaku Corporation, Akishima, Tokyo 196-8666, Japan.

Yamada, K., Sato, J., Oku, H. & Katakai, R. (2003).J. Pept. Res.62, 78–87.

organic papers

o3866

Okuet al. C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o3864–o3866

supporting information

Acta Cryst. (2005). E61, o3864–o3866 [https://doi.org/10.1107/S160053680502636X]

tert

-Butoxycarbonyl-

L

-leucyl-

L

-alanine trichloroethyl ester (Boc-

L

-Leu-

L

-Ala-OTce)

Hiroyuki Oku, Teruya Endo, Keiichi Yamada and Ryoichi Katakai

tert-Butoxycarbonyl-L-leucyl-L-alanine trichloroethyl ester

Crystal data

C16H27Cl3N2O5

Mr = 433.75

Hexagonal, P65

Hall symbol: P 65

a = 12.1055 (14) Å

c = 26.939 (5) Å

V = 3418.8 (8) Å3

Z = 6

F(000) = 1368.00

? # Insert any comments here.

Dx = 1.264 Mg m−3

Melting point = 415–417 K

Cu radiation, λ = 1.5418 Å

Cell parameters from 21563 reflections

θ = 3.3–68.2°

µ = 3.85 mm−1

T = 173 K

Needle, colorless 0.30 × 0.01 × 0.01 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Detector resolution: 10.00 pixels mm-1

ω scans

29240 measured reflections 4134 independent reflections

1326 reflections with F2 > 2σ(F2)

Rint = 0.097

θmax = 68.2°

h = −14→14

k = −14→14

l = −31→32

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.043

wR(F2) = 0.079

S = 1.06

4134 reflections 263 parameters

H-atom parameters constrained

w = 1/[0.1σ(Fo2) + 2.0]/(4Fo2) (Δ/σ)max < 0.001

Δρmax = 1.14 e Å−3

Δρmin = −0.65 e Å−3

Absolute structure: Flack (1983), 1992 Friedel pairs

Absolute structure parameter: 0.05 (2)

Special details

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R

-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl41 0.70249 (14) 0.13892 (18) 0.55437 (6) 0.0759 (5)

Cl42 0.78694 (16) 0.3511 (2) 0.62183 (6) 0.0851 (6)

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o3864–o3866

O101 −0.2252 (4) −0.1300 (3) 0.61682 (12) 0.0587 (10)

O102 −0.1765 (5) −0.0711 (3) 0.53796 (13) 0.0844 (14)

O201 0.1976 (3) 0.1218 (3) 0.59163 (12) 0.0499 (11)

O301 0.4220 (3) 0.3423 (4) 0.53180 (16) 0.0664 (13)

O401 0.4902 (3) 0.2020 (4) 0.53375 (12) 0.0581 (11)

N201 −0.0625 (3) 0.0564 (4) 0.59947 (12) 0.0448 (12)

N301 0.1778 (3) 0.1437 (4) 0.51002 (14) 0.0439 (12)

C101 −0.3418 (6) −0.2494 (5) 0.6070 (2) 0.0737 (19)

C102 −0.3883 (7) −0.3026 (7) 0.6566 (2) 0.098 (2)

C103 −0.4377 (7) −0.2222 (10) 0.5836 (3) 0.143 (3)

C104 −0.3139 (13) −0.3318 (8) 0.5771 (4) 0.162 (4)

C105 −0.1566 (5) −0.0495 (5) 0.58122 (17) 0.0464 (16)

C201 0.0292 (4) 0.1567 (5) 0.56708 (14) 0.0380 (13)

C202 0.1402 (4) 0.1392 (4) 0.55772 (18) 0.0362 (13)

C203 0.0738 (4) 0.2865 (4) 0.59201 (19) 0.0393 (13)

C204 0.1523 (5) 0.4006 (5) 0.5584 (2) 0.0568 (17)

C205 0.2060 (7) 0.5224 (5) 0.5901 (2) 0.087 (2)

C206 0.0732 (6) 0.4062 (6) 0.5164 (2) 0.070 (2)

C301 0.2858 (4) 0.1316 (5) 0.49924 (18) 0.0468 (16)

C302 0.4038 (4) 0.2403 (6) 0.52338 (18) 0.0470 (16)

C303 0.3090 (6) 0.1349 (8) 0.4433 (2) 0.085 (2)

C401 0.6029 (5) 0.2933 (6) 0.5578 (2) 0.066 (2)

C402 0.6567 (5) 0.2319 (7) 0.5900 (2) 0.0630 (19)

H1 −0.4028 −0.2466 0.6767 0.100*

H2 −0.4650 −0.3823 0.6538 0.100*

H3 −0.3240 −0.3151 0.6713 0.100*

H4 −0.4557 −0.1679 0.6032 0.141*

H5 −0.4026 −0.1822 0.5527 0.141*

H6 −0.5142 −0.3006 0.5779 0.141*

H7 −0.3923 −0.4083 0.5714 0.180*

H8 −0.2801 −0.2902 0.5463 0.180*

H9 −0.2552 −0.3515 0.5924 0.180*

H10 −0.0582 0.0700 0.6343 0.053*

H11 −0.0122 0.1546 0.5368 0.048*

H12 0.0028 0.2917 0.6040 0.048*

H13 0.1259 0.2907 0.6191 0.048*

H14 0.2219 0.3948 0.5451 0.068*

H15 0.2561 0.5187 0.6165 0.099*

H16 0.2568 0.5955 0.5703 0.099*

H17 0.1359 0.5275 0.6034 0.099*

H18 0.0039 0.4121 0.5300 0.083*

H19 0.1223 0.4776 0.4955 0.083*

H20 0.0413 0.3299 0.4976 0.082*

H21 0.1368 0.1622 0.4839 0.056*

H22 0.2718 0.0525 0.5122 0.059*

H23 0.3817 0.1275 0.4358 0.111*

H24 0.2364 0.0691 0.4268 0.110*

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o3864–o3866

H26 0.6636 0.3410 0.5328 0.084*

H27 0.5857 0.3487 0.5770 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl41 0.0749 (11) 0.1125 (13) 0.0685 (9) 0.0680 (10) 0.0112 (8) 0.0066 (8)

Cl42 0.0596 (9) 0.1154 (15) 0.0830 (11) 0.0457 (10) −0.0121 (8) −0.0095 (10)

Cl43 0.0700 (10) 0.1015 (12) 0.0605 (8) 0.0447 (9) 0.0191 (7) 0.0151 (8)

O101 0.065 (2) 0.046 (2) 0.041 (2) 0.0104 (18) 0.0005 (18) 0.0047 (17)

O102 0.111 (3) 0.064 (2) 0.037 (2) 0.012 (2) 0.006 (2) −0.0059 (19)

O201 0.062 (2) 0.068 (2) 0.0360 (18) 0.046 (2) 0.0037 (17) 0.0142 (17)

O301 0.058 (2) 0.059 (2) 0.087 (3) 0.033 (2) 0.002 (2) 0.009 (2)

O401 0.045 (2) 0.079 (2) 0.065 (2) 0.042 (2) −0.0083 (17) −0.008 (2)

N201 0.046 (2) 0.057 (2) 0.029 (2) 0.023 (2) 0.0026 (19) 0.0044 (19)

N301 0.038 (2) 0.068 (2) 0.033 (2) 0.032 (2) −0.0010 (17) 0.0028 (18)

C101 0.067 (4) 0.041 (3) 0.078 (4) 0.000 (3) 0.011 (3) 0.003 (3)

C102 0.083 (5) 0.066 (4) 0.100 (5) 0.005 (3) 0.013 (4) 0.021 (4)

C103 0.041 (4) 0.132 (8) 0.180 (10) −0.012 (4) −0.030 (5) 0.025 (7)

C104 0.166 (11) 0.055 (4) 0.229 (11) 0.028 (5) 0.062 (8) −0.022 (6)

C105 0.047 (3) 0.048 (3) 0.031 (3) 0.014 (2) 0.016 (2) 0.007 (2)

C201 0.039 (2) 0.057 (3) 0.024 (2) 0.028 (2) −0.0022 (19) 0.005 (2)

C202 0.045 (2) 0.040 (2) 0.030 (2) 0.026 (2) 0.003 (2) 0.007 (2)

C203 0.036 (2) 0.040 (2) 0.044 (2) 0.021 (2) 0.007 (2) 0.004 (2)

C204 0.060 (3) 0.051 (3) 0.059 (3) 0.028 (2) 0.010 (2) 0.021 (2)

C205 0.104 (5) 0.047 (3) 0.097 (5) 0.028 (3) 0.035 (4) 0.017 (3)

C206 0.066 (3) 0.066 (3) 0.074 (4) 0.030 (3) −0.003 (3) 0.015 (3)

C301 0.030 (2) 0.081 (4) 0.037 (2) 0.033 (2) −0.001 (2) 0.003 (2)

C302 0.043 (3) 0.069 (3) 0.038 (2) 0.035 (2) 0.010 (2) 0.011 (2)

C303 0.070 (4) 0.151 (7) 0.056 (3) 0.071 (5) 0.006 (3) −0.010 (3)

C401 0.045 (3) 0.092 (4) 0.074 (4) 0.043 (3) −0.009 (3) 0.001 (3)

C402 0.062 (3) 0.088 (4) 0.050 (3) 0.045 (3) −0.001 (3) 0.006 (3)

Geometric parameters (Å, º)

Cl41—C402 1.766 (9) N301—H21 0.950

Cl42—C402 1.740 (5) C102—H1 0.950

Cl43—C402 1.777 (5) C102—H2 0.950

O101—C101 1.453 (6) C102—H3 0.950

O101—C105 1.323 (5) C103—H4 0.950

O102—C105 1.192 (5) C103—H5 0.950

O201—C202 1.228 (7) C103—H6 0.950

O301—C302 1.163 (9) C104—H7 0.950

O401—C302 1.368 (9) C104—H8 0.950

O401—C401 1.412 (6) C104—H9 0.950

N201—C105 1.312 (5) C201—H11 0.950

N201—C201 1.456 (5) C203—H12 0.950

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o3864–o3866

N301—C301 1.418 (8) C204—H14 0.950

C101—C102 1.467 (9) C205—H15 0.950

C101—C103 1.495 (14) C205—H16 0.950

C101—C104 1.448 (16) C205—H17 0.950

C201—C202 1.482 (9) C206—H18 0.950

C201—C203 1.537 (7) C206—H19 0.950

C203—C204 1.523 (6) C206—H20 0.950

C204—C205 1.538 (8) C301—H22 0.950

C204—C206 1.505 (9) C303—H23 0.950

C301—C302 1.522 (6) C303—H24 0.950

C301—C303 1.530 (7) C303—H25 0.950

C401—C402 1.488 (12) C401—H26 0.950

N201—H10 0.950 C401—H27 0.950

C101—O101—C105 122.7 (4) C101—C103—H6 108.9

C302—O401—C401 115.6 (5) H4—C103—H5 109.5

C105—N201—C201 121.2 (3) H4—C103—H6 109.5

C202—N301—C301 119.9 (4) H5—C103—H6 109.4

O101—C101—C102 103.8 (4) C101—C104—H7 107.3

O101—C101—C103 109.4 (6) C101—C104—H8 107.9

O101—C101—C104 110.0 (7) C101—C104—H9 113.1

C102—C101—C103 108.1 (7) H7—C104—H8 109.5

C102—C101—C104 112.0 (7) H7—C104—H9 109.5

C103—C101—C104 113.0 (8) H8—C104—H9 109.5

O101—C105—O102 124.3 (4) N201—C201—H11 108.6

O101—C105—N201 111.5 (3) C202—C201—H11 110.7

O102—C105—N201 124.2 (4) C203—C201—H11 108.3

N201—C201—C202 110.5 (5) C201—C203—H12 110.5

N201—C201—C203 108.8 (3) C201—C203—H13 106.0

C202—C201—C203 109.9 (3) C204—C203—H12 108.5

O201—C202—N301 120.3 (5) C204—C203—H13 108.2

O201—C202—C201 121.9 (4) H12—C203—H13 109.5

N301—C202—C201 117.7 (4) C203—C204—H14 109.3

C201—C203—C204 114.1 (4) C205—C204—H14 108.4

C203—C204—C205 108.2 (4) C206—C204—H14 109.1

C203—C204—C206 111.4 (4) C204—C205—H15 110.1

C205—C204—C206 110.4 (6) C204—C205—H16 110.3

N301—C301—C302 109.8 (5) C204—C205—H17 107.9

N301—C301—C303 111.4 (5) H15—C205—H16 109.5

C302—C301—C303 108.5 (4) H15—C205—H17 109.5

O301—C302—O401 123.3 (4) H16—C205—H17 109.5

O301—C302—C301 126.8 (6) C204—C206—H18 108.7

O401—C302—C301 109.9 (6) C204—C206—H19 111.2

O401—C401—C402 111.7 (5) C204—C206—H20 108.5

Cl41—C402—Cl42 110.7 (4) H18—C206—H19 109.5

Cl41—C402—Cl43 107.0 (4) H18—C206—H20 109.5

Cl41—C402—C401 110.9 (4) H19—C206—H20 109.5

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, o3864–o3866

Cl42—C402—C401 108.4 (5) C302—C301—H22 109.4

Cl43—C402—C401 109.7 (4) C303—C301—H22 109.0

C105—N201—H10 119.0 C301—C303—H23 111.9

C201—N201—H10 119.6 C301—C303—H24 110.9

C202—N301—H21 120.5 C301—C303—H25 105.5

C301—N301—H21 119.4 H23—C303—H24 109.5

C101—C102—H1 111.9 H23—C303—H25 109.5

C101—C102—H2 109.9 H24—C303—H25 109.5

C101—C102—H3 106.6 O401—C401—H26 107.6

H1—C102—H2 109.5 O401—C401—H27 109.6

H1—C102—H3 109.5 C402—C401—H26 108.5

H2—C102—H3 109.5 C402—C401—H27 109.8

C101—C103—H4 113.0 H26—C401—H27 109.5

C101—C103—H5 106.4

C101—O101—C105—O102 −6.9 (12) N201—C201—C202—O201 −49.8 (5)

C101—O101—C105—N201 174.3 (6) N201—C201—C202—N301 130.6 (4)

C105—O101—C101—C102 −176.9 (7) N201—C201—C203—C204 −170.0 (5)

C105—O101—C101—C103 −61.6 (9) C202—C201—C203—C204 68.9 (6)

C105—O101—C101—C104 63.1 (10) C203—C201—C202—O201 70.3 (5)

C302—O401—C401—C402 150.4 (5) C203—C201—C202—N301 −109.3 (4)

C401—O401—C302—O301 2.8 (7) C201—C203—C204—C205 −171.9 (6)

C401—O401—C302—C301 −178.1 (4) C201—C203—C204—C206 66.5 (7)

C105—N201—C201—C202 −91.6 (6) N301—C301—C302—O301 −29.1 (7)

C105—N201—C201—C203 147.7 (6) N301—C301—C302—O401 151.8 (4)

C201—N201—C105—O101 177.2 (6) C303—C301—C302—O301 92.9 (8)

C201—N201—C105—O102 −1.6 (11) C303—C301—C302—O401 −86.2 (6)

C202—N301—C301—C302 −61.6 (6) O401—C401—C402—Cl41 63.2 (5)

C202—N301—C301—C303 178.2 (4) O401—C401—C402—Cl42 −175.1 (4)

C301—N301—C202—O201 −1.6 (6) O401—C401—C402—Cl43 −54.8 (6)

C301—N301—C202—C201 178.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N201—H10···O102i 0.95 1.97 2.907 (5) 171

N301—H21···O201ii 0.95 1.89 2.829 (6) 170

Figure

Figure 2A packing diagram of (I), projected down the c axis.

References

Related documents

Since the effects on governance of peace and stability influenced by globalization defined as trade are stronger than those resulting from peace and stability

A multitask model trained on response prediction and SNLI achieves state-of-the-art per- formance for sentence encoding based models on the STS Benchmark, and surpasses prior work

Employing city data over 100 hundred years, this study finds that the railways had a short-term impact of the spatial distribution of population, but it seems that this

In a recent study, Olivero, Li and Jeon (2011) investigates the effects of bank consolidation on the bank lending channel using bank-specific panel data from Asian and Latin

It is possible that subjects who observe a high assigned debt level or who draw low initial wage offers select out of the experiment and are replaced by subjects who receive

Similarity Relations Intuitively, concepts that are more similar (e.g., Machine translation and Machine translation evaluation ) are more likely to be connected by concept

Compared to post classification and problem text cleaning, it is much more time consuming to man- ually assign gold answers and equation systems to a problem (10-15 problems per

In our previous work (Mishra et al., 2016), we augment cognitive features, derived from eye-movement patterns of readers, with textual features to detect whether a human reader