• No results found

Poly[di­methyl­ammonium aquadi μ oxalato europate(III) trihydrate]

N/A
N/A
Protected

Academic year: 2020

Share "Poly[di­methyl­ammonium aquadi μ oxalato europate(III) trihydrate]"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1912

Yanget al. (C

2H8N)[Eu(C2O4)2(H2O)]3H2O doi:10.1107/S1600536805027467 Acta Cryst.(2005). E61, m1912–m1914 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Poly[dimethylammonium aquadi-

l

-oxalato-europate(III) trihydrate]

Yang-Yi Yang,aShao-Bo Zai,a

Wing-Tak Wongband Seik Weng

Ngc*

aSchool of Chemistry and Chemical Engineering,

Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China,bDepartment of

Chemistry, University of Hong Kong, Hong Kong, andcDepartment of Chemistry, University

of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.026

wRfactor = 0.062

Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the crystal structure of the polymeric title compound, (C2H8N)[Eu(C2O4)2(H2O)]3H2O, the independent oxalate

that lies on a general position chelates to two Eu atoms, as do the other two oxalates that lie on different centres of inversion, the bridging mode of the oxalates giving rise to a three-dimensional anionic network. The water-coordinated Eu atom exists in a tricapped trigonal–prismatic geometry. The cations and solvent water molecules occupy the cavities of the network and are involved in hydrogen bonding with each other and with the network.

Comment

Some rare earth/monovalent-cation oxalates contain water, and compounds formulated as [M][(C2O4)2Ln].nH2O have

been studied in order to understand the nature of the water molecules, as water is crucial to their applications. Such double oxalates have been structurally authenticated by both single-crystal and powder-diffraction methods; the ammonium deri-vative is a monohydrate, and the water molecule is involved in coordination to the Y atom in [NH4][(C2O4)2(H2O)Y]

(McDonald & Spink, 1967). The nine-coordinate metal atom displays capped trigonal–prismatic coordination. The caesium analogue also has the rare earth atom in such a geometry (Bataille et al., 2000), as does the trihydrated sodium salt (Bataille & Loue¨r, 1999). Another aquadioxalatoyttrate, a propyl-1,2-diammonium salt, has two solvent water molecules that interact with the cation (Vaidhyanathan et al., 2001). Double salts with other nine-coordinate water-coordinated rare earths include the erbium (Steinfink & Brunton, 1970), lanthanum (Fourcade-Cavillou & Trombe, 2002), neodymium (Fourcade-Cavillou & Trombe, 2002; Kahwa et al., 1984), samarium, europium, gadolinium and terbium (Kahwa et al., 1984) complexes.

The title dimethylammonium aquadioxalatoeuropate(III) exists as the trihydrate, (I) (Fig. 1). The Eu atom is surrounded

(2)

by the eight atoms of four oxalates and the water molecule in a capped trigonal–prismatic environment (Fig. 2). The cations and solvent water molecules interact with each other along the channels of the polymeric anion (Fig. 3); extensive hydrogen bonds (Table 2) give rise to a tightly held network structure that has no solvent-accessible cavities.

Experimental

A mixture of dieuropium trioxalatex-hydrate (0.012 g, 0.02 mmol), 1,3,5-benzenetricarboxylic acid (0.011 g, 0.05 mmol) and water (4 ml) was heated to 333 K, and to this mixture was added di-n-propyl-ethylamine (0.04 g, 0.05 mmol). The solution was placed in a Teflon-lined Parr bomb, which was heated to 453 K for 48 h. It was cooled at a rate of 5 K h1 to 333 K to yield colourless crystals of (I). As benzenetricarboxylic acid was not incorporated in the product, the reaction is essentially one between dieuropium trioxalate and dipropylethylamine; the dimethylammonium cation in the product probably results from the decomposition of dipropylethylamine.

Crystal data

(C2H8N)[Eu(C2O4)2(H2O)]3H2O Mr= 446.16

Monoclinic,P21=n a= 9.674 (1) A˚

b= 11.761 (1) A˚

c= 12.315 (2) A˚ = 99.285 (2)

V= 1382.8 (3) A˚3 Z= 4

Dx= 2.143 Mg m 3 MoKradiation Cell parameters from 885

reflections = 2.4–27.2

= 4.60 mm1 T= 295 (2) K Block, colourless 0.060.050.05 mm Data collection

Bruker SMART 1000 area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.702,Tmax= 0.803 8455 measured reflections

3113 independent reflections 2578 reflections withI> 2(I)

Rint= 0.026 max= 27.5 h=12!7

k=15!14

l=15!15

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.026 wR(F2) = 0.062 S= 0.99 3113 reflections 212 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0359P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 1.07 e A˚

3

min=0.42 e A˚

[image:2.610.47.300.69.278.2]

3

Table 1

Selected geometric parameters (A˚ ,).

Eu1—O1 2.412 (2)

Eu1—O2i

2.430 (2)

Eu1—O3 2.476 (2)

Eu1—O4i

2.469 (2)

Eu1—O5 2.430 (3)

Eu1—O6ii

2.465 (3)

Eu1—O7 2.471 (3)

Eu1—O8iii

2.492 (3)

Eu1—O1w 2.505 (3)

O1—Eu1—O2i

136.0 (1)

O1—Eu1—O3 66.4 (1)

O1—Eu1—O4i

72.7 (1)

O1—Eu1—O5 138.9 (1)

O1—Eu1—O6ii 123.9 (1)

O1—Eu1—O7 71.5 (1)

O1—Eu1—O8iii

111.5 (1)

O1—Eu1—O1w 71.2 (1)

O2i

—Eu1—O3 144.2 (1)

O2i

—Eu1—O4i

66.5 (1) O2i

—Eu1—O5 84.7 (1)

O2i

—Eu1—O6ii

71.7 (1) O2i

—Eu1—O7 134.1 (1)

O2i

—Eu1—O8iii

69.7 (1) O2i—Eu1—O1w 82.0 (1) O3—Eu1—O4i

137.5 (1)

O3—Eu1—O5 82.7 (1)

O3—Eu1—O6ii 72.5 (1)

O3—Eu1—O7 73.5 (1)

O3—Eu1—O8iii

136.0 (1)

O3—Eu1—O1w 82.2 (1)

O4i

—Eu1—O5 138.7 (1)

O4i—Eu1—O6ii 125.4 (1) O4i

—Eu1—O7 104.7 (1)

O4i

—Eu1—O8iii

70.3 (1) O4i—Eu1—O1w 73.9 (1) O5—Eu1—O6ii

65.9 (1)

O5—Eu1—O7 74.1 (1)

O5—Eu1—O8iii

72.3 (1)

O5—Eu1—O1w 132.7 (1)

O6ii

—Eu1—O7 129.7 (1)

O6ii

—Eu1—O8iii

124.5 (1) O6ii—Eu1—O1w 66.8 (1) O7—Eu1—O8iii

65.2 (1)

O7—Eu1—O1w 141.2 (1)

O8iii—Eu1—O1w 140.9 (1)

Symmetry codes: (i) xþ3 2;y

1 2;zþ

1

2; (ii) xþ1;yþ1;zþ1; (iii)

xþ2;yþ1;zþ1.

metal-organic papers

Acta Cryst.(2005). E61, m1912–m1914 Yanget al. (C

2H8N)[Eu(C2O4)2(H2O)]3H2O

m1913

Figure 1

A view of a portion of the three-dimensional structure, showing the geometry of the Eu atom in polymeric (I). Displacement ellipsoids are

drawn at the 50% probability level. [Symmetry codes: (i)3

2x,y

1 2, 1

[image:2.610.335.533.72.265.2]

2z; (ii) 1x, 1y, 1z; (iii) 2x, 1y, 1z.]

Figure 2

[image:2.610.312.566.491.705.2]
(3)
[image:3.610.315.564.70.277.2]

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1w—H1w1 O2w 0.85 (1) 1.92 (1) 2.759 (5) 169 (4) O1w—H1w2 O2wiv

0.85 (1) 2.05 (2) 2.862 (5) 162 (4) O2w—H2w2 O7i

0.85 (1) 2.30 (2) 3.071 (5) 151 (4) O2w—H2w2 O8i

0.85 (1) 2.37 (4) 3.011 (4) 133 (5) O3w—H3w1 O4v 0.85 (1) 2.02 (2) 2.838 (5) 162 (7) O3w—H3w2 O4w 0.84 (1) 2.00 (3) 2.770 (6) 151 (5) O4w—H4w1 O2iv

0.85 (1) 2.08 (2) 2.893 (4) 159 (5) O4w—H4w2 O3vi

0.85 (1) 2.12 (1) 2.962 (5) 173 (5) N1—H1n1 O3w 0.85 (1) 1.96 (1) 2.792 (6) 167 (4) N1—H1n2 O6ii

0.85 (1) 2.05 (2) 2.879 (5) 165 (5)

Symmetry codes: (i) xþ3 2;y

1 2;zþ

1

2; (ii) xþ1;yþ1;zþ1; (iv)

xþ1;yþ1;z; (v)x1 2;yþ

3 2;z

1 2; (vi)xþ

1 2;y

1 2;zþ

1 2.

The C-bound H atoms were placed in calculated positions, with C—H = 0.96 A˚ andUiso(H) = 1.5Ueq(C), and were included in the

refinement in the riding-model approximation. Water and ammonium H atoms were located in difference Fourier maps, and were refined with distance restraints of O—H = N—H = 0.85 (1) A˚ and H H = 1.39 (1) A˚ and withUiso(H) = 1.2Ueq(O,N). The short H1w2 H2w1

distance of 2.08 A˚ is probably a consequence of some disorder in atom O2w, but the disorder could not be resolved. The largest peak in the final difference Fourier map of 1.08 e A˚3was about 1 A˚ from

Eu1.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the Guangdong Natural Science dation (grant No. 04300564), the Scientific Research Foun-dation for Returned Overseas Chinese Scholars of the State Education Ministry of China (grant No. 2004–527), the University of Hong Kong and the University of Malaya for supporting this study.

References

Bataille, T., Auffre´dic, J.-P. & Loue¨r, D. (2000).J. Mater. Chem.10, 1707–1711. Bataille, T. & Loue¨r, D. (1999).Acta Cryst.C55, 1760–1762.

Bruker (2000).SAINTandSMART. Bruker AXS Inc., Madison, Winsonsin, USA.

Fourcade-Cavillou, F. & Trombe, J.-C. (2002).Solid State Sci.4, 1199–1208. Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National

Laboratory, Tennessee, USA.

Kahwa, I. A., Fronczek, F. R. & Selbin, J. (1984).Inorg. Chim. Acta,68, 181– 186.

McDonald, T. R. R. & Spink, J. M. (1967).Acta Cryst.23, 944–949. Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Steinfink, H. & Brunton, G. D. (1970).Inorg. Chem.9, 2112–2115.

Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001).Chem. Mater.13, 185–191.

metal-organic papers

m1914

Yanget al. (C

2H8N)[Eu(C2O4)2(H2O)]3H2O Acta Cryst.(2005). E61, m1912–m1914

Figure 3

A view of the polymeric [(C2O4)2(H2O)Eu] network in (I). H atoms have

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1912–m1914

supporting information

Acta Cryst. (2005). E61, m1912–m1914 [doi:10.1107/S1600536805027467]

Poly[dimethylammonium aquadi-

µ

-oxalato-europate(III) trihydrate]

Yang-Yi Yang, Shao-Bo Zai, Wing-Tak Wong and Seik Weng Ng

S1. Comment

Some rare earth/monovalent-cation oxalates contain water, and the compounds that are formulated as [M]

[(C2O4)2La].nH2O have been studied in order to understand the nature of the water molecules, as water is crucial to their

applications. Such double oxalates have been structurally authenticated by both single-crystal and powder-diffraction methods; the ammonium derivative is a monohydrate, and the water molecule is involved in coordination to the Y atom in [NH4][(C2O4)2(H2O)Y] (MacDonald & Spink, 1967). The nine-coordinate metal atom displays capped trigonal–

prismatic coordination. The caesium analogue also has the rare earth atom in such a geometry (Bataille et al., 2000), as does the trihydrated sodium salt (Bataille & Louër, 1999). Another aquadioxalatoyttrate, a propyl-1,2-diammonium salt, has two solvent water molecules that interact with the cation (Vaidhyanathan et al., 2001). Double salts with other nine-coordinate water-nine-coordinated rare earths include the erbium (Steinfink & Brunton, 1970), lanthanum (Fourcade-Cavillou & Trombe, 2002), neodymium (Fourcade-Cavillou & Trombe, 2002; Kahwa et al., 1984), samarium, europium,

gadolinium and terbium (Kahwa et al., 1984) complexes.

The title dimethylammonium aquadioxalatoeuropate(III) exists as the trihydrate, (I) (Fig. 1). The Eu atom is surrounded by the eight atoms of four oxalates and the water molecule in a capped trigonal–prismatic environment (Fig. 2). The cations and solvent water molecules interact with each other along the channels of the polymeric anion (Fig. 3); extensive hydrogen bonds (Table 2) give rise to a tightly held network structure that has no solvent-accessible cavities.

S2. Experimental

A mixture of dieuropium trioxalate xhydrate (0.012 g, 0.02 mmol), 1,3,5-benzenetricarboxylic acid (0.011 g, 0.05 mmol) and water (4 ml) was heated to 333 K, and to this mixture was added di-n-propylethylamine (0.04 g, 0.05 mmol). The solution was placed in a Teflon-lined Parr bomb, which was heated to 453 K for 48 h. It was cooled at a rate of 5 K h−1 to

333 K to yield colourless crystals of (I). As benzenetricarboxylic acid was not incorporated into the product, the reaction is essentially between dieuropium trixoxalate and dipropylethylamine; the dimethylammonium cation in the product probably results from the decomposition of dipropylethylamine.

S3. Refinement

The C-bound H atoms were placed in calculated positions, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C), and were

included in the refinement in the riding-model approximation. Water and ammonium H atoms were located in difference Fourier maps, and were refined with distance restraints of O—H = N—H = 0.85 (1) Å and H···H = 1.39 (1) Å and with Uiso(H) = 1.2Ueq(O,N). The short H1W2···H2W1 distance of 2.08 Å is probably a consequence of some disorder in atom

O2W, but the disorder could not be resolved. The largest peak in the final difference Fourier map of 1.08 e− Å−3 was about

(5)

supporting information

[image:5.610.131.484.71.367.2]

sup-2

Acta Cryst. (2005). E61, m1912–m1914

Figure 1

(6)

supporting information

[image:6.610.125.480.69.416.2]

sup-3

Acta Cryst. (2005). E61, m1912–m1914

Figure 2

(7)

supporting information

[image:7.610.127.484.74.364.2]

sup-4

Acta Cryst. (2005). E61, m1912–m1914

Figure 3

A view of the polymeric [(C2O4)2(H2O)Eu] network in (I).

Poly[dimethylammonium aquadi-µ-oxalato-europate(III) trihydrate]

Crystal data

(C2H8N)[Eu(C2O4)2(H2O)]·3H2O

Mr = 446.16

Monoclinic, P21/n

Hall symbol: -P 2yn a = 9.674 (1) Å b = 11.761 (1) Å c = 12.315 (2) Å β = 99.285 (2)° V = 1382.8 (3) Å3

Z = 4

F(000) = 872 Dx = 2.143 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 885 reflections θ = 2.4–27.2°

µ = 4.60 mm−1

T = 295 K Block, colourless 0.06 × 0.05 × 0.05 mm

Data collection

Bruker SMART 1000 area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.702, Tmax = 0.803

8455 measured reflections 3113 independent reflections 2578 reflections with I > 2σ(I) Rint = 0.026

θmax = 27.5°, θmin = 2.4°

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m1912–m1914

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.026

wR(F2) = 0.062

S = 0.99 3113 reflections 212 parameters 15 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent

and constrained refinement w = 1/[σ2(F

o2) + (0.0359P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 1.07 e Å−3

Δρmin = −0.42 e Å−3

Special details

Experimental. A dimensionless value of 2r*µ = 0.30 was used in the SADABS step.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m1912–m1914

H5B 0.1283 0.5459 0.2646 0.127* H5C 0.0717 0.6623 0.2137 0.127* H6A 0.2260 0.7835 0.1280 0.130* H6B 0.3792 0.7424 0.1236 0.130* H6C 0.3394 0.7871 0.2344 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Eu1 0.0240 (1) 0.0177 (1) 0.0222 (1) 0.0001 (1) 0.0063 (1) 0.0002 (1) O1 0.039 (2) 0.016 (1) 0.030 (1) 0.001 (1) 0.015 (1) −0.001 (1) O2 0.024 (2) 0.021 (1) 0.033 (2) 0.001 (1) 0.010 (1) 0.004 (1) O3 0.035 (2) 0.021 (1) 0.035 (2) 0.001 (1) 0.019 (1) 0.003 (1) O4 0.048 (2) 0.018 (1) 0.034 (2) 0.001 (1) 0.020 (1) 0.001 (1) O5 0.023 (1) 0.043 (2) 0.026 (1) −0.003 (1) 0.005 (1) −0.001 (1) O6 0.025 (1) 0.034 (1) 0.020 (1) 0.002 (1) 0.004 (1) 0.002 (1) O7 0.032 (2) 0.023 (1) 0.036 (2) −0.003 (1) 0.001 (1) 0.007 (1) O8 0.032 (2) 0.023 (1) 0.045 (2) 0.002 (1) −0.006 (1) −0.007 (1) O1W 0.043 (2) 0.042 (2) 0.028 (2) −0.006 (1) 0.005 (1) 0.001 (1) O2W 0.093 (3) 0.038 (2) 0.068 (3) 0.000 (2) 0.010 (2) −0.007 (2) O3W 0.124 (4) 0.073 (3) 0.045 (2) −0.021 (3) 0.023 (3) 0.002 (2) O4W 0.113 (4) 0.059 (3) 0.072 (3) −0.018 (2) 0.051 (3) −0.013 (2) N1 0.043 (3) 0.065 (3) 0.046 (3) 0.019 (2) 0.011 (2) 0.011 (2) C1 0.024 (2) 0.024 (2) 0.018 (2) 0.000 (1) 0.002 (2) 0.002 (1) C2 0.025 (2) 0.021 (2) 0.021 (2) 0.002 (1) 0.004 (2) 0.000 (1) C3 0.026 (2) 0.017 (2) 0.023 (2) −0.001 (1) 0.005 (2) 0.000 (1) C4 0.024 (2) 0.027 (2) 0.027 (2) 0.001 (2) 0.009 (2) −0.002 (2) C5 0.061 (4) 0.136 (7) 0.060 (4) 0.029 (4) 0.019 (3) 0.019 (4) C6 0.098 (6) 0.063 (4) 0.097 (5) −0.002 (4) 0.007 (4) 0.019 (4)

Geometric parameters (Å, º)

Eu1—O1 2.412 (2) C1—C2 1.560 (5)

Eu1—O2i 2.430 (2) C3—C3ii 1.540 (7)

Eu1—O3 2.476 (2) C4—C4iii 1.547 (8)

Eu1—O4i 2.469 (2) O1W—H1W1 0.85 (1)

Eu1—O5 2.430 (3) O1W—H1W2 0.85 (1)

Eu1—O6ii 2.465 (3) O2W—H2W1 0.84 (1)

Eu1—O7 2.471 (3) O2W—H2W2 0.85 (1)

Eu1—O8iii 2.492 (3) O3W—H3W1 0.85 (1)

Eu1—O1W 2.505 (3) O3W—H3W2 0.84 (1)

O1—C1 1.242 (4) O4W—H4W1 0.85 (1)

O2—C1 1.257 (4) O4W—H4W2 0.85 (1)

O3—C2 1.247 (4) N1—H1N1 0.85 (1)

O4—C2 1.249 (4) N1—H1N2 0.85 (1)

O5—C3 1.245 (4) C5—H5A 0.96

O6—C3 1.261 (4) C5—H5B 0.96

(10)

supporting information

sup-7

Acta Cryst. (2005). E61, m1912–m1914

O8—C4 1.250 (4) C6—H6A 0.96

N1—C5 1.445 (7) C6—H6B 0.96

N1—C6 1.452 (8) C6—H6C 0.96

O1—Eu1—O2i 136.0 (1) C3—O5—Eu1 120.8 (2)

O1—Eu1—O3 66.4 (1) C3—O6—Eu1ii 119.3 (2)

O1—Eu1—O4i 72.7 (1) C4—O7—Eu1 119.8 (2)

O1—Eu1—O5 138.9 (1) C4—O8—Eu1iii 119.7 (2)

O1—Eu1—O6ii 123.9 (1) C5—N1—C6 114.9 (5)

O1—Eu1—O7 71.5 (1) O1—C1—O2 126.4 (3) O1—Eu1—O8iii 111.5 (1) O1—C1—C2 116.9 (3)

O1—Eu1—O1W 71.2 (1) O2—C1—C2 116.7 (3) O2i—Eu1—O3 144.2 (1) O3—C2—O4 126.8 (3)

O2i—Eu1—O4i 66.5 (1) O3—C2—C1 116.4 (3)

O2i—Eu1—O5 84.7 (1) O4—C2—C1 116.7 (3)

O2i—Eu1—O6ii 71.7 (1) O5—C3—O6 126.8 (3)

O2i—Eu1—O7 134.1 (1) O5—C3—C3ii 117.0 (4)

O2i—Eu1—O8iii 69.7 (1) O6—C3—C3ii 116.3 (4)

O2i—Eu1—O1W 82.0 (1) O7—C4—O8 126.2 (4)

O3—Eu1—O4i 137.5 (1) O7—C4—C4iii 117.7 (4)

O3—Eu1—O5 82.7 (1) O8—C4—C4iii 116.1 (4)

O3—Eu1—O6ii 72.5 (1) Eu1—O1W—H1W1 120 (3)

O3—Eu1—O7 73.5 (1) Eu1—O1W—H1W2 113 (3) O3—Eu1—O8iii 136.0 (1) H1W1—O1W—H1W2 110 (2)

O3—Eu1—O1W 82.2 (1) H2W1—O2W—H2W2 111 (2) O4i—Eu1—O5 138.7 (1) H3W1—O3W—H3W2 111 (2)

O4i—Eu1—O6ii 125.4 (1) H4W1—O4W—H4W2 109 (2)

O4i—Eu1—O7 104.7 (1) C5—N1—H1N1 109 (4)

O4i—Eu1—O8iii 70.3 (1) C6—N1—H1N1 112 (4)

O4i—Eu1—O1W 73.9 (1) C5—N1—H1N2 105 (4)

O5—Eu1—O6ii 65.9 (1) C6—N1—H1N2 106 (4)

O5—Eu1—O7 74.1 (1) H1N1—N1—H1N2 110 (2) O5—Eu1—O8iii 72.3 (1) N1—C5—H5A 109.5

O5—Eu1—O1W 132.7 (1) N1—C5—H5B 109.5 O6ii—Eu1—O7 129.7 (1) H5A—C5—H5B 109.5

O6ii—Eu1—O8iii 124.5 (1) N1—C5—H5C 109.5

O6ii—Eu1—O1W 66.8 (1) H5A—C5—H5C 109.5

O7—Eu1—O8iii 65.2 (1) H5B—C5—H5C 109.5

O7—Eu1—O1W 141.2 (1) N1—C6—H6A 109.5 O8iii—Eu1—O1W 140.9 (1) N1—C6—H6B 109.5

C1—O1—Eu1 119.8 (2) H6A—C6—H6B 109.5 C1—O2—Eu1iv 118.9 (2) N1—C6—H6C 109.5

C2—O3—Eu1 118.1 (2) H6A—C6—H6C 109.5 C2—O4—Eu1iv 118.3 (2) H6B—C6—H6C 109.5

O5—Eu1—O1—C1 −31.3 (3) O6ii—Eu1—O7—C4 105.3 (3)

O2i—Eu1—O1—C1 158.8 (2) O4i—Eu1—O7—C4 −69.8 (3)

(11)

supporting information

sup-8

Acta Cryst. (2005). E61, m1912–m1914

O4i—Eu1—O1—C1 −178.5 (3) O8iii—Eu1—O7—C4 −10.0 (3)

O7—Eu1—O1—C1 −65.9 (3) O1W—Eu1—O7—C4 −152.2 (2) O3—Eu1—O1—C1 13.6 (3) Eu1—O1—C1—O2 165.9 (3) O8iii—Eu1—O1—C1 −118.6 (3) Eu1—O1—C1—C2 −14.9 (4)

O1W—Eu1—O1—C1 103.1 (3) Eu1iv—O2—C1—O1 163.0 (3)

O1—Eu1—O3—C2 −10.8 (3) Eu1iv—O2—C1—C2 −16.2 (4)

O5—Eu1—O3—C2 141.3 (3) Eu1—O3—C2—O4 −172.5 (3) O2i—Eu1—O3—C2 −148.2 (2) Eu1—O3—C2—C1 7.9 (4)

O6ii—Eu1—O3—C2 −151.7 (3) Eu1iv—O4—C2—O3 −169.7 (3)

O4i—Eu1—O3—C2 −27.9 (3) Eu1iv—O4—C2—C1 9.9 (4)

O7—Eu1—O3—C2 65.9 (3) O1—C1—C2—O3 4.4 (5) O8iii—Eu1—O3—C2 86.4 (3) O2—C1—C2—O3 −176.3 (3)

O1W—Eu1—O3—C2 −83.6 (3) Eu1iv—C1—C2—O3 172.8 (3)

O1—Eu1—O5—C3 122.0 (2) O1—C1—C2—O4 −175.2 (3) O2i—Eu1—O5—C3 −65.0 (3) O2—C1—C2—O4 4.1 (5)

O6ii—Eu1—O5—C3 7.3 (2) Eu1iv—C1—C2—O4 −6.8 (3)

O4i—Eu1—O5—C3 −109.7 (3) Eu1—O5—C3—O6 173.0 (3)

O7—Eu1—O5—C3 156.1 (3) Eu1—O5—C3—C3ii −6.8 (5)

O3—Eu1—O5—C3 81.3 (3) Eu1ii—O6—C3—O5 173.3 (3)

O8iii—Eu1—O5—C3 −135.4 (3) Eu1ii—O6—C3—C3ii −6.8 (5)

O1W—Eu1—O5—C3 9.0 (3) Eu1—O7—C4—O8 −169.8 (3) O1—Eu1—O7—C4 −135.5 (3) Eu1—O7—C4—C4iii 9.1 (5)

O5—Eu1—O7—C4 67.4 (3) Eu1iii—O8—C4—O7 −170.6 (3)

O2i—Eu1—O7—C4 1.6 (3) Eu1iii—O8—C4—C4iii 10.4 (5)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+3/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A O1W—H1W1···O2W 0.85 (1) 1.92 (1) 2.759 (5) 169 (4) O1W—H1W2···O2Wv 0.85 (1) 2.05 (2) 2.862 (5) 162 (4)

O2W—H2W2···O7i 0.85 (1) 2.30 (2) 3.071 (5) 151 (4)

O2W—H2W2···O8i 0.85 (1) 2.37 (4) 3.011 (4) 133 (5)

O3W—H3W1···O4vi 0.85 (1) 2.02 (2) 2.838 (5) 162 (7)

O3W—H3W2···O4W 0.84 (1) 2.00 (3) 2.770 (6) 151 (5) O4W—H4W1···O2v 0.85 (1) 2.08 (2) 2.893 (4) 159 (5)

O4W—H4W2···O3vii 0.85 (1) 2.12 (1) 2.962 (5) 173 (5)

N1—H1N1···O3W 0.85 (1) 1.96 (1) 2.792 (6) 167 (4) N1—H1N2···O6ii 0.85 (1) 2.05 (2) 2.879 (5) 165 (5)

Figure

Figure 1
Table 2
Figure 1
Figure 2
+2

References

Related documents

At last we conclude that despite very different inlet conditions to the discs, with about 50% of reduced velocity on the centre line upstream of the second disc and an increase

C shows the marked increase in blood flow through the left internal carotid artery in the patient compared with a healthy subject (3.3 times greater), as well as the relative

Our purpose was to compare multishot fast spin-echo periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted MR imaging (DWI)

This paper first analyzes the existing problems in Hangzhou parking man- agement from aspects, such as the serious shortage of parking lots, the lack of a clear management body,

While most of previous work on neural MT ad- dressed the integration of terminology with con- strained decoding, we proposed a black-box ap- proach in which a generic neural

1) Bumi yang pemiliknya sudah masuk Islam, tanah atau bumi yang semacam ini adalah sah menjadi kepunyaan pemiliknya, dan tidak boleh ada kewajiban pajak terhadapnya. 2)

The present CBME programme was developed and implemented in villages served by the Rural Health Training Centre (RHTC) of the Department of Community Medicine, Sri Manakula

Dozat and Manning ’s ( 2017 ) approach to syn- tactic dependency parsing is similar, but avoids the possibility of generating invalid trees by fully factorizing the system.. Rather