• No results found

Bis(tri­ethyl­aminium) hexa­aqua­zinc(II) bis­­(naphthalene 1,6 di­sulfonate)

N/A
N/A
Protected

Academic year: 2020

Share "Bis(tri­ethyl­aminium) hexa­aqua­zinc(II) bis­­(naphthalene 1,6 di­sulfonate)"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1363–m1365 doi:10.1107/S160053680501888X Sanet al. (C

6H16N)2[Zn(H2O)6](C10H6O6S2)2

m1363

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(triethylaminium) hexaaquazinc(II)

bis(naphthalene-1,6-disulfonate)

Wei-Guang Shan,aHai Feng,a Li Li,aZhi-Min Jina* and Mao-Lin Hub

aCollege of Pharmaceutical Sciences, Zhejiang

University of Technology, Hangzhou 310014, People’s Republic of China, andbDepartment of

Chemistry, Wenzhou Normal College, Wenzhou, Zhejiang 325003, People’s Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study T= 289 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.037 wRfactor = 0.106

Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title complex, (C6H16N)2[Zn(H2O)6](C10H6O6S2)2, is

formed by aggregation of one hexahydrated zinc(II) cation, two triethylaminium cations and two naphthalene-1,6-disulfo-nate dianions. The ZnIIcation is six-coordinate and located at an inversion center. The coordination around the metal ion is octahedral, with tetragonal elongation.

Comment

Organic sulfoacids and their derivatives are widely used in the synthesis of surface active agents, dyes, medicines and so on. So far, a few crystallographic studies on naphthalenesulfonate complexes have been reported (Gunderman et al., 1997; Alvarez et al., 1998; Cai, Chen, Fenget al., 2001; Cai, Chen, Liaoet al., 2001; Chenet al., 2002; Chandrasekharet al., 2003; Chen et al., 2004; Sharma et al., 2005). Recently, the title complex, (I), was synthesized in our laboratory and its crystal structure is discussed here.

Owing to the weak coordination strength of sulfonate toward transition metal ions, most of the reported transition metal sulfonates prepared in aqueous solution were formed by aggregation of aquametal complex cations and sulfonate anions (Kosnicet al., 1992; Shubnellet al., 1994; Gundermanet al., 1997). The same situation appears in (I), with the triclinic unit cell containing one hexahydrated zinc(II) cation, two triethylaminium cations and two naphthalene-1,6-disulfonate (1,6-nds) dianions (Fig. 1). The ZnII ion is located at an inversion center and the coordination around the metal ion is

[image:1.610.207.459.599.700.2]

Received 3 June 2005 Accepted 14 June 2005 Online 24 June 2005

Figure 1

(2)

octahedral, with tetragonal elongation. The Zn—O distances range from 2.049 (2) to 2.130 (2) A˚ .

Two intramolecular C—H O hydrogen bonds (Steiner & Desiraju, 1998) are observed in the 1,6-nds dianions. In the crystal structure, the 1,6-nds dianions are linked to the hexhydrated ZnIIcations through O—H O hydrogen bonds

and connected to the triethylaminium cations by N—H O and C—H O hydrogen bonds (Table 2 and Fig. 2).

Experimental

Triethylamine, ZnCl2 and naphthalene-1,6-disulfonate in a molar

ratio of 2:1:2 were mixed and dissolved in sufficient water by heating to a temperature at which a clear solution resulted. Crystals of (I) were formed by slow evaporation of water over a period of three weeks at 293 K.

Crystal data

(C6H16N)2[Zn(H2O)6](C10H6O6S2)2 Mr= 950.46

Triclinic,P1

a= 7.078 (1) A˚

b= 11.597 (2) A˚

c= 13.924 (2) A˚

= 77.89 (1)

= 75.41 (1)

= 79.35 (1)

V= 1070.9 (3) A˚3

Z= 1

Dx= 1.474 Mg m

3

MoKradiation Cell parameters from 31

reflections

= 3.9–15.2

= 0.84 mm1 T= 289 (2) K Block, colorless 0.460.340.34 mm

Data collection

Siemens P4 diffractometer

!scans

Absorption correction: scan (XSCANS; Siemens, 1994)

Tmin= 0.716,Tmax= 0.751

4420 measured reflections 4067 independent reflections 3227 reflections withI> 2(I)

Rint= 0.011 max= 25.8

h= 0!8

k=13!14

l=16!17 3 standard reflections

every 97 reflections intensity decay: 3.1%

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.037

wR(F2) = 0.106 S= 1.10 4067 reflections 291 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0591P)2

+ 0.1823P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.53 e A˚

3 min=0.42 e A˚

3

Extinction correction:SHELXL97

[image:2.610.44.296.75.212.2]

Extinction coefficient: 0.0132 (18)

Table 1

Selected geometric parameters (A˚ ,).

Zn—O8 2.049 (2) Zn—O9 2.078 (2)

Zn—O7 2.130 (2)

O8—Zn—O8i

180.00 (12) O8—Zn—O9i

93.85 (8) O8—Zn—O9 86.15 (8) O9i—Zn—O9 180.00 (14) O8—Zn—O7 93.45 (9)

O9—Zn—O7 87.79 (9) O8—Zn—O7i

86.55 (9) O9—Zn—O7i

92.21 (9) O7—Zn—O7i 180.00 (13)

[image:2.610.315.564.244.352.2]

Symmetry code: (i)x;y;z.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N—H0N O1 0.94 (4) 1.97 (4) 2.842 (4) 154 (3) O7—H7A O6 0.84 (1) 2.03 (1) 2.832 (4) 159 (3) O7—H7B O5ii

0.84 (1) 2.00 (1) 2.827 (3) 169 (2) O8—H8A O1iii

0.83 (1) 1.90 (1) 2.716 (3) 168 (2) O8—H8B O4ii

0.84 (1) 1.91 (1) 2.727 (3) 166 (2) O9—H9A O2iv

0.85 (1) 1.92 (1) 2.761 (4) 173 (2) O9—H9B O4i

0.84 (1) 1.88 (1) 2.719 (4) 172 (3) C2—H2 O1 0.93 2.41 2.827 (3) 107 C8—H8 O6 0.93 2.54 2.913 (4) 105 C12—H12C O3v 0.96 2.49 3.445 (4) 179

Symmetry codes: (i)x;y;z; (ii)x1;y;z; (iii)x;y;zþ1; (iv)x;y;z1; (v)

xþ1;yþ1;zþ1.

H atoms attached to the N atom and the H atoms of water mol-ecules were located in a difference Fourier map and refined isotro-pically, with the O—H and H H distances restrained to 0.84 (1) and 1.37 (2) A˚ , respectively. The other H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93 (aromatic), 0.96 (methyl) and 0.97 A˚ (methylene), and with Uiso(H) = 1.2Ueq(C). The C—C bond lengths in the

triethylaminium cation were restrained to be equal within 0.03 A˚ . Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL(Siemens, 1998); program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:SHELXTL; software used to prepare material for publi-cation:SHELXL97.

References

Alvarez, J., Wang, Y. & Marielle, G. K. (1998).Chem. Commun.pp. 1455–1456. Cai, J. W., Chen, C. H., Feng, X. L., Liao, C. Z. & Chen, X. M. (2001).J. Chem.

Soc. Dalton Trans.pp. 2370–2375.

Cai, J. W., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001).J. Chem. Soc. Dalton Trans.pp. 1137–1142.

Chandrasekhar, V., Boomishankar, R., Steiner, A. & Bickley, J. F. (2003).

Organometallics,22, 3342–3344.

Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2002).Chin. J. Inorg. Chem. 18, 659–664.

Chen, P. G., Gu, C. S., Gao, S., Zhu, Z. B. & Zhao, J. G. (2004).J. Harbin Univ. Sci. Technol.9, 67–69.

Gunderman, B. J., Kabell, I. D., Squattrito, P. J. & Dubey, S. N. (1997).Inorg. Chim. Acta,258, 237–246.

Kosnic, E. K., Mcclymont, E. L., Hodder, R. A. & Squattrito, P. J. (1992).

Inorg. Chim. Acta,201, 143–151.

Sharma, R. P., Sharma, R., Bala, R., Rychlewska, U. & Warzajtis, B. (2005).J. Mol. Struct.738, 291–298.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

metal-organic papers

m1364

Sanet al. (C

6H16N)2[Zn(H2O)6](C10H6O6S2)2 Acta Cryst.(2005). E61, m1363–m1365 Figure 2

(3)

Shubnell, A. J., Kosnic, E. J. & Squattrito, P. J. (1994).Inorg. Chim. Acta,216, 101–112.

Siemens (1994).XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1998). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Steiner, T. & Desiraju, G. R. (1998).Chem. Commun.pp. 891–892.

metal-organic papers

Acta Cryst.(2005). E61, m1363–m1365 Sanet al. (C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, m1363–m1365

supporting information

Acta Cryst. (2005). E61, m1363–m1365 [https://doi.org/10.1107/S160053680501888X]

Bis(triethylaminium) hexaaquazinc(II) bis(naphthalene-1,6-disulfonate)

Wei-Guang Shan, Hai Feng, Li Li, Zhi-Min Jin and Mao-Lin Hu

Bis(trimethylaminium) hexaaquazinc(II) bis(naphthalene-1,6-disulfonate)

Crystal data

(C6H16N)2[Zn(H2O)6](C10H6O6S2)2 Mr = 950.46

Triclinic, P1 Hall symbol: -P 1

a = 7.078 (1) Å

b = 11.597 (2) Å

c = 13.924 (2) Å

α = 77.89 (1)°

β = 75.41 (1)°

γ = 79.35 (1)°

V = 1070.9 (3) Å3

Z = 1

F(000) = 500

Dx = 1.474 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 31 reflections

θ = 3.9–15.2°

µ = 0.84 mm−1 T = 289 K Block, colourless 0.46 × 0.34 × 0.34 mm

Data collection

Siemens P4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: ψ scan (XSCANS; Siemens, 1994)

Tmin = 0.716, Tmax = 0.751

4420 measured reflections

4067 independent reflections 3227 reflections with I > 2σ(I)

Rint = 0.011

θmax = 25.8°, θmin = 1.5°

h = 0→8

k = −13→14

l = −16→17

3 standard reflections every 97 reflections intensity decay: 3.1%

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.037 wR(F2) = 0.106 S = 1.10 4067 reflections 291 parameters 13 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0591P)2 + 0.1823P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.53 e Å−3

Δρmin = −0.42 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, m1363–m1365

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Zn 0.0000 0.0000 0.0000 0.03699 (16)

S1 0.21066 (11) 0.24509 (6) 0.67216 (5) 0.04188 (19)

S2 0.34714 (10) 0.19251 (6) 0.15664 (5) 0.04041 (19)

O1 0.2910 (3) 0.23406 (18) 0.76113 (14) 0.0518 (5)

O2 0.0536 (3) 0.1739 (2) 0.69044 (14) 0.0568 (6)

O3 0.1602 (3) 0.36851 (18) 0.63079 (15) 0.0575 (6)

O4 0.3868 (3) 0.06688 (18) 0.14612 (16) 0.0512 (5)

O5 0.5017 (3) 0.25793 (19) 0.09318 (15) 0.0531 (5)

O6 0.1503 (3) 0.2464 (2) 0.14723 (16) 0.0572 (6)

O9 −0.1326 (3) 0.0682 (2) −0.12122 (14) 0.0493 (5)

O8 −0.2616 (3) −0.0613 (2) 0.07274 (15) 0.0482 (5)

O7 −0.0922 (3) 0.1691 (2) 0.04654 (19) 0.0597 (6)

N 0.4711 (5) 0.4336 (3) 0.7616 (2) 0.0671 (8)

C1 0.4070 (4) 0.1857 (2) 0.58099 (19) 0.0371 (6)

C2 0.5831 (4) 0.1385 (2) 0.6076 (2) 0.0442 (7)

H2 0.5947 0.1343 0.6733 0.053*

C3 0.7465 (4) 0.0963 (3) 0.5356 (2) 0.0505 (7)

H3 0.8660 0.0660 0.5540 0.061*

C4 0.7306 (4) 0.0997 (3) 0.4401 (2) 0.0451 (7)

H4 0.8393 0.0713 0.3936 0.054*

C5 0.5514 (4) 0.1457 (2) 0.4105 (2) 0.0363 (6)

C6 0.5345 (4) 0.1481 (2) 0.3109 (2) 0.0384 (6)

H6 0.6428 0.1191 0.2645 0.046*

C7 0.3597 (4) 0.1928 (2) 0.28230 (19) 0.0361 (6)

C8 0.1941 (4) 0.2353 (2) 0.3516 (2) 0.0396 (6)

H8 0.0756 0.2641 0.3318 0.047*

C9 0.2065 (4) 0.2343 (2) 0.44848 (19) 0.0389 (6)

H9 0.0960 0.2634 0.4937 0.047*

C10 0.3848 (4) 0.1899 (2) 0.48103 (18) 0.0343 (6)

C11 0.5507 (8) 0.5091 (4) 0.6639 (3) 0.0992 (15)

H11A 0.4411 0.5544 0.6362 0.119*

H11B 0.6235 0.5654 0.6766 0.119*

C12 0.6806 (7) 0.4406 (4) 0.5889 (3) 0.0900 (13)

H12A 0.6100 0.3844 0.5760 0.108*

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, m1363–m1365

H12C 0.7235 0.4939 0.5275 0.108*

C13 0.6137 (6) 0.3581 (4) 0.8172 (3) 0.0807 (11)

H13A 0.6967 0.3027 0.7754 0.097*

H13B 0.5420 0.3118 0.8771 0.097*

C14 0.7415 (8) 0.4255 (5) 0.8478 (4) 0.124 (2)

H14A 0.6641 0.4685 0.8997 0.149*

H14B 0.7980 0.4806 0.7907 0.149*

H14C 0.8450 0.3710 0.8728 0.149*

C15 0.3094 (10) 0.5221 (5) 0.8199 (5) 0.131 (2)

H15A 0.3724 0.5826 0.8336 0.158*

H15B 0.2188 0.5618 0.7774 0.158*

C16 0.2025 (12) 0.4653 (8) 0.9109 (6) 0.187 (4)

H16A 0.2881 0.4352 0.9569 0.225*

H16B 0.1498 0.4006 0.8987 0.225*

H16C 0.0964 0.5213 0.9396 0.225*

H7A −0.032 (4) 0.179 (4) 0.089 (2) 0.091 (14)*

H7B −0.2118 (19) 0.193 (3) 0.068 (3) 0.079 (13)*

H8A −0.253 (4) −0.1167 (19) 0.1211 (16) 0.052 (9)*

H8B −0.372 (3) −0.019 (2) 0.085 (2) 0.068 (12)*

H9A −0.067 (4) 0.096 (3) −0.1784 (13) 0.067 (11)*

H9B −0.202 (4) 0.024 (3) −0.133 (2) 0.074 (12)*

H0N 0.399 (5) 0.384 (3) 0.745 (3) 0.070 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Zn 0.0389 (3) 0.0457 (3) 0.0281 (2) −0.01470 (19) −0.00423 (17) −0.00631 (18)

S1 0.0513 (4) 0.0456 (4) 0.0290 (3) −0.0201 (3) −0.0036 (3) −0.0016 (3)

S2 0.0397 (4) 0.0509 (4) 0.0365 (4) −0.0112 (3) −0.0117 (3) −0.0121 (3)

O1 0.0696 (14) 0.0593 (12) 0.0318 (10) −0.0264 (11) −0.0109 (9) −0.0049 (9)

O2 0.0591 (13) 0.0800 (15) 0.0359 (11) −0.0394 (12) 0.0006 (9) −0.0071 (10)

O3 0.0679 (14) 0.0494 (12) 0.0440 (12) −0.0029 (10) 0.0006 (10) −0.0037 (9)

O4 0.0500 (12) 0.0556 (12) 0.0572 (13) −0.0125 (10) −0.0134 (10) −0.0236 (10)

O5 0.0550 (13) 0.0645 (13) 0.0417 (11) −0.0217 (10) −0.0084 (9) −0.0046 (10)

O6 0.0482 (12) 0.0779 (15) 0.0545 (13) −0.0015 (11) −0.0233 (10) −0.0234 (11)

O9 0.0584 (13) 0.0617 (13) 0.0338 (11) −0.0306 (11) −0.0135 (10) 0.0024 (9)

O8 0.0410 (12) 0.0570 (13) 0.0404 (11) −0.0141 (10) −0.0027 (9) 0.0041 (10)

O7 0.0477 (14) 0.0686 (15) 0.0762 (16) −0.0047 (11) −0.0186 (12) −0.0392 (13)

N 0.088 (2) 0.0558 (17) 0.0689 (19) −0.0336 (16) −0.0173 (17) −0.0140 (15)

C1 0.0441 (15) 0.0325 (13) 0.0364 (14) −0.0141 (11) −0.0097 (11) −0.0008 (10)

C2 0.0555 (18) 0.0425 (15) 0.0385 (15) −0.0123 (13) −0.0181 (13) −0.0015 (12)

C3 0.0447 (17) 0.0518 (17) 0.0597 (19) −0.0029 (14) −0.0245 (15) −0.0075 (14)

C4 0.0386 (15) 0.0483 (16) 0.0499 (17) −0.0022 (12) −0.0121 (13) −0.0122 (13)

C5 0.0377 (14) 0.0339 (13) 0.0393 (14) −0.0112 (11) −0.0089 (11) −0.0045 (11)

C6 0.0343 (14) 0.0426 (15) 0.0393 (14) −0.0082 (11) −0.0059 (11) −0.0099 (11)

C7 0.0385 (14) 0.0392 (14) 0.0345 (13) −0.0135 (11) −0.0086 (11) −0.0068 (11)

C8 0.0322 (13) 0.0489 (15) 0.0403 (15) −0.0102 (12) −0.0101 (11) −0.0072 (12)

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, m1363–m1365

C10 0.0375 (14) 0.0327 (13) 0.0351 (13) −0.0154 (11) −0.0076 (11) −0.0023 (10)

C11 0.136 (4) 0.068 (3) 0.101 (4) −0.047 (3) −0.033 (3) 0.005 (2)

C12 0.089 (3) 0.086 (3) 0.087 (3) −0.035 (2) −0.008 (2) 0.012 (2)

C13 0.088 (3) 0.082 (3) 0.080 (3) −0.029 (2) −0.022 (2) −0.012 (2)

C14 0.115 (4) 0.165 (6) 0.126 (5) −0.053 (4) −0.046 (4) −0.045 (4)

C15 0.169 (6) 0.102 (4) 0.143 (5) −0.052 (4) −0.008 (4) −0.068 (4)

C16 0.162 (7) 0.232 (10) 0.194 (8) −0.044 (6) −0.005 (6) −0.123 (7)

Geometric parameters (Å, º)

Zn—O8 2.049 (2) C4—C5 1.409 (4)

Zn—O8i 2.049 (2) C4—H4 0.93

Zn—O9i 2.078 (2) C5—C6 1.416 (4)

Zn—O9 2.078 (2) C5—C10 1.421 (4)

Zn—O7 2.130 (2) C6—C7 1.372 (4)

Zn—O7i 2.130 (2) C6—H6 0.93

S1—O3 1.441 (2) C7—C8 1.401 (4)

S1—O2 1.446 (2) C8—C9 1.372 (4)

S1—O1 1.462 (2) C8—H8 0.93

S1—C1 1.772 (3) C9—C10 1.419 (4)

S2—O6 1.444 (2) C9—H9 0.93

S2—O5 1.446 (2) C11—C12 1.470 (6)

S2—O4 1.463 (2) C11—H11A 0.97

S2—C7 1.775 (3) C11—H11B 0.97

O9—H9A 0.85 (1) C12—H12A 0.96

O9—H9B 0.84 (1) C12—H12B 0.96

O8—H8A 0.83 (1) C12—H12C 0.96

O8—H8B 0.84 (1) C13—C14 1.485 (5)

O7—H7A 0.84 (1) C13—H13A 0.97

O7—H7B 0.84 (1) C13—H13B 0.97

N—C13 1.472 (5) C14—H14A 0.96

N—C11 1.494 (5) C14—H14B 0.96

N—C15 1.572 (7) C14—H14C 0.96

N—H0N 0.94 (4) C15—C16 1.401 (8)

C1—C2 1.373 (4) C15—H15A 0.97

C1—C10 1.429 (3) C15—H15B 0.97

C2—C3 1.412 (4) C16—H16A 0.96

C2—H2 0.93 C16—H16B 0.96

C3—C4 1.354 (4) C16—H16C 0.96

C3—H3 0.93

O8—Zn—O8i 180.00 (12) C3—C4—C5 120.7 (3)

O8—Zn—O9i 93.85 (8) C3—C4—H4 119.6

O8i—Zn—O9i 86.15 (8) C5—C4—H4 119.6

O8—Zn—O9 86.15 (8) C4—C5—C6 120.7 (2)

O8i—Zn—O9 93.85 (8) C4—C5—C10 120.0 (2)

O9i—Zn—O9 180.00 (14) C6—C5—C10 119.3 (2)

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, m1363–m1365

O8i—Zn—O7 86.55 (9) C7—C6—H6 119.7

O9i—Zn—O7 92.21 (9) C5—C6—H6 119.7

O9—Zn—O7 87.79 (9) C6—C7—C8 120.5 (2)

O8—Zn—O7i 86.55 (9) C6—C7—S2 118.5 (2)

O8i—Zn—O7i 93.45 (9) C8—C7—S2 120.9 (2)

O9i—Zn—O7i 87.79 (9) C9—C8—C7 120.1 (2)

O9—Zn—O7i 92.21 (9) C9—C8—H8 120.0

O7—Zn—O7i 180.00 (13) C7—C8—H8 120.0

O3—S1—O2 114.27 (14) C8—C9—C10 121.2 (2)

O3—S1—O1 110.79 (13) C8—C9—H9 119.4

O2—S1—O1 112.34 (12) C10—C9—H9 119.4

O3—S1—C1 106.45 (12) C9—C10—C5 118.3 (2)

O2—S1—C1 106.82 (12) C9—C10—C1 123.9 (2)

O1—S1—C1 105.51 (13) C5—C10—C1 117.8 (2)

O6—S2—O5 114.51 (14) C12—C11—N 113.6 (4)

O6—S2—O4 112.60 (12) C12—C11—H11A 108.8

O5—S2—O4 111.63 (13) N—C11—H11A 108.8

O6—S2—C7 106.54 (13) C12—C11—H11B 108.8

O5—S2—C7 105.66 (12) N—C11—H11B 108.8

O4—S2—C7 105.05 (12) H11A—C11—H11B 107.7

Zn—O9—H9A 122 (2) C11—C12—H12A 109.5

Zn—O9—H9B 116 (2) C11—C12—H12B 109.5

H9A—O9—H9B 105 (2) H12A—C12—H12B 109.5

Zn—O8—H8A 114 (2) C11—C12—H12C 109.5

Zn—O8—H8B 126 (2) H12A—C12—H12C 109.5

H8A—O8—H8B 110 (2) H12B—C12—H12C 109.5

Zn—O7—H7A 113 (3) N—C13—C14 114.1 (4)

Zn—O7—H7B 121 (3) N—C13—H13A 108.7

H7A—O7—H7B 106 (2) C14—C13—H13A 108.7

C13—N—C11 117.7 (4) N—C13—H13B 108.7

C13—N—C15 116.9 (4) C14—C13—H13B 108.7

C11—N—C15 103.9 (4) H13A—C13—H13B 107.6

C13—N—H0N 108 (2) C13—C14—H14A 109.5

C11—N—H0N 105 (2) C13—C14—H14B 109.5

C15—N—H0N 104 (2) H14A—C14—H14B 109.5

C2—C1—C10 120.6 (3) C13—C14—H14C 109.5

C2—C1—S1 118.5 (2) H14A—C14—H14C 109.5

C10—C1—S1 120.9 (2) H14B—C14—H14C 109.5

C1—C2—C3 120.3 (3) C16—C15—N 112.8 (5)

C1—C2—H2 119.8 C16—C15—H15A 109.0

C3—C2—H2 119.8 N—C15—H15A 109.0

C4—C3—C2 120.5 (3) C16—C15—H15B 109.0

C4—C3—H3 119.7 N—C15—H15B 109.0

C2—C3—H3 119.7 H15A—C15—H15B 107.8

O3—S1—C1—C2 120.5 (2) O4—S2—C7—C8 −117.0 (2)

O2—S1—C1—C2 −117.0 (2) C6—C7—C8—C9 1.1 (4)

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, m1363–m1365

O3—S1—C1—C10 −57.7 (2) C7—C8—C9—C10 −0.6 (4)

O2—S1—C1—C10 64.8 (2) C8—C9—C10—C5 −0.2 (4)

O1—S1—C1—C10 −175.49 (19) C8—C9—C10—C1 −179.5 (2)

C10—C1—C2—C3 1.7 (4) C4—C5—C10—C9 −179.3 (2)

S1—C1—C2—C3 −176.5 (2) C6—C5—C10—C9 0.3 (3)

C1—C2—C3—C4 −1.3 (4) C4—C5—C10—C1 0.1 (3)

C2—C3—C4—C5 0.3 (4) C6—C5—C10—C1 179.8 (2)

C3—C4—C5—C6 −179.4 (3) C2—C1—C10—C9 178.3 (2)

C3—C4—C5—C10 0.3 (4) S1—C1—C10—C9 −3.6 (3)

C4—C5—C6—C7 179.9 (2) C2—C1—C10—C5 −1.1 (4)

C10—C5—C6—C7 0.2 (4) S1—C1—C10—C5 177.05 (18)

C5—C6—C7—C8 −1.0 (4) C13—N—C11—C12 59.2 (5)

C5—C6—C7—S2 −179.61 (19) C15—N—C11—C12 −169.7 (4)

O6—S2—C7—C6 −178.7 (2) C11—N—C13—C14 61.0 (5)

O5—S2—C7—C6 −56.5 (2) C15—N—C13—C14 −63.9 (5)

O4—S2—C7—C6 61.6 (2) C13—N—C15—C16 −54.2 (7)

O6—S2—C7—C8 2.6 (3) C11—N—C15—C16 174.2 (6)

O5—S2—C7—C8 124.8 (2)

Symmetry code: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N—H0N···O1 0.94 (4) 1.97 (4) 2.842 (4) 154 (3)

O7—H7A···O6 0.84 (1) 2.03 (1) 2.832 (4) 159 (3)

O7—H7B···O5ii 0.84 (1) 2.00 (1) 2.827 (3) 169 (2)

O8—H8A···O1iii 0.83 (1) 1.90 (1) 2.716 (3) 168 (2)

O8—H8B···O4ii 0.84 (1) 1.91 (1) 2.727 (3) 166 (2)

O9—H9A···O2iv 0.85 (1) 1.92 (1) 2.761 (4) 173 (2)

O9—H9B···O4i 0.84 (1) 1.88 (1) 2.719 (4) 172 (3)

C2—H2···O1 0.93 2.41 2.827 (3) 107

C8—H8···O6 0.93 2.54 2.913 (4) 105

C12—H12C···O3v 0.96 2.49 3.445 (4) 179

Figure

Figure 1
Table 1

References

Related documents

In this work, we addressed the problem of generat- ing rationales for math problems, where the task is to not only obtain the correct answer of the prob- lem, but also generate

Our results show that when the number of la- tent states is optimized using our technique, the parsing models the spectral algorithms yield per- form significantly better than

and yield, exchange rate and savings effects of central bank asset purchases. The

In order to understand the complex relationships that can exist between explanatory variables and housing price, we consider not only the direct effects of air pollution

In the process of realizing the economic output, the economic man will inevitably lead to the result that the same resource inputs have the same economic output and economic value

To tackle these challenges, we first propose a set of novel sentence-level (local) features us- ing rich linguistic resources and then pro- pose a new hypothesis of “One tense

Most existing methods treat these problems as linear regression, learning to relate word frequencies and other simple features to a known response variable ( e.g. , voting

ىمع ةيمكلا و ةيعمسلا تارداصلا و تادراولا ةيجراخلا ةراجتلا ينوكم يف ومنلا رثأ يصقتست ةساردلا هذى نم لك.. يداصتقلاا ومنلا