• No results found

Poly[[[di­aqua­bis­(pyridine 4 carboxamide κN1)cobalt(II)] μ2 squarato κO:O′] dihydrate]

N/A
N/A
Protected

Academic year: 2020

Share "Poly[[[di­aqua­bis­(pyridine 4 carboxamide κN1)cobalt(II)] μ2 squarato κO:O′] dihydrate]"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Poly[[[diaquabis(pyridine-4-carboxamide-

j

N

1

)-cobalt(II)]-

l

2

-squarato-

j

O

:

O

000

] dihydrate]

Ibrahim Uc¸ar* and Ahmet Bulut

Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayı´s University, TR-55139 Kurupelit-Samsun, Turkey

Correspondence e-mail: iucar@omu.edu.tr

Key indicators Single-crystal X-ray study

T= 297 K

Mean(C–C) = 0.006 A˚

Rfactor = 0.056

wRfactor = 0.164

Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title polymeric compound, {[Co(C4O4)(C6H6N2O)2 -(H2O)2]2H2O}n, has two crystallographically independent half-molecules in the asymmetric unit, each Co atom residing on a center of symmetry. The two polymeric chains exhibit similar coordination geometry but display differences with regard to other structural features. Each CoII center is octahedrally coordinated by two mutually trans pyridine-4-carboxamide (or isonicotinamide) ligands, two mutuallytrans squarate ligands and two trans aqua ligands. The crystal structure contains chains of squarate-1,3-bridged CoII ions. These chains are held together by N—H O and O—H O intermolecular hydrogen-bond interactions, forming an exten-sive three-dimensional network.

Comment

Squaric acid, the dianion of 3,4-dihydroxycyclobut-3-ene-1,2-dione, and its metal complexes continue to attract attention, not only because of the various coordination modes of squaric acid, such as singly and multiply monodentate ligands or a bridging ligand between two or more metal atoms (Trombeet al., 2002; Milletet al., 2003), but also because of the potential application of metal complexes to xerographic photo-receptors, organic solar cells and optical recording (Seitz & Imming, 1992; Liebeskind et al., 1993). The squarate (Sq = C4O4

2) anion does not behave like a chelating ligand but

rather as a bridge connecting two or more metal atoms. It is coordinated to FeII, FeIII, NiIIand CuIIcomplexes in a-1,3 fashion (as in the title complex) giving binuclear (Bernardi-nelli et al., 1989) and chain structures (Lee et al., 1996), whereas the -1,2 coordination mode has been reported for binuclear and chain complexes of CuIIand PdII(Castroet al., 1997; Crispiniet al., 2000). It is also observed that the squarate anion, with CuIIand NiII, acts as a tetramonodentate ligand and forms polynuclear compounds (Castroet al., 1995). In all the cases reported so far, metal squarate complexes have been found interesting in terms of the structural relationship between their respective solid-state architectures. We have also used isonicotinamide (ina) as a second ligand; this pyri-dine derivative, with an amide group (–CONH2) in the position, possesses strong antitubercular, antipyretic, fibrino-lytic and antibacterial properties (Ahuja & Prasad, 1976). In inorganic chemistry, isonicotinamide is of interest because it has three donor sites,viz(i) the pyrimidine ring N atom, as in the title complex, (ii) the amine N atom and (iii) the carbonyl O atom, acting as monodentate ligand. There are only a few reports of complexes of this ligand with transition metals (Baumet al., 2002). In our ongoing research on squaric acid, we have synthesized some mixed-ligand metal(II) complexes of squaric acid and their structures have been reported (Uc¸ar

(2)

et al., 2004; Bulutet al., 2004). In our latest study, the squarate dianion acts as bridging ligand between two copper(II) ions, forming one crystallographically independent polymeric [Cu(H2O)2(ina)2(Sq)]nchain (Uc¸aret al., 2005). In this study, the title mixed-ligand complex, (I), has two crystal-lographically independent polymeric [Co(H2O)2(ina)2(Sq)]n chains.

A view of part of the polymeric structure of (I), with the atom-numbering scheme is shown in Fig. 1. In the crystal structure, the squarate dianion adopts a bridging position between the CoIIatoms, coordinatingviatwo of its O atoms in a-1,3 fashion. Both polymeric units form ‘zigzag’ chains in the direction of the crystallographic a axis (Fig. 1). These crystallographically independent chains exhibit similar coordination geometries about the metal center but show differences in other structural features. Each CoIIcenter lies on a center of symmetry and is octahedrally coordinated by two mutually transina ligands, two mutually trans squarate anions and two symmetry-related aqua ligands. In the title complex, there are also two non-symmetry-related solvent water molecules. The ring plane of the ina ligand nearly bisects the adjacent coordination planes, containing the octahedron axis. In each polymeric chain, the coordinated pyridine N atoms of two ina ligands are located in axial positions, while the squarate O atoms and aqua ligands form the equatorial planes. The dihedral angle between the equatorial planes of the Co atoms in the two polymer chains is 15.6 (2). Only one O atom of each squarate dianion is involved in metal coor-dination, and the mode of direct coorcoor-dination, in which two neighboring O atoms are involved, is not found.

The geometrical shapes of the two crystallographically independent chains are similar but not identical. The Co— Osquaratebond distance for polymeric chainA, containing Co1, is slightly shorter than the corresponding bond length in polymeric chainB, containing Co2, while the Co—Owaterbond for chainAis slightly longer than that for chainB. Although the squarate ligand is electronegative in character in each

chain, the Co—Owaterbond distances are significantly shorter than the Co—Osquaratebond distances (Table 1). Similarly, in each chain, the Co—Ninabond distances are slightly different from each other. However, these bond distances are in agreement with the values reported previously for other squarate-containing CoII complexes (Greve et al., 2003;

metal-organic papers

Acta Cryst.(2005). E61, m1320–m1323 Uc¸ar and Bulut [Co(C

[image:2.610.310.566.72.315.2] [image:2.610.45.295.171.377.2]

4O4)(C6H6N2O)2(H2O)2]2H2O

m1321

Figure 1

Part of the polymeric structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (viii)1 +x,y,z; (ix) 1x, 1y, 1z; (x)x, 1y,z.]

Figure 2

[image:2.610.315.563.378.630.2]
(3)

Kirchmaieret al., 2003). The bonding angles also show some differences with each other in both polymeric chains (Table 1). All the N—Co—N, N—Co—O and O—Co—O bond angles deviate slightly from 90 or 180, presumably as a result of steric constraints arising from the shape of the ligands. The dihedral angle between the two squarate dianions in chainsA andBis 20.90 (6). In polymeric chainA, the dihedral angle between the equatorial plane and the squarate dianion is 4.10 (10), with a torsion angle (Co1–O2–C7–C8) of 1.3 (7), while in polymeric chain B, this angle is 30.75 (16), with a torsion angle (Co2–O5–C15–C16) of 18.1 (7). Similarly, the dihedral angle between the two pyridine rings in chainsAand Bis 7.4 (3).

[image:3.610.313.567.205.275.2]

We assume that the hydrogen bonds influence the observed geometrical shape of both chains. The hydrogen bonds may be responsible for the different orientations of the squarate and pyridine planes. The NH2and CO groups of the ina ligand, the aqua ligand, the solvent water molecules and the uncoordi-nated squarate O atoms are involved in interchain hydrogen bonding. These interactions are also effective in forming a layered structure; the geometry of the interactions is given in Table 2. In both polymeric chains, the shortest intrachain Co1 Co1(1 +x,y,z) and Co2 Co2(1 +x,y,z) distances are equal [8.1578 (9) A˚ ], whereas the interchain equivalent, Co1 Co2(x,y,z+ 1), is 7.3058 (8) A˚ .

Experimental

Squaric acid (0.57 g, 5 mmol) dissolved in water (25 ml) was neutralized with NaOH (0.40 g, 10 mmol) and was added to a hot solution of CoCl2H2O (0.74 g, 5 mmol) dissolved in water (50 ml).

The mixture was stirred at 333 K for 12 h and then cooled to room temperature. The pink crystals that formed were filtered off and washed with water and methanol, and dried in a vacuum. A solution of isonicotinamide (0.24 g, 2 mmol) in methanol (50 ml) was added dropwise with stirring to a suspension of CoSq2H2O (0.20 g, 1 mmol)

in water (50 ml). The light-pink solution was refluxed for about 2 h and then cooled to room temperature. A few days later, well formed pink crystals were selected for X-ray studies.

Crystal data

[Co(C4O4)(C6H6N2O)2(H2O)2] -2H2O

Mr= 487.29 Triclinic,P1

a= 8.1578 (8) A˚

b= 10.8246 (12) A˚

c= 12.1665 (11) A˚

= 75.445 (8)

= 89.690 (8)

= 74.082 (8) V= 997.68 (17) A˚3

Z= 2

Dx= 1.622 Mg m3 MoKradiation Cell parameters from 5876

reflections

= 2.3–27.3

= 0.92 mm1

T= 297 (2) K Prism, pink 0.30.20.1 mm

Data collection

Stoe IPDS-II diffractometer

!scans

Absorption correction: integration (X-RED32; Stoe & Cie, 2002)

Tmin= 0.710,Tmax= 0.899 20174 measured reflections 4333 independent reflections

3003 reflections withI> 2(I)

Rint= 0.064 max= 27.0

h=10!10

k=13!13

l=15!15

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.056

wR(F2) = 0.164

S= 1.05 4333 reflections 319 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.1027P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.017

max= 1.12 e A˚

3

min=0.81 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Co1—O1 2.058 (2) Co1—O2 2.128 (2) Co1—N1 2.158 (3)

Co2—O7 2.042 (3) Co2—O5 2.141 (2) Co2—N3 2.169 (3)

O1—Co1—O2 95.67 (10) O1—Co1—N1 88.96 (12) O2—Co1—N1 88.80 (11)

[image:3.610.314.566.335.458.2]

O7—Co2—O5 92.92 (10) O7—Co2—N3 89.31 (13) O5—Co2—N3 89.46 (11)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1A O3 0.86 (3) 1.80 (3) 2.635 (4) 165 (5) O1—H1B O6i

0.87 (3) 1.85 (3) 2.723 (4) 174 (5) N2—H2A O9ii

0.89 (3) 2.15 (3) 3.015 (6) 164 (6) N2—H2B O3iii

0.91 (3) 2.35 (3) 3.214 (5) 158 (5) N4—H4A O10iv 0.88 (3) 2.15 (4) 2.973 (7) 155 (6) N4—H4B O1ii

0.88 (3) 2.50 (4) 3.316 (5) 155 (5) O7—H7A O6 0.86 (3) 1.91 (3) 2.684 (4) 149 (5) O7—H7B O3v

0.88 (3) 1.75 (3) 2.613 (3) 166 (5) O9—H9A O8vi

0.83 (4) 1.98 (5) 2.779 (6) 159 (8) O9—H9B O6vii

0.84 (4) 2.16 (4) 2.984 (6) 170 (8) O10—H10A O4ii

0.87 (4) 2.21 (9) 2.829 (7) 128 (9) O10—H10B O9ii 0.85 (4) 2.24 (4) 3.083 (8) 169 (10)

Symmetry codes: (i) x;y;zþ1; (ii) xþ1;y;zþ1; (iii) x;y1;z; (iv)

x;y;zþ1; (v)x1;y;z1; (vi)xþ1;y;z; (vii)xþ1;yþ1;z.

H atoms attached to C atoms were placed at calculated positions (C—H = 0.93 A˚ ) and were allowed to ride on the parent atom [Uiso(H) = 1.2Ueq(C)]. The water and amide H atoms were located in

a difference map and were refined with O—H, N—H, Hwater Hwater

and Hamide Hamidedistances restrained to 0.85 (4), 0.90 (3), 1.35 (4)

and 1.40 (3) A˚ , respectively, and with Uiso(H) = 1.5Ueq(O,N). The

highest peak is located on the Co1 atom.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement:

X-AREA; data reduction:X-RED32(Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

The authors thank the Prime Minister’s State Planning Organization of Turkey for financial support to project TAPF-020.

References

Ahuja, I. S. & Prasad, I. (1976).Inorg. Nucl. Chem. Lett.12, 777–784. Baum, G., Blake, A. J., Hubberstey, P., Julio, C. & Withersby, M. A. (2002).

Acta Cryst.C58, m542–m544.

Bernardinelli, G., Deguenon, D., Soules, R. & Castan, P. (1989).Can. J. Chem.

(4)

Bulut, B., Uc¸ar, I., Yes¸ilel, O. Z., Ic¸budak, H., O¨ lmez, H. & Bu¨yu¨kgu¨ngo¨r, O. (2004).Acta Cryst.C60, m526–m528.

Castro, I., Calatayud, M. L., Sletten, J., Lloret, F. & Julve, M. (1997).J. Chem. Soc. Dalton Trans.pp. 811–817.

Castro, I., Sletten, J., Calatayud, M. L., Julve, M., Cano, J., Lloret, F. & Caneschi, A. (1995).Inorg. Chem.34, 4903–4909.

Crispini, A., Pucci, D., Aiello, I. & Ghedini, M. (2000).Inorg. Chim. Acta,304, 219–223.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Greve, J., Jess, I. & Nather, C. (2003).J. Solid State Chem.175, 328–340. Kirchmaier, R., Altin, E. & Lentz, A. (2003).Z. Kristallogr.219, 29–30. Lee, R. R., Wang, C. C. & Wang, Y. (1996).Acta Cryst.B52, 966–975.

Liebeskind, L. S., Yu, M. S., Yu, R. H., Wang, J. & Glidewell, C. (1993).J. Am. Chem. Soc.115, 9048–9055.

Millet, P., Sbadie, L., Galy, J. & Trombe, J. C. (2003).J. Solid State Chem.173, 49–53.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany.

Seitz, G. & Imming, P. (1992).Chem. Rev.92, 1227–1260.

Stoe & Cie (2002).X-AREA(Version 1.18) andX-RED32(Version 1.04). Stoe & Cie, Darmstadt, Germany.

Trombe, J. C., Sabadie, L. & Millet, P. (2002).Solid State Sci.4, 1209–1212. Uc¸ar, I., Bulut, A. & Bu¨yu¨kgu¨ngo¨r, O. (2005).Acta Cryst.C61, m218–m220. Uc¸ar, I., Yes¸ilel, O. Z., Bulut, A., O¨ lmez, H. & Bu¨yu¨kgu¨ngo¨r, O. (2004).Acta

Cryst.E60, m1025–m1027.

metal-organic papers

Acta Cryst.(2005). E61, m1320–m1323 Uc¸ar and Bulut [Co(C

(5)

sup-1

Acta Cryst. (2005). E61, m1320–m1323

supporting information

Acta Cryst. (2005). E61, m1320–m1323 [https://doi.org/10.1107/S1600536805018295]

Poly[[[diaquabis(pyridine-4-carboxamide-

κ

N

1

)cobalt(II)]-

µ2

-squarato-

κ

O

:

O

]

dihydrate]

İ

brahim U

ç

ar and Ahmet Bulut

Poly[[[diaquabis(pyridine-4-carboxamide-κN1)cobalt(II)]-µ

2– squarato-κO:O′] dihydrate]

Crystal data

[Co(C4O4)(C6H6N2O)2(H2O)2]·2H2O

Mr = 487.29

Triclinic, P1 Hall symbol: -P 1 a = 8.1578 (8) Å b = 10.8246 (12) Å c = 12.1665 (11) Å α = 75.445 (8)° β = 89.690 (8)° γ = 74.082 (8)° V = 997.68 (17) Å3

Z = 2 F(000) = 502 Dx = 1.622 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5876 reflections θ = 2.3–27.3°

µ = 0.92 mm−1

T = 297 K Prism, pink 0.3 × 0.2 × 0.1 mm

Data collection Stoe IPDS-II

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 6.67 pixels mm-1

ω scans

Absorption correction: integration (X-RED32; Stoe & Cie, 2002) Tmin = 0.710, Tmax = 0.899

20174 measured reflections 4333 independent reflections 3003 reflections with I > 2σ(I) Rint = 0.064

θmax = 27.0°, θmin = 2.3°

h = −10→10 k = −13→13 l = −15→15

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.056

wR(F2) = 0.164

S = 1.05 4333 reflections 319 parameters 17 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.1027P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.017

Δρmax = 1.12 e Å−3

(6)

supporting information

sup-2

Acta Cryst. (2005). E61, m1320–m1323 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Co1 0.5000 0.5000 0.5000 0.02440 (19)

Co2 0.0000 0.5000 0.0000 0.02526 (19)

C1 0.7041 (5) 0.2259 (4) 0.4716 (4) 0.0459 (10)

H1 0.7484 0.2781 0.4131 0.055*

C2 0.7604 (6) 0.0896 (4) 0.4909 (4) 0.0504 (11)

H2 0.8409 0.0517 0.4456 0.060*

C3 0.6978 (5) 0.0093 (4) 0.5771 (3) 0.0396 (9)

C4 0.5784 (6) 0.0713 (4) 0.6417 (4) 0.0485 (10)

H4 0.5325 0.0210 0.7007 0.058*

C5 0.5280 (6) 0.2085 (4) 0.6176 (4) 0.0474 (10)

H5 0.4481 0.2487 0.6620 0.057*

C6 0.7645 (6) −0.1387 (5) 0.5972 (4) 0.0503 (10)

C7 0.8808 (4) 0.5051 (4) 0.4691 (3) 0.0306 (7)

C8 0.9578 (4) 0.4929 (4) 0.5799 (3) 0.0307 (7)

C9 0.2130 (5) 0.2242 (4) −0.0206 (4) 0.0481 (10)

H9 0.2678 0.2758 −0.0724 0.058*

C10 0.2665 (6) 0.0875 (5) −0.0025 (4) 0.0520 (11)

H10 0.3552 0.0487 −0.0422 0.062*

C11 0.1879 (5) 0.0079 (4) 0.0748 (3) 0.0392 (9)

C12 0.0584 (5) 0.0715 (4) 0.1318 (4) 0.0467 (10)

H12 0.0042 0.0223 0.1861 0.056*

C13 0.0100 (5) 0.2074 (4) 0.1077 (4) 0.0459 (10)

H13 −0.0805 0.2482 0.1450 0.055*

C14 0.2468 (6) −0.1394 (4) 0.0919 (4) 0.0476 (10)

C15 0.3817 (4) 0.4992 (4) 0.0308 (3) 0.0321 (8)

C16 0.4442 (4) 0.5358 (4) −0.0811 (3) 0.0327 (8)

N1 0.5883 (4) 0.2862 (3) 0.5338 (3) 0.0343 (7)

N2 0.7076 (6) −0.2149 (4) 0.6823 (4) 0.0619 (11)

H2A 0.627 (6) −0.191 (6) 0.729 (5) 0.093*

H2B 0.744 (7) −0.305 (3) 0.696 (5) 0.093*

N3 0.0852 (4) 0.2850 (3) 0.0337 (3) 0.0357 (7)

N4 0.1635 (6) −0.2128 (4) 0.1617 (4) 0.0591 (10)

H4A 0.100 (7) −0.188 (5) 0.215 (4) 0.089*

H4B 0.225 (7) −0.295 (3) 0.189 (5) 0.089*

(7)

sup-3

Acta Cryst. (2005). E61, m1320–m1323

H1A 0.680 (4) 0.493 (5) 0.677 (4) 0.063*

H1B 0.512 (5) 0.512 (5) 0.713 (4) 0.063*

O2 0.7364 (3) 0.5100 (3) 0.4288 (2) 0.0364 (6)

O3 0.9030 (3) 0.4853 (3) 0.6776 (2) 0.0462 (8)

O4 0.8722 (6) −0.1858 (4) 0.5367 (4) 0.0806 (12)

O5 0.2410 (3) 0.4965 (3) 0.0716 (2) 0.0408 (7)

O6 0.3778 (3) 0.5832 (3) −0.1820 (2) 0.0460 (7)

O7 0.0849 (3) 0.5145 (3) −0.1597 (2) 0.0443 (7)

H7A 0.168 (5) 0.538 (5) −0.193 (4) 0.066*

H7B 0.014 (5) 0.500 (5) −0.206 (4) 0.066*

O8 0.3681 (5) −0.1891 (4) 0.0405 (4) 0.0663 (10)

O9 0.6108 (6) 0.1406 (5) 0.1938 (4) 0.0769 (11)

H9A 0.600 (10) 0.143 (8) 0.125 (4) 0.115*

H9B 0.611 (10) 0.216 (5) 0.200 (7) 0.115*

O10 0.1339 (8) 0.1341 (6) 0.7033 (5) 0.1021 (16)

H10A 0.066 (11) 0.150 (10) 0.643 (6) 0.153*

H10B 0.207 (10) 0.058 (6) 0.722 (8) 0.153*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

supporting information

sup-4

Acta Cryst. (2005). E61, m1320–m1323

O6 0.0283 (13) 0.083 (2) 0.0294 (13) −0.0206 (13) 0.0020 (10) −0.0135 (14) O7 0.0331 (14) 0.082 (2) 0.0307 (14) −0.0298 (14) 0.0070 (11) −0.0227 (14) O8 0.059 (2) 0.049 (2) 0.083 (3) −0.0040 (16) 0.0272 (18) −0.0146 (18) O9 0.089 (3) 0.069 (3) 0.077 (3) −0.032 (2) 0.034 (2) −0.015 (2) O10 0.108 (4) 0.102 (4) 0.096 (4) −0.032 (3) 0.050 (3) −0.023 (3)

Geometric parameters (Å, º)

Co1—O1 2.058 (2) C10—C11 1.388 (6)

Co1—O2 2.128 (2) C10—H10 0.9300

Co1—N1 2.158 (3) C11—C12 1.379 (6)

Co2—O7 2.042 (3) C11—C14 1.495 (6)

Co2—O5 2.141 (2) C12—C13 1.368 (6)

Co2—N3 2.169 (3) C12—H12 0.9300

C1—N1 1.339 (5) C13—N3 1.337 (5)

C1—C2 1.378 (6) C13—H13 0.9300

C1—H1 0.9300 C14—O8 1.237 (5)

C2—C3 1.377 (6) C14—N4 1.328 (6)

C2—H2 0.9300 C15—O5 1.253 (4)

C3—C4 1.383 (6) C15—C16 1.450 (5)

C3—C6 1.500 (6) C16—O6 1.266 (4)

C4—C5 1.382 (6) N2—H2A 0.89 (3)

C4—H4 0.9300 N2—H2B 0.91 (3)

C5—N1 1.333 (5) N4—H4A 0.88 (3)

C5—H5 0.9300 N4—H4B 0.88 (3)

C6—O4 1.229 (6) O1—H1A 0.86 (3)

C6—N2 1.321 (6) O1—H1B 0.87 (3)

C7—O2 1.261 (4) O7—H7A 0.86 (3)

C7—C8 1.451 (4) O7—H7B 0.88 (3)

C8—O3 1.258 (4) O9—H9A 0.83 (4)

C9—N3 1.339 (5) O9—H9B 0.84 (4)

C9—C10 1.383 (6) O10—H10A 0.87 (4)

C9—H9 0.9300 O10—H10B 0.85 (4)

O1—Co1—O2 95.67 (10) C10—C11—C14 119.0 (4)

O1—Co1—N1 88.96 (12) C13—C12—C11 119.6 (4)

O2—Co1—N1 88.80 (11) C13—C12—H12 120.2

O7—Co2—O5 92.92 (10) C11—C12—H12 120.2

O7—Co2—N3 89.31 (13) N3—C13—C12 123.9 (4)

O5—Co2—N3 89.46 (11) N3—C13—H13 118.1

N1—C1—C2 122.7 (4) C12—C13—H13 118.1

N1—C1—H1 118.7 O8—C14—N4 122.2 (4)

C2—C1—H1 118.7 O8—C14—C11 119.9 (4)

C3—C2—C1 120.2 (4) N4—C14—C11 117.9 (4)

C3—C2—H2 119.9 O5—C15—C16 137.2 (3)

C1—C2—H2 119.9 O6—C16—C15 135.7 (3)

C2—C3—C4 117.3 (4) C5—N1—C1 117.2 (3)

(9)

sup-5

Acta Cryst. (2005). E61, m1320–m1323

C4—C3—C6 124.0 (4) C1—N1—Co1 121.8 (3)

C5—C4—C3 119.4 (4) C6—N2—H2A 129 (4)

C5—C4—H4 120.3 C6—N2—H2B 121 (4)

C3—C4—H4 120.3 H2A—N2—H2B 111 (4)

N1—C5—C4 123.2 (4) C13—N3—C9 117.0 (4)

N1—C5—H5 118.4 C13—N3—Co2 121.6 (3)

C4—C5—H5 118.4 C9—N3—Co2 121.4 (3)

O4—C6—N2 121.8 (4) C14—N4—H4A 125 (4)

O4—C6—C3 119.9 (4) C14—N4—H4B 113 (4)

N2—C6—C3 118.3 (4) H4A—N4—H4B 108 (4)

O2—C7—C8 136.8 (3) Co1—O1—H1A 119 (3)

O3—C8—C7 134.0 (3) Co1—O1—H1B 123 (3)

N3—C9—C10 122.3 (4) H1A—O1—H1B 109 (4)

N3—C9—H9 118.8 C7—O2—Co1 134.2 (2)

C10—C9—H9 118.8 C15—O5—Co2 133.2 (2)

C9—C10—C11 120.1 (4) Co2—O7—H7A 135 (3)

C9—C10—H10 119.9 Co2—O7—H7B 112 (3)

C11—C10—H10 119.9 H7A—O7—H7B 113 (4)

C12—C11—C10 117.1 (4) H9A—O9—H9B 109 (8)

C12—C11—C14 123.9 (4) H10A—O10—H10B 116 (9)

N1—C1—C2—C3 −0.1 (7) C4—C5—N1—C1 −0.5 (6)

C1—C2—C3—C4 0.0 (7) C4—C5—N1—Co1 179.0 (3)

C1—C2—C3—C6 −178.8 (4) C2—C1—N1—C5 0.4 (6)

C2—C3—C4—C5 −0.1 (6) C2—C1—N1—Co1 −179.1 (3)

C6—C3—C4—C5 178.6 (4) O1—Co1—N1—C5 58.4 (3)

C3—C4—C5—N1 0.3 (7) O2—Co1—N1—C5 154.1 (3)

C2—C3—C6—O4 −0.4 (7) O1—Co1—N1—C1 −122.1 (3)

C4—C3—C6—O4 −179.1 (5) O2—Co1—N1—C1 −26.4 (3)

C2—C3—C6—N2 177.9 (5) C12—C13—N3—C9 1.3 (6)

C4—C3—C6—N2 −0.8 (7) C12—C13—N3—Co2 179.8 (3)

O2—C7—C8—O3 −1.7 (8) C10—C9—N3—C13 0.2 (6)

N3—C9—C10—C11 −0.4 (7) C10—C9—N3—Co2 −178.3 (3)

C9—C10—C11—C12 −0.7 (7) O7—Co2—N3—C13 −151.9 (3)

C9—C10—C11—C14 179.3 (4) O5—Co2—N3—C13 115.1 (3)

C10—C11—C12—C13 2.0 (6) O7—Co2—N3—C9 26.5 (3)

C14—C11—C12—C13 −178.0 (4) O5—Co2—N3—C9 −66.4 (3)

C11—C12—C13—N3 −2.4 (7) C8—C7—O2—Co1 −1.3 (7)

C12—C11—C14—O8 −177.4 (4) O1—Co1—O2—C7 1.4 (4)

C10—C11—C14—O8 2.7 (6) N1—Co1—O2—C7 −87.4 (4)

C12—C11—C14—N4 3.5 (6) C16—C15—O5—Co2 18.1 (7)

C10—C11—C14—N4 −176.4 (4) O7—Co2—O5—C15 −1.5 (4)

O5—C15—C16—O6 2.2 (8) N3—Co2—O5—C15 87.8 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

(10)

supporting information

sup-6

Acta Cryst. (2005). E61, m1320–m1323

O1—H1B···O6i 0.87 (3) 1.85 (3) 2.723 (4) 174 (5)

N2—H2A···O9ii 0.89 (3) 2.15 (3) 3.015 (6) 164 (6)

N2—H2B···O3iii 0.91 (3) 2.35 (3) 3.214 (5) 158 (5)

N4—H4A···O10iv 0.88 (3) 2.15 (4) 2.973 (7) 155 (6)

N4—H4B···O1ii 0.88 (3) 2.50 (4) 3.316 (5) 155 (5)

O7—H7A···O6 0.86 (3) 1.91 (3) 2.684 (4) 149 (5)

O7—H7B···O3v 0.88 (3) 1.75 (3) 2.613 (3) 166 (5)

O9—H9A···O8vi 0.83 (4) 1.98 (5) 2.779 (6) 159 (8)

O9—H9B···O6vii 0.84 (4) 2.16 (4) 2.984 (6) 170 (8)

O10—H10A···O4ii 0.87 (4) 2.21 (9) 2.829 (7) 128 (9)

O10—H10B···O9ii 0.85 (4) 2.24 (4) 3.083 (8) 169 (10)

Figure

Figure 1Part of the polymeric structure of (I), showing the atom-numberingscheme. Displacement ellipsoids are drawn at the 30% probability level.H atoms are shown as small spheres of arbitrary radii
Table 2. In both polymeric chains, the shortest intrachain

References

Related documents

During the thesis work, I measured six different parameters: the number of emergency processes, hash table entry number, caching replacement policy, cache entry

ter mean to the prototypes computed from the true labels of all the samples. Similar to the semi-supervised scenario, we use a PN trained in the episodic mode as the feature

$1000 and a complimentary letter to Mary Patten for her heroic work in bringing the fast sailing clipper ship safely around the dangerous Cape Horn?. When Mary and Captain

The Master Fund is authorised in Luxembourg as a specialised investment fund and is managed by a management company, Ress Capital Fund Management SA, who acts

In the previous sections, we dis- cuss the expectation that a neural network exploiting the fractional convolution should perform slightly worse than a pure binary (1-bit weights

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

Political Parties approved by CNE to stand in at least some constituencies PLD – Partido de Liberdade e Desenvolvimento – Party of Freedom and Development ECOLOGISTA – MT –

We also deal with the question whether the inferiority of the polluter pays principle in comparison to the cheapest cost avoider principle can be compensated