• No results found

(2 Methyl­propane 1,2 di­amine κ2N,N′)[tris­­(2 amino­ethyl)amine κ4N,N′,N′′,N′′′]nickel(II) diperchlorate11

N/A
N/A
Protected

Academic year: 2020

Share "(2 Methyl­propane 1,2 di­amine κ2N,N′)[tris­­(2 amino­ethyl)amine κ4N,N′,N′′,N′′′]nickel(II) diperchlorate11"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1398

Linet al. [Ni(C

4H12N2)(C6H18N4)](ClO4)2 doi:10.1107/S160053680501932X Acta Cryst.(2005). E61, m1398–m1400 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(2-Methylpropane-1,2-diamine-

j

2

N

,

N

000

)-[tris(2-aminoethyl)amine-

j

4

N

,

N

000

,

N

000000

,

N

000000000

]-nickel(II) diperchlorate

Yung-Chan Lin,aTian-Huey Lu,b* Chang-Yao Li,cFen-Ling Liaoc and Chung-Sun Chungc

aUnion Chemical Laboratories, Industrial

Technology Research Institute, Hsinchu, Taiwan 300,bDepartment of Physics, National Tsing

Hua University, Hsinchu, Taiwan 300, and

cDepartment of Chemistry, National Tsing Hua

University, Hsinchu, Taiwan 300

Correspondence e-mail: thlu@phys.nthu.edu.tw

Key indicators

Single-crystal X-ray study T= 295 K

Mean(C–C) = 0.008 A˚ Disorder in main residue Rfactor = 0.039 wRfactor = 0.116

Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, [N(C4H12N2)(C6H18N4)](ClO4)2, the NiIIatom is coordinated in a distorted octahedron by four N atoms of the tris(2-aminoethyl)amine (tren) ligand and by two N atoms of the 2-methylpropane-1,2-diamine (2-Mepn) ligand. The primary amino group of 2-Mepn at the C-2 position occupies the position trans to the tertiary amino group of tren. The complex cations and perchlorate anions are linked via N—H O hydrogen bonds, forming one-dimen-sional zigzag chains along the [101] direction.

Comment

The effects of coordinated ligands on the thermodynamics and kinetics of ternary complex formation have received much attention because of their importance in studying catalytic reactions of enzymes, including a wide range of metal–enzyme reactions (Hague & White, 1993). In the present study, the synthesis and structure of the title nickel(II) complex, [Ni(tren)(2-Mepn)](ClO4)2, (I), is reported.

In (I), the NiIIatom is coordinated in a distorted octahedron by four N atoms of the tren ligand and by two N atoms of the 2-Mepn ligand (Fig. 1). The tetradentate tren ligand consists of three five-membered chelate rings in gauche conformations. Atom N6 of 2-Mepn occupies the positiontransto the tertiary amino group of tren. Although the Ni—N1 and Ni—N3 bond lengths are significantly longer than the other four Ni—N distances, the Ni—N(tren) bond lengths in (I) are almost equal to the reported values in [Ni(tren)(en)](ClO4)2 (en is ethyl-enediamine; Misra et al., 2002), [Ni(tren)(acetato)]-(ClO4)2(Funet al., 1996), [Ni(tren)2(C2O4)](ClO4)2(Castroet al., 1997) and [Ni(tren)(bpy)](ClO4)2(bpy is pipyridine; Linet al., 2003).

In the bidentate ligand, the bond distance Ni—N5 [2.145 (3) A˚ ] is longer than Ni—N6 [2.092 (3) A˚]. This is due

Received 16 May 2005 Accepted 17 June 2005 Online 24 June 2005

(2)

to the fact that atom N5 is oriented cis to the sterically hindered tertiary tren N atom. The chelate bite angle of the bidentate ligand is comparable with the reported bond angles of [Ni(en)3]2+, [82.1 (2); Mazhar-Ul-Haque et al., 1970] and [Ni(tren)(en)]2+[82.0 (2); Misraet al., 2002]. The molecular packing shows one-dimensional zigzag chains (Fig. 2) of hydrogen bonds (Table 2) between perchlorate ions and amino groups along the [101] direction.

Experimental

Ni(tren)(ClO4)2was prepared according to the literature method of

Lin et al. (2003). A solution of 2-Mepn (0.31 g, 3.0 mmol) in dry ethanol (50 ml) was added to a blue solution of Ni(tren)(ClO4)2

(0.80 g, 2.4 mmol) in dry ethanol (50 ml) at room temperature. The colour of the mixture changed to violet and the solution was continuously stirred for 3 h. The ethanol solution was then evapo-rated slowly and violet crystals (yield of 55%) precipitated out. Single crystals of (I) suitable for X-ray analysis were obtained on recrys-tallization from hot methanol.

Crystal data

[Ni(C4H12N2)(C6H18N4)](ClO4)2

Mr= 492.01

Monoclinic,Cc

a= 14.532 (2) A˚

b= 9.7074 (13) A˚

c= 14.823 (2) A˚

= 96.167 (2)

V= 2079.0 (5) A˚3

Z= 4

Dx= 1.572 Mg m3

MoKradiation

Cell parameters from 6541 reflections

= 2.5–28.3

= 1.24 mm1

T= 295 (2) K

Plate, light violet

0.250.200.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.780,Tmax= 0.906

6541 measured reflections

4172 independent reflections

3560 reflections withI> 2(I)

Rint= 0.021

max= 28.3

h=17!18 k=6!12 l=19!18

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.039

wR(F2) = 0.116

S= 0.91

4172 reflections 290 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0953P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.016

max= 0.34 e A˚

3

min=0.40 e A˚

3

Absolute structure: Flack (1983), 1588 Friedel pairs

[image:2.610.113.225.71.266.2]

Flack parameter: 0.02 (2)

Table 1

Selected geometric parameters (A˚ ,).

Ni—N6 2.092 (3)

Ni—N4 2.110 (4)

Ni—N2 2.118 (4)

Ni—N5 2.145 (3)

Ni—N3 2.166 (3)

Ni—N1 2.176 (3)

N6—Ni—N4 92.86 (15)

N6—Ni—N2 175.65 (15)

N4—Ni—N2 82.85 (16)

N6—Ni—N5 80.82 (13)

N4—Ni—N5 173.51 (17)

N2—Ni—N5 103.45 (14)

N6—Ni—N3 98.36 (14)

N4—Ni—N3 92.30 (17)

N2—Ni—N3 81.17 (15)

N5—Ni—N3 87.19 (15)

N6—Ni—N1 100.04 (15)

N4—Ni—N1 93.30 (18)

N2—Ni—N1 80.97 (15)

N5—Ni—N1 89.29 (14)

[image:2.610.335.545.73.259.2]

N3—Ni—N1 160.46 (14)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1A O7B 0.90 2.21 3.069 (10) 158

N1—H1A O7A 0.90 2.44 3.278 (10) 159

N1—H1B O2i

0.90 2.41 3.232 (8) 151

N3—H3A O6Aii

0.90 2.26 3.116 (10) 158

N3—H3B O4A 0.90 2.39 3.281 (10) 170

N4—H4A O3 0.90 2.38 3.030 (9) 129

N4—H4B O6B 0.91 2.26 3.156 (10) 170

N4—H4B O7A 0.91 2.40 3.160 (10) 139

N5—H5A O5ii

0.90 2.17 3.048 (9) 167

N5—H5B O2i

0.90 2.16 3.056 (6) 178

N6—H6B O1 0.90 2.25 3.138 (6) 167

Symmetry codes: (i)x;y1;z; (ii)x1 2;yþ

1 2;z

1 2.

metal-organic papers

Acta Cryst.(2005). E61, m1398–m1400 Linet al. [Ni(C

4H12N2)(C6H18N4)](ClO4)2

m1399

Figure 1

ORTEP3drawing (Farrugia, 1997) of the cation of (I), showing the atom-labelling scheme, with 50% probability displacement ellipsoids. H atoms have been omitted for clarity. Atom C6 is disordered over two sites (C6a

and C6b).

Figure 2

[image:2.610.313.566.452.564.2] [image:2.610.318.565.612.727.2]
(3)

There is a positional disorder of atom C6 in the tren ligand. The site-occupancy factors of C6aand C6bwere estimated as 75 and 25%, respectively. The H atoms bonded to C6a or C6b were positioned geometrically and restrained in both bond distances and angles (they

coordinate of atom H6BDbeing fixed to avoid oscillation). The other H atoms were placed in geometrically calculated positions (N—H = 0.90 A˚ and C—H = 0.96–0.97 A˚) and refined as riding, withUiso(H) =

1.2Ueq(parent atom) or 1.5Ueq(C) for methyl H atoms. Two

inde-pendent perchlorate ions show orientational disorder and two split states were assumed: Cl1/O1/O2/O3/(O4Aor O4B) and Cl2/O5/O8/ (O6A,O7Aor O6B,O7B). The site-occupancy factors of O4A, O4B, O6A, O7A, O6Band O7Bare each 0.5. The Cl—O distances of the two perchlorate ions were restrained to normal values. The abnormal O—Cl—O bond angles of the perchlorate ions [81 (1)–138 (1)]

suggest further complicated disorder.

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP3 (Farrugia, 1997); software used to prepare material for publication:SHELXL97.

The authors thank the National Science Council of Taiwan for support under grants NSC 92-2113-M-007-045 and NSC 93-2511-S-007-004.

References

Bruker (1998).SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin,

USA.

Bruker (2000).SADABS(Version 2.03) andSAINT(version 6.02a). Bruker

AXS Inc., Madison, Wisconsin, USA.

Castro, I., Calatayud, M. L., Sletten, J., Lloret, F. & Julve, M. (1997).J. Chem.

Soc. Dalton Trans.pp. 811–817.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Fun, H.-K., Yip, B.-C., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P. & You, X.-Z. (1996). Acta Cryst.C52, 509–512.

Hague, D. N. & White, A. R. (1993).J. Chem. Soc. Dalton Trans.pp. 1337–

1341.

Lin, Y.-C., Lu, T.-H., Liao, F.-L. & Chung, C.-S. (2003).Anal. Sci.19, 641–642.

Mazhar-Ul-Haque, Caughlan, C. N. & Emerson, K. (1970).Inorg. Chem.9,

2421–2424.

Misra, T. K., Chen, L.-H., Lin, Y.-J. & Chung, C.-S. (2002).Polyhedron,21,

2045–2053.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of

Go¨ttingen, Germany.

metal-organic papers

m1400

Linet al. [Ni(C
(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1398–m1400

supporting information

Acta Cryst. (2005). E61, m1398–m1400 [https://doi.org/10.1107/S160053680501932X]

(2-Methylpropane-1,2-diamine-

κ

2

N

,

N

)[tris(2-aminoethyl)amine-κ

4

N

,

N

,

N

′′

,

N

′′′

]nickel(II) diperchlorate

Yung-Chan Lin, Tian-Huey Lu, Chang-Yao Li, Fen-Ling Liao and Chung-Sun Chung

(2-Methylpropane-1,2-diamine-κ2N,N′)[tris(2-aminoehtttyl)amine- κ4N,N′,N′′,N′′′)nickel(II) diperchlorate

Crystal data

[Ni(C4H12N2)(C6H18N4)](ClO4)2 Mr = 492.01

Monoclinic, Cc a = 14.532 (2) Å

b = 9.7074 (13) Å

c = 14.823 (2) Å

β = 96.167 (2)°

V = 2079.0 (5) Å3 Z = 4

F(000) = 1032

Dx = 1.572 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 6541 reflections

θ = 2.5–28.3°

µ = 1.24 mm−1 T = 295 K Plate, light violet 0.25 × 0.20 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.780, Tmax = 0.906

6541 measured reflections 4172 independent reflections 3560 reflections with I > 2σ(I)

Rint = 0.021

θmax = 28.3°, θmin = 2.5°

h = −17→18

k = −6→12

l = −19→18

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.039 wR(F2) = 0.116 S = 0.91 4172 reflections 290 parameters 78 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0953P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.016

Δρmax = 0.34 e Å−3

Δρmin = −0.40 e Å−3

Absolute structure: Flack (1983), 1588 Friedel pairs

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1398–m1400 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Ni 0.16876 (6) 0.25478 (4) 0.23727 (6) 0.03168 (12)

Cl1 0.10912 (13) 0.71748 (13) 0.26867 (10) 0.0737 (4)

Cl2 0.35804 (9) 0.31378 (19) 0.51508 (10) 0.0737 (4)

O1 0.0420 (4) 0.6234 (5) 0.2882 (5) 0.1136 (19)

O2 0.1006 (6) 0.8427 (4) 0.3105 (5) 0.127 (2)

O3 0.1942 (5) 0.6593 (8) 0.3066 (8) 0.175 (4)

O4A 0.139 (2) 0.708 (2) 0.1798 (11) 0.169 (11) 0.50

O4B 0.0776 (19) 0.742 (3) 0.1766 (10) 0.174 (12) 0.50

O5 0.4312 (5) 0.3855 (14) 0.5512 (6) 0.206 (5)

O6A 0.3918 (11) 0.225 (2) 0.5771 (16) 0.193 (11) 0.50

O7A 0.3915 (15) 0.283 (4) 0.4304 (10) 0.223 (13) 0.50

O6B 0.3283 (12) 0.4259 (15) 0.4624 (8) 0.150 (6) 0.50

O7B 0.3506 (13) 0.1892 (11) 0.4775 (12) 0.150 (7) 0.50

O8 0.2781 (7) 0.3232 (19) 0.5483 (18) 0.343 (12)

N1 0.2514 (3) 0.0846 (4) 0.2973 (3) 0.0545 (9)

H1A 0.2935 0.1166 0.3413 0.065*

H1B 0.2146 0.0244 0.3225 0.065*

N2 0.2304 (3) 0.1898 (4) 0.1213 (2) 0.0448 (8)

N3 0.0910 (3) 0.3830 (4) 0.1366 (2) 0.0510 (8)

H3A 0.0304 0.3622 0.1341 0.061*

H3B 0.0981 0.4722 0.1524 0.061*

N4 0.2812 (3) 0.3933 (5) 0.2506 (3) 0.0596 (11)

H4A 0.2624 0.4769 0.2293 0.072*

H4B 0.3019 0.4036 0.3102 0.072*

N5 0.0476 (2) 0.1280 (3) 0.2347 (2) 0.0411 (7)

H5A 0.0211 0.1174 0.1774 0.049*

H5B 0.0625 0.0443 0.2580 0.049*

N6 0.1150 (2) 0.3315 (3) 0.3526 (2) 0.0387 (7)

H6A 0.1598 0.3300 0.3995 0.046*

H6B 0.0982 0.4199 0.3426 0.046*

C1 0.2989 (3) 0.0146 (5) 0.2274 (4) 0.0664 (13)

H1C 0.3012 −0.0837 0.2394 0.080*

H1D 0.3619 0.0482 0.2294 0.080*

C2 0.2490 (4) 0.0405 (5) 0.1355 (4) 0.0653 (13)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1398–m1400

H2B 0.1909 −0.0097 0.1294 0.078*

C3 0.1630 (4) 0.2165 (6) 0.0432 (3) 0.0623 (12)

H3C 0.1132 0.1498 0.0421 0.075*

H3D 0.1925 0.2057 −0.0120 0.075*

C4 0.1233 (4) 0.3611 (5) 0.0467 (3) 0.0609 (12)

H4C 0.1705 0.4284 0.0366 0.073*

H4D 0.0722 0.3720 −0.0004 0.073*

C5 0.3185 (5) 0.2678 (6) 0.1158 (5) 0.0650 (19)

H5C 0.3097 0.3318 0.0658 0.078*

H5D 0.3669 0.2044 0.1045 0.078*

C6A 0.3552 (5) 0.3385 (10) 0.2032 (6) 0.070 (2) 0.75

H6AC 0.389 (5) 0.275 (7) 0.246 (6) 0.084* 0.75

H6AD 0.393 (4) 0.414 (6) 0.186 (5) 0.084* 0.75

C6B 0.3215 (15) 0.4020 (16) 0.1697 (13) 0.059 (5) 0.25

H6BC 0.384 (3) 0.437 (7) 0.173 (4) 0.071* 0.25

H6BD 0.282 (4) 0.4493 0.122 (2) 0.071* 0.25

C7 −0.0164 (3) 0.1995 (6) 0.2903 (3) 0.0547 (11)

H7A −0.0650 0.1364 0.3034 0.066*

H7B −0.0451 0.2762 0.2561 0.066*

C8 0.0329 (5) 0.2523 (4) 0.3785 (5) 0.0460 (13)

C9 −0.0324 (4) 0.3475 (6) 0.4233 (4) 0.0736 (15)

H9A −0.0014 0.3828 0.4790 0.110*

H9B −0.0863 0.2968 0.4360 0.110*

H9C −0.0507 0.4226 0.3833 0.110*

C10 0.0679 (4) 0.1353 (5) 0.4431 (4) 0.0682 (13)

H10A 0.1101 0.0782 0.4143 0.102*

H10B 0.0164 0.0809 0.4577 0.102*

H10C 0.0991 0.1737 0.4978 0.102*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ni 0.03287 (19) 0.03036 (18) 0.03062 (18) 0.00010 (17) −0.00215 (13) −0.00268 (17)

Cl1 0.1205 (13) 0.0400 (5) 0.0610 (7) −0.0118 (6) 0.0114 (8) −0.0055 (5)

Cl2 0.0552 (6) 0.0847 (10) 0.0758 (9) −0.0100 (6) −0.0176 (6) 0.0079 (7)

O1 0.119 (4) 0.060 (2) 0.166 (6) −0.017 (3) 0.031 (4) 0.016 (3)

O2 0.200 (6) 0.042 (2) 0.133 (5) 0.007 (3) −0.008 (5) −0.018 (3)

O3 0.136 (6) 0.111 (5) 0.272 (12) 0.052 (4) −0.012 (6) −0.029 (6)

O4A 0.28 (3) 0.164 (15) 0.076 (9) −0.125 (19) 0.062 (13) −0.023 (10)

O4B 0.20 (3) 0.27 (3) 0.046 (7) −0.012 (16) 0.020 (11) 0.016 (8)

O5 0.119 (6) 0.328 (15) 0.153 (7) −0.045 (7) −0.060 (5) −0.050 (9)

O6A 0.099 (10) 0.27 (2) 0.20 (2) −0.001 (12) −0.028 (12) 0.160 (18)

O7A 0.126 (14) 0.47 (4) 0.069 (9) 0.023 (17) −0.022 (9) −0.035 (15)

O6B 0.212 (16) 0.141 (11) 0.085 (8) 0.070 (11) −0.035 (9) 0.013 (7)

O7B 0.226 (18) 0.062 (6) 0.143 (13) −0.027 (8) −0.072 (12) −0.008 (7)

O8 0.126 (8) 0.291 (16) 0.63 (4) 0.021 (10) 0.118 (15) 0.03 (2)

N1 0.051 (2) 0.0495 (19) 0.059 (2) 0.0152 (16) −0.0107 (17) 0.0000 (17)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m1398–m1400

N3 0.066 (2) 0.0401 (17) 0.0447 (19) 0.0092 (15) −0.0032 (17) 0.0028 (14)

N4 0.063 (2) 0.060 (2) 0.057 (2) −0.0214 (19) 0.0092 (19) −0.0156 (18)

N5 0.0403 (16) 0.0373 (16) 0.0437 (17) −0.0082 (12) −0.0039 (14) −0.0076 (13)

N6 0.0449 (17) 0.0347 (15) 0.0353 (17) −0.0042 (13) −0.0015 (13) −0.0019 (12)

C1 0.058 (3) 0.048 (2) 0.092 (4) 0.024 (2) 0.002 (2) −0.006 (2)

C2 0.079 (3) 0.049 (2) 0.069 (3) 0.007 (2) 0.016 (3) −0.019 (2)

C3 0.074 (3) 0.072 (3) 0.040 (2) 0.000 (2) 0.001 (2) −0.012 (2)

C4 0.073 (3) 0.070 (3) 0.039 (2) −0.002 (2) −0.003 (2) 0.009 (2)

C5 0.056 (4) 0.075 (4) 0.070 (5) −0.002 (2) 0.032 (3) −0.008 (3)

C6A 0.049 (4) 0.077 (5) 0.085 (6) −0.017 (3) 0.012 (4) −0.006 (4)

C6B 0.064 (12) 0.062 (12) 0.051 (11) −0.028 (10) 0.008 (9) −0.002 (9)

C7 0.043 (2) 0.066 (3) 0.054 (3) −0.008 (2) 0.0000 (19) −0.005 (2)

C8 0.051 (3) 0.047 (3) 0.040 (2) −0.0048 (16) 0.006 (2) 0.0076 (15)

C9 0.077 (3) 0.084 (4) 0.065 (3) 0.001 (3) 0.031 (3) −0.015 (3)

C10 0.088 (4) 0.061 (3) 0.055 (3) −0.005 (2) 0.004 (3) 0.019 (2)

Geometric parameters (Å, º)

Ni—N6 2.092 (3) N6—C8 1.502 (7)

Ni—N4 2.110 (4) N6—H6A 0.9000

Ni—N2 2.118 (4) N6—H6B 0.9000

Ni—N5 2.145 (3) C1—C2 1.495 (8)

Ni—N3 2.166 (3) C1—H1C 0.9700

Ni—N1 2.176 (3) C1—H1D 0.9700

Cl1—O2 1.376 (5) C2—H2A 0.9700

Cl1—O1 1.389 (5) C2—H2B 0.9700

Cl1—O4B 1.413 (14) C3—C4 1.520 (7)

Cl1—O3 1.419 (7) C3—H3C 0.9700

Cl1—O4A 1.435 (13) C3—H3D 0.9700

Cl2—O8 1.312 (11) C4—H4C 0.9700

Cl2—O6A 1.315 (11) C4—H4D 0.9700

Cl2—O7B 1.331 (11) C5—C6A 1.512 (10)

Cl2—O5 1.334 (7) C5—C6B 1.526 (13)

Cl2—O6B 1.382 (11) C5—H5C 0.970

Cl2—O7A 1.425 (15) C5—H5D 0.960

N1—C1 1.471 (7) C6A—H6AC 0.98 (2)

N1—H1A 0.9000 C6A—H6AD 0.97 (2)

N1—H1B 0.9000 C6B—H6BC 0.965 (18)

N2—C3 1.456 (6) C6B—H6BD 0.98 (2)

N2—C2 1.485 (6) C7—C8 1.511 (8)

N2—C5 1.497 (8) C7—H7A 0.9700

N3—C4 1.475 (6) C7—H7B 0.9700

N3—H3A 0.9000 C8—C9 1.527 (9)

N3—H3B 0.9000 C8—C10 1.537 (7)

N4—C6B 1.392 (18) C9—H9A 0.9600

N4—C6A 1.448 (9) C9—H9B 0.9600

N4—H4A 0.900 C9—H9C 0.9600

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m1398–m1400

N5—C7 1.480 (6) C10—H10B 0.9600

N5—H5A 0.9000 C10—H10C 0.9600

N5—H5B 0.9000

N6—Ni—N4 92.86 (15) Ni—N6—H6B 108.8

N6—Ni—N2 175.65 (15) H6A—N6—H6B 107.7

N4—Ni—N2 82.85 (16) N1—C1—C2 110.2 (3)

N6—Ni—N5 80.82 (13) N1—C1—H1C 109.6

N4—Ni—N5 173.51 (17) C2—C1—H1C 109.6

N2—Ni—N5 103.45 (14) N1—C1—H1D 109.6

N6—Ni—N3 98.36 (14) C2—C1—H1D 109.6

N4—Ni—N3 92.30 (17) H1C—C1—H1D 108.1

N2—Ni—N3 81.17 (15) N2—C2—C1 110.9 (4)

N5—Ni—N3 87.19 (15) N2—C2—H2A 109.5

N6—Ni—N1 100.04 (15) C1—C2—H2A 109.5

N4—Ni—N1 93.30 (18) N2—C2—H2B 109.5

N2—Ni—N1 80.97 (15) C1—C2—H2B 109.5

N5—Ni—N1 89.29 (14) H2A—C2—H2B 108.0

N3—Ni—N1 160.46 (14) N2—C3—C4 111.2 (4)

O2—Cl1—O1 112.8 (5) N2—C3—H3C 109.4

O2—Cl1—O4B 104.6 (12) C4—C3—H3C 109.4

O1—Cl1—O4B 98.6 (12) N2—C3—H3D 109.4

O2—Cl1—O3 106.8 (5) C4—C3—H3D 109.4

O1—Cl1—O3 104.9 (5) H3C—C3—H3D 108.0

O4B—Cl1—O3 128.9 (12) N3—C4—C3 108.8 (4)

O2—Cl1—O4A 121.4 (10) N3—C4—H4C 109.9

O1—Cl1—O4A 116.0 (8) C3—C4—H4C 109.9

O3—Cl1—O4A 90.1 (14) N3—C4—H4D 109.9

O8—Cl2—O6A 93.5 (14) C3—C4—H4D 109.9

O8—Cl2—O7B 100.7 (13) H4C—C4—H4D 108.3

O8—Cl2—O5 120.8 (11) N2—C5—C6A 114.1 (5)

O6A—Cl2—O5 80.8 (11) N2—C5—C6B 112.3 (8)

O7B—Cl2—O5 131.9 (10) N2—C5—H5C 109.00

O8—Cl2—O6B 85.5 (10) C6A—C5—H5C 111.8 (7)

O7B—Cl2—O6B 118.3 (9) N2—C5—H5D 109.00

O5—Cl2—O6B 90.1 (9) C6A—C5—H5D 104.0 (7)

O8—Cl2—O7A 138.1 (14) H5C—C5—H5D 108.00

O6A—Cl2—O7A 109.9 (17) N4—C6A—C5 111.7 (6)

O5—Cl2—O7A 97.4 (12) N4—C6A—H6AC 105 (6)

C1—N1—Ni 110.1 (3) C5—C6A—H6AC 112 (6)

C1—N1—H1A 109.6 N4—C6A—H6AD 109 (5)

Ni—N1—H1A 109.6 C5—C6A—H6AD 106 (5)

C1—N1—H1B 109.6 H6AC—C6A—H6AD 113 (4)

Ni—N1—H1B 109.6 N4—C6B—C5 114.1 (11)

H1A—N1—H1B 108.2 N4—C6B—H6BC 117 (3)

C3—N2—C2 112.5 (4) C5—C6B—H6BC 108 (3)

C3—N2—C5 111.9 (5) N4—C6B—H6BD 112 (4)

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m1398–m1400

C3—N2—Ni 106.6 (3) H6BC—C6B—H6BD 111 (4)

C2—N2—Ni 105.2 (3) N5—C7—C8 111.9 (4)

C5—N2—Ni 109.4 (3) N5—C7—H7A 109.2

C4—N3—Ni 110.2 (3) C8—C7—H7A 109.2

C4—N3—H3A 109.6 N5—C7—H7B 109.2

Ni—N3—H3A 109.6 C8—C7—H7B 109.2

C4—N3—H3B 109.6 H7A—C7—H7B 107.9

Ni—N3—H3B 109.6 N6—C8—C7 105.6 (5)

H3A—N3—H3B 108.1 N6—C8—C9 110.4 (4)

C6B—N4—Ni 110.5 (7) C7—C8—C9 108.8 (5)

C6A—N4—Ni 109.2 (4) N6—C8—C10 108.6 (5)

C6A—N4—H4A 112.0 (6) C7—C8—C10 112.5 (4)

Ni—N4—H4A 110.00 C9—C8—C10 110.8 (5)

C6A—N4—H4B 109.1 (5) C8—C9—H9A 109.5

Ni—N4—H4B 110.00 C8—C9—H9B 109.5

H4A—N4—H4B 107.00 H9A—C9—H9B 109.5

C7—N5—Ni 106.6 (3) C8—C9—H9C 109.5

C7—N5—H5A 110.4 H9A—C9—H9C 109.5

Ni—N5—H5A 110.4 H9B—C9—H9C 109.5

C7—N5—H5B 110.4 C8—C10—H10A 109.5

Ni—N5—H5B 110.4 C8—C10—H10B 109.5

H5A—N5—H5B 108.6 H10A—C10—H10B 109.5

C8—N6—Ni 113.7 (3) C8—C10—H10C 109.5

C8—N6—H6A 108.8 H10A—C10—H10C 109.5

Ni—N6—H6A 108.8 H10B—C10—H10C 109.5

C8—N6—H6B 108.8

N6—Ni—N1—C1 −178.8 (3) Ni—N1—C1—C2 −23.0 (5)

N4—Ni—N1—C1 −85.3 (3) C3—N2—C2—C1 −165.8 (4)

N2—Ni—N1—C1 −3.1 (3) C5—N2—C2—C1 68.0 (6)

N5—Ni—N1—C1 100.6 (3) Ni—N2—C2—C1 −50.2 (5)

N3—Ni—N1—C1 21.1 (7) N1—C1—C2—N2 49.8 (6)

N4—Ni—N2—C3 −117.9 (4) C2—N2—C3—C4 162.5 (4)

N5—Ni—N2—C3 60.5 (3) C5—N2—C3—C4 −71.8 (5)

N3—Ni—N2—C3 −24.4 (3) Ni—N2—C3—C4 47.7 (5)

N1—Ni—N2—C3 147.6 (3) Ni—N3—C4—C3 27.1 (5)

N4—Ni—N2—C2 122.5 (3) N2—C3—C4—N3 −50.9 (6)

N5—Ni—N2—C2 −59.1 (3) C3—N2—C5—C6A 134.5 (6)

N3—Ni—N2—C2 −144.1 (3) C2—N2—C5—C6A −99.0 (7)

N1—Ni—N2—C2 28.0 (3) Ni—N2—C5—C6A 16.6 (7)

N4—Ni—N2—C5 3.2 (4) C3—N2—C5—C6B 96.8 (11)

N5—Ni—N2—C5 −178.3 (3) C2—N2—C5—C6B −136.6 (11)

N3—Ni—N2—C5 96.7 (4) Ni—N2—C5—C6B −21.0 (11)

N1—Ni—N2—C5 −91.3 (4) Ni—N4—C6A—C6B 98.9 (12)

N6—Ni—N3—C4 173.7 (3) C6B—N4—C6A—C5 −60.8 (10)

N4—Ni—N3—C4 80.4 (3) Ni—N4—C6A—C5 38.1 (8)

N2—Ni—N3—C4 −2.0 (3) N2—C5—C6A—C6B −94.8 (14)

(10)

supporting information

sup-7

Acta Cryst. (2005). E61, m1398–m1400

N1—Ni—N3—C4 −26.1 (7) C6B—C5—C6A—N4 57.7 (13)

N6—Ni—N4—C6B −162.8 (11) C5—C6A—C6B—N4 122.3 (7)

N2—Ni—N4—C6B 16.5 (11) N4—C6A—C6B—C5 −122.3 (7)

N3—Ni—N4—C6B −64.3 (11) Ni—N4—C6B—C6A −94.9 (12)

N1—Ni—N4—C6B 97.0 (11) C6A—N4—C6B—C5 61.7 (12)

N6—Ni—N4—C6A 157.8 (5) Ni—N4—C6B—C5 −33.2 (19)

N2—Ni—N4—C6A −22.9 (5) N2—C5—C6B—C6A 100.5 (14)

N3—Ni—N4—C6A −103.7 (5) N2—C5—C6B—N4 37 (2)

N1—Ni—N4—C6A 57.6 (5) C6A—C5—C6B—N4 −63.4 (15)

N6—Ni—N5—C7 20.0 (3) Ni—N5—C7—C8 −45.1 (5)

N2—Ni—N5—C7 −159.1 (3) Ni—N6—C8—C7 −31.5 (5)

N3—Ni—N5—C7 −78.9 (3) Ni—N6—C8—C9 −149.0 (4)

N1—Ni—N5—C7 120.3 (3) Ni—N6—C8—C10 89.4 (5)

N4—Ni—N6—C8 −174.6 (3) N5—C7—C8—N6 50.8 (5)

N5—Ni—N6—C8 6.9 (3) N5—C7—C8—C9 169.3 (4)

N3—Ni—N6—C8 92.6 (3) N5—C7—C8—C10 −67.5 (7)

N1—Ni—N6—C8 −80.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1A···O7B 0.90 2.21 3.069 (10) 158

N1—H1A···O7A 0.90 2.44 3.278 (10) 159

N1—H1B···O2i 0.90 2.41 3.232 (8) 151

N3—H3A···O6Aii 0.90 2.26 3.116 (10) 158

N3—H3B···O4A 0.90 2.39 3.281 (10) 170

N4—H4A···O3 0.90 2.38 3.030 (9) 129

N4—H4B···O6B 0.91 2.26 3.156 (10) 170

N4—H4B···O7A 0.91 2.40 3.160 (10) 139

N5—H5A···O5ii 0.90 2.17 3.048 (9) 167

N5—H5B···O2i 0.90 2.16 3.056 (6) 178

N6—H6A···O8 0.90 2.65 3.545 (15) 174

N6—H6B···O1 0.90 2.25 3.138 (6) 167

Figure

Figure 1

References

Related documents

(a) The map of epicenters of earthquakes with magnitude М ≥ 4.5 occurred at the globe in 1973-2010 years (173477 events) from the global seismological catalogue NEIC [11],

Reinforced cement concrete (RCC) used for roof construc- tion has high thermal conductivity. The outer temperature of conventional roofs varies from 32˚C to 55˚C in summer season

The LM curve assumes that the central bank targets money.. This is considered a weakness since today most central banks

Research results revealed, that older worker facing working conditions with fewer opportunities for career and advancement, e.g., they are facing restricted skills

Our best results per target language are better than best results per target language in the zero-shot paradigm in ( Schwenk and Li , 2018 ) using word embeddings and

Results suggest that (1) translated language fea- tures are especially useful if the target language has a writing system facilitating easy decomposi- tion into useful subword

رﺎﻣﺛﺗﺳﻻا ﻊﯾوﻧﺗﻟا تارﯾﻐﺗﻣ نأ ﺞﺋﺎﺗﻧﻟا نﻣ ﺢﺿﺗﯾ يدﺎﺻﺗﻗﻻا بﻧﺎﺟﻟا نﻣ ﺎﻣأ ، ﺎﯾﺋﺎﺻﺣإ ﻲﻓ لﺛﻣﺗﺗ رﺋازﺟﻟا ﻲﻓ يدﺎﺻﺗﻗﻻا وﻣﻧﻟا ﻰﻠﻋ ةرﺛؤﻣﻟا

Aim of the present study was to assess the prevalence of GADA, IA-2 and ZnT8 antibodies and HLA DRB1 and DQB1 gene in patients with T1DM and also to predict the type