• No results found

Piperazinium fac tris­­(salicylato κ2O,O′)titanate(IV) di­methyl­formamide solvate

N/A
N/A
Protected

Academic year: 2020

Share "Piperazinium fac tris­­(salicylato κ2O,O′)titanate(IV) di­methyl­formamide solvate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m2228

Renet al. (C

4H12N2)[Ti(C7H4O3)3]C3H7NO doi:10.1107/S1600536805031417 Acta Cryst.(2005). E61, m2228–m2229

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Piperazinium

fac

-tris(salicylato-

j

2

O

,

O

000

)-titanate(IV) dimethylformamide solvate

Jia-Lin Ren, Yun-Long Fu* and Zhi-Wei Xu

School of Chemistry and Materials Science, Shanxi Normal University, Linfen, Shanxi, People’s Republic of China

Correspondence e-mail: yunlongfu@dns.sxtu.edu.cn

Key indicators

Single-crystal X-ray study

T= 273 K

Mean(C–C) = 0.007 A˚

Rfactor = 0.057

wRfactor = 0.176

Data-to-parameter ratio = 12.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, (C4H12N2)[Ti(C7H4O3)3]C3H7NO, the

TiIVion is chelated by three bidentate salicylate ligands in an octahedral geometry. The arrangement of the hydroxyl O atoms about Ti corresponds to thefacgeometrical isomer. The component species are linked by N—H O hydrogen bonds into a layered structure.

Comment

The title compound, (I), arose from our continuing studies (Fu

et al., 2005a,b) of the reactions of tetrabutyltitanium(IV) and salicylic acid in dimethylformamide (DMF) solution, which have previously yielded crystals of bis(dimethylammonium)

mer-tris(salicylato-2O,O0)titanate(IV), (II), and

piper-azinium(2+) fac-tris(salicylato-2

O,O0)titanate(IV)

mono-hydrate dimethylformamide solvate, (III). Piperazine was added to the reaction to hasten the formation of the corres-ponding piperazinium salts, (I) and (III). Whereas (III) was isolated with water and DMF solvent molecules of crystal-lization, (I) contains only DMF.

In (I), the Ti atom has the three bidentate salicylate groups in an octahedral arrangement, and the [Ti(C7H4O3)3]2charge

is balanced by a doubly protonated piperizinium cation (Fig. 1). For each chelating molecule, the Ti—Oh(h = hydroxy)

bond is shorter than the Ti—Oc (c = carboxylate) bond

(Table 1). The carboxylate O atoms engage the cations in N— H O hydrogen-bonding interactions (Table 2), giving rise to a layered structure.

Experimental

Tetrabutyltitanium(IV) (0.34 ml, 1 mmol), salicylic acid (0.4 g, 3 mmol) and piperazine (0.09 g, 1 mmol) were dissolved in dimethylformamide (10 ml). The resulting clear yellow solution was set aside for 10 d for crystals of (I) to separate out.

(2)

Crystal data

(C4H12N2)[Ti(C7H4O3)3]C3H7NO

Mr= 617.46 Triclinic,P1

a= 10.552 (2) A˚

b= 10.622 (2) A˚

c= 14.881 (3) A˚

= 92.088 (4) = 104.987 (3) = 118.429 (3) V= 1391.7 (5) A˚3

Z= 2

Dx= 1.474 Mg m

3

MoKradiation Cell parameters from 35

reflections

= 2.2–25.0 = 0.37 mm1

T= 273 (2) K Block, yellow 0.220.200.15 mm

Data collection

Bruker SMART CCD diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.923,Tmax= 0.946

6808 measured reflections

4772 independent reflections 3425 reflections withI> 2(I)

Rint= 0.027

max= 25.0

h=12!12

k=12!12

l=17!8

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.057

wR(F2) = 0.177

S= 1.07 4772 reflections 381 parameters

H-atom parameters constrained

w= 1/[2

(Fo 2

) + (0.0942P)2 + 0.038P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.006

max= 0.47 e A˚

3

min=0.36 e A˚

3

Table 1

Selected bond lengths (A˚ ).

Ti1—O1 1.868 (3) Ti1—O2 1.983 (2) Ti1—O5 2.001 (2)

Ti1—O6 1.881 (2) Ti1—O7 2.041 (3) Ti1—O8 1.865 (2)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N3—H3B O9 0.90 1.83 2.722 (4) 170 N3—H3A O3i 0.90 1.82 2.715 (4) 172 N2—H2B O10ii

0.90 1.90 2.665 (5) 142 N2—H2A O4 0.90 1.92 2.782 (4) 159

Symmetry codes: (i)xþ2;yþ2;zþ1; (ii)xþ2;yþ1;zþ1.

H atoms were positioned geometrically (C—H = 0.93–0.96 A˚ and N—H = 0.90 A˚ ) and refined as riding, withUiso(H) = 1.2Ueq(carrier) or 1.2Ueq(methyl carrier).

Data collection:SMART(Bruker, 2002); cell refinement:SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXTL.

The authors thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031).

References

Bruker (2002).SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005a).Acta Cryst.E61, m1733– m11734.

Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005b).Acta Cryst.E61, m1730– m11732.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1996).SADABS. University of Gottingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

[image:2.610.310.564.72.262.2]

Go¨ttingen, Germany. Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, m2228–m2229

supporting information

Acta Cryst. (2005). E61, m2228–m2229 [https://doi.org/10.1107/S1600536805031417]

Piperazinium

fac

-tris(salicylato-

κ

2

O

,

O

)titanate(IV) dimethylformamide solvate

Jia-Lin Ren, Yun-Long Fu and Zhi-Wei Xu

Piperazinium fac-tris(salicylato-κ2O,O)titanate(IV) dimethylformamide solvate

Crystal data

(C4H12N2)[Ti(C7H4O3)3]·C3H7NO Mr = 617.46

Triclinic, P1 Hall symbol: -P 1

a = 10.552 (2) Å

b = 10.622 (2) Å

c = 14.881 (3) Å

α = 92.088 (4)°

β = 104.987 (3)°

γ = 118.429 (3)°

V = 1391.7 (5) Å3

Z = 2

F(000) = 644

Dx = 1.474 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 35 reflections

θ = 2.2–25.0°

µ = 0.37 mm−1

T = 273 K

Block, yellow

0.22 × 0.20 × 0.15 mm

Data collection

Bruker SMART CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.923, Tmax = 0.946

6808 measured reflections 4772 independent reflections 3425 reflections with I > 2σ(I)

Rint = 0.027

θmax = 25.0°, θmin = 2.2°

h = −12→12

k = −12→12

l = −17→8

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.057 wR(F2) = 0.177

S = 1.07

4772 reflections 381 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(Fo2) + (0.0942P)2 + 0.038P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.006

Δρmax = 0.47 e Å−3

Δρmin = −0.36 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Ti1 0.68563 (7) 0.70217 (7) 0.23066 (5) 0.0287 (2)

O1 0.7026 (3) 0.6527 (3) 0.11430 (18) 0.0335 (6)

O2 0.8599 (3) 0.8960 (3) 0.23624 (18) 0.0347 (6)

O3 1.0820 (3) 1.0607 (3) 0.2280 (2) 0.0479 (8)

O4 0.9537 (3) 0.5950 (3) 0.43121 (18) 0.0397 (7)

O5 0.8429 (3) 0.6635 (3) 0.31070 (18) 0.0333 (6)

O6 0.5476 (3) 0.5112 (3) 0.23821 (18) 0.0345 (6)

O7 0.6987 (3) 0.7925 (3) 0.35855 (18) 0.0366 (6)

O8 0.5295 (3) 0.7417 (3) 0.18184 (17) 0.0334 (6)

O9 0.6520 (3) 0.8985 (3) 0.46522 (19) 0.0484 (8)

O10 0.8633 (4) 0.3456 (4) 0.2073 (2) 0.0681 (10)

N1 0.6180 (4) 0.2331 (4) 0.1126 (2) 0.0472 (9)

N2 0.9762 (4) 0.6497 (4) 0.6205 (2) 0.0436 (9)

H2A 0.9602 0.6085 0.5618 0.052*

H2B 1.0272 0.6174 0.6622 0.052*

N3 0.8365 (4) 0.8246 (3) 0.5865 (2) 0.0381 (8)

H3A 0.8553 0.8635 0.6465 0.046*

H3B 0.7850 0.8591 0.5475 0.046*

C1 0.4269 (4) 0.7430 (4) 0.2194 (3) 0.0304 (9)

C2 0.2833 (4) 0.7015 (4) 0.1604 (3) 0.0424 (10)

H2 0.2596 0.6739 0.0955 0.051*

C3 0.1750 (5) 0.7002 (5) 0.1962 (4) 0.0497 (12)

H3 0.0777 0.6677 0.1557 0.060*

C4 0.2090 (5) 0.7465 (5) 0.2911 (4) 0.0505 (12)

H4 0.1364 0.7476 0.3151 0.061*

C5 0.3502 (4) 0.7904 (4) 0.3486 (3) 0.0402 (10)

H5 0.3740 0.8236 0.4127 0.048*

C6 0.4619 (4) 0.7882 (4) 0.3163 (3) 0.0290 (8)

C7 0.6145 (4) 0.8322 (4) 0.3850 (3) 0.0348 (9)

C8 0.5571 (4) 0.4100 (4) 0.2851 (3) 0.0296 (8)

C9 0.4272 (4) 0.2735 (4) 0.2681 (3) 0.0384 (10)

H9 0.3370 0.2545 0.2238 0.046*

C10 0.4315 (5) 0.1670 (4) 0.3163 (3) 0.0451 (11)

H10 0.3444 0.0759 0.3031 0.054*

C11 0.5615 (5) 0.1923 (4) 0.3833 (3) 0.0428 (10)

H11 0.5630 0.1196 0.4158 0.051*

C12 0.6899 (4) 0.3269 (4) 0.4019 (3) 0.0367 (9)

H12 0.7775 0.3453 0.4489 0.044*

C13 0.6925 (4) 0.4370 (4) 0.3522 (2) 0.0274 (8)

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, m2228–m2229

C15 1.0470 (5) 0.8971 (5) 0.0609 (3) 0.0426 (10)

H15 1.1333 0.9884 0.0856 0.051*

C16 1.0340 (6) 0.8212 (5) −0.0165 (3) 0.0557 (13)

H16 1.1116 0.8555 −0.0437 0.067*

C17 0.9001 (6) 0.6874 (5) −0.0566 (3) 0.0543 (12)

H17 0.8862 0.6348 −0.1131 0.065*

C18 0.7891 (5) 0.6327 (5) −0.0137 (3) 0.0462 (11)

H18 0.7009 0.5435 −0.0409 0.055*

C19 0.8092 (4) 0.7123 (4) 0.0716 (3) 0.0317 (9)

C20 0.9380 (4) 0.8475 (4) 0.1075 (3) 0.0297 (8)

C21 0.9645 (4) 0.9412 (4) 0.1959 (3) 0.0299 (8)

C22 0.9829 (4) 0.8695 (4) 0.5681 (3) 0.0392 (10)

H22A 1.0424 0.9750 0.5788 0.047*

H22B 0.9633 0.8319 0.5027 0.047*

C23 1.0704 (4) 0.8121 (4) 0.6327 (3) 0.0423 (10)

H23A 1.1631 0.8375 0.6181 0.051*

H23B 1.0978 0.8565 0.6980 0.051*

C24 0.8282 (5) 0.6048 (5) 0.6354 (3) 0.0502 (11)

H24A 0.8448 0.6390 0.7010 0.060*

H24B 0.7675 0.4993 0.6224 0.060*

C25 0.7437 (5) 0.6657 (4) 0.5720 (3) 0.0445 (10)

H25A 0.7178 0.6238 0.5064 0.053*

H25B 0.6500 0.6396 0.5857 0.053*

C26 0.7540 (6) 0.3469 (6) 0.1530 (3) 0.0564 (13)

H26 0.7691 0.4367 0.1393 0.068*

C27 0.5846 (7) 0.0905 (6) 0.1343 (4) 0.0834 (18)

H27A 0.6672 0.0753 0.1340 0.125*

H27B 0.4933 0.0166 0.0875 0.125*

H27C 0.5711 0.0852 0.1957 0.125*

C28 0.4954 (5) 0.2474 (6) 0.0504 (3) 0.0609 (13)

H28A 0.5297 0.3486 0.0488 0.091*

H28B 0.4100 0.2076 0.0738 0.091*

H28C 0.4659 0.1955 −0.0124 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ti1 0.0253 (4) 0.0296 (4) 0.0285 (4) 0.0127 (3) 0.0065 (3) 0.0050 (3)

O1 0.0322 (14) 0.0298 (14) 0.0327 (15) 0.0123 (12) 0.0083 (12) 0.0009 (12)

O2 0.0390 (15) 0.0278 (14) 0.0372 (15) 0.0125 (12) 0.0205 (13) 0.0045 (12)

O3 0.0371 (16) 0.0422 (17) 0.0445 (18) 0.0030 (14) 0.0176 (14) 0.0007 (14)

O4 0.0284 (14) 0.0456 (17) 0.0332 (16) 0.0155 (13) −0.0018 (12) 0.0045 (13)

O5 0.0244 (13) 0.0325 (14) 0.0402 (16) 0.0130 (11) 0.0079 (12) 0.0098 (13)

O6 0.0241 (13) 0.0328 (14) 0.0354 (15) 0.0094 (11) 0.0017 (11) 0.0082 (12)

O7 0.0347 (14) 0.0512 (17) 0.0352 (15) 0.0277 (14) 0.0155 (12) 0.0130 (13)

O8 0.0326 (14) 0.0418 (15) 0.0249 (14) 0.0209 (12) 0.0035 (11) 0.0033 (12)

O9 0.0543 (18) 0.071 (2) 0.0276 (16) 0.0406 (17) 0.0070 (14) −0.0009 (15)

(6)

N1 0.059 (2) 0.049 (2) 0.032 (2) 0.030 (2) 0.0048 (18) 0.0061 (18)

N2 0.061 (2) 0.042 (2) 0.037 (2) 0.0356 (19) 0.0098 (17) 0.0074 (16)

N3 0.0443 (19) 0.042 (2) 0.0248 (17) 0.0264 (17) −0.0014 (15) −0.0027 (15)

C1 0.0285 (19) 0.026 (2) 0.034 (2) 0.0142 (17) 0.0047 (17) 0.0053 (17)

C2 0.039 (2) 0.044 (2) 0.046 (3) 0.026 (2) 0.005 (2) 0.008 (2)

C3 0.029 (2) 0.044 (3) 0.069 (3) 0.019 (2) 0.005 (2) 0.011 (2)

C4 0.042 (3) 0.054 (3) 0.076 (4) 0.032 (2) 0.032 (2) 0.030 (3)

C5 0.041 (2) 0.045 (2) 0.040 (2) 0.023 (2) 0.017 (2) 0.013 (2)

C6 0.0261 (18) 0.0263 (19) 0.032 (2) 0.0122 (16) 0.0065 (16) 0.0066 (17)

C7 0.037 (2) 0.038 (2) 0.039 (2) 0.0214 (19) 0.0197 (19) 0.019 (2)

C8 0.0281 (19) 0.030 (2) 0.029 (2) 0.0116 (17) 0.0116 (16) 0.0041 (17)

C9 0.029 (2) 0.036 (2) 0.048 (3) 0.0131 (18) 0.0145 (19) 0.010 (2)

C10 0.042 (2) 0.032 (2) 0.060 (3) 0.0114 (19) 0.028 (2) 0.011 (2)

C11 0.056 (3) 0.036 (2) 0.044 (3) 0.025 (2) 0.021 (2) 0.016 (2)

C12 0.039 (2) 0.042 (2) 0.029 (2) 0.022 (2) 0.0085 (18) 0.0040 (19)

C13 0.0308 (19) 0.029 (2) 0.0266 (19) 0.0161 (17) 0.0137 (16) 0.0065 (16)

C14 0.033 (2) 0.038 (2) 0.029 (2) 0.0219 (18) 0.0130 (17) 0.0050 (18)

C15 0.043 (2) 0.042 (2) 0.042 (3) 0.019 (2) 0.018 (2) 0.008 (2)

C16 0.076 (3) 0.068 (3) 0.055 (3) 0.047 (3) 0.046 (3) 0.026 (3)

C17 0.085 (4) 0.056 (3) 0.038 (3) 0.042 (3) 0.030 (3) 0.007 (2)

C18 0.062 (3) 0.045 (3) 0.035 (2) 0.030 (2) 0.015 (2) 0.004 (2)

C19 0.038 (2) 0.035 (2) 0.032 (2) 0.0239 (19) 0.0139 (18) 0.0114 (18)

C20 0.031 (2) 0.031 (2) 0.028 (2) 0.0169 (17) 0.0077 (16) 0.0054 (17)

C21 0.0295 (19) 0.028 (2) 0.028 (2) 0.0122 (17) 0.0076 (17) 0.0073 (17)

C22 0.046 (2) 0.034 (2) 0.033 (2) 0.018 (2) 0.0102 (19) 0.0050 (18)

C23 0.039 (2) 0.040 (2) 0.044 (3) 0.023 (2) 0.0023 (19) 0.002 (2)

C24 0.063 (3) 0.034 (2) 0.049 (3) 0.019 (2) 0.022 (2) 0.009 (2)

C25 0.044 (2) 0.044 (3) 0.043 (3) 0.019 (2) 0.017 (2) 0.000 (2)

C26 0.078 (4) 0.067 (3) 0.048 (3) 0.049 (3) 0.028 (3) 0.022 (3)

C27 0.117 (5) 0.067 (4) 0.076 (4) 0.054 (4) 0.027 (4) 0.022 (3)

C28 0.064 (3) 0.080 (4) 0.038 (3) 0.043 (3) 0.003 (2) 0.004 (3)

Geometric parameters (Å, º)

Ti1—O1 1.868 (3) C8—C13 1.404 (5)

Ti1—O2 1.983 (2) C9—C10 1.374 (6)

Ti1—O5 2.001 (2) C9—H9 0.9300

Ti1—O6 1.881 (2) C10—C11 1.368 (6)

Ti1—O7 2.041 (3) C10—H10 0.9300

Ti1—O8 1.865 (2) C11—C12 1.374 (5)

O1—C19 1.338 (4) C11—H11 0.9300

O2—C21 1.292 (4) C12—C13 1.399 (5)

O3—C21 1.236 (4) C12—H12 0.9300

O4—C14 1.254 (4) C13—C14 1.473 (5)

O5—C14 1.291 (4) C15—C16 1.320 (6)

O6—C8 1.331 (4) C15—C20 1.394 (5)

O7—C7 1.284 (4) C15—H15 0.9300

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, m2228–m2229

O9—C7 1.227 (5) C16—H16 0.9300

O10—C26 1.231 (5) C17—C18 1.372 (6)

N1—C26 1.315 (6) C17—H17 0.9300

N1—C27 1.453 (6) C18—C19 1.408 (5)

N1—C28 1.460 (5) C18—H18 0.9300

N2—C24 1.481 (5) C19—C20 1.380 (5)

N2—C23 1.499 (5) C20—C21 1.499 (5)

N2—H2A 0.9000 C22—C23 1.505 (5)

N2—H2B 0.9000 C22—H22A 0.9700

N3—C25 1.465 (5) C22—H22B 0.9700

N3—C22 1.488 (5) C23—H23A 0.9700

N3—H3A 0.9000 C23—H23B 0.9700

N3—H3B 0.9000 C24—C25 1.504 (6)

C1—C2 1.382 (5) C24—H24A 0.9700

C1—C6 1.397 (5) C24—H24B 0.9700

C2—C3 1.376 (6) C25—H25A 0.9700

C2—H2 0.9300 C25—H25B 0.9700

C3—C4 1.372 (7) C26—H26 0.9300

C3—H3 0.9300 C27—H27A 0.9600

C4—C5 1.349 (6) C27—H27B 0.9600

C4—H4 0.9300 C27—H27C 0.9600

C5—C6 1.393 (5) C28—H28A 0.9600

C5—H5 0.9300 C28—H28B 0.9600

C6—C7 1.502 (5) C28—H28C 0.9600

C8—C9 1.395 (5)

O1—Ti1—O2 84.75 (10) C11—C12—C13 121.9 (4)

O1—Ti1—O5 96.39 (11) C11—C12—H12 119.1

O1—Ti1—O6 95.95 (11) C13—C12—H12 119.1

O1—Ti1—O7 169.66 (11) C12—C13—C8 118.3 (3)

O2—Ti1—O5 84.97 (10) C12—C13—C14 119.4 (3)

O2—Ti1—O7 84.92 (10) C8—C13—C14 122.1 (3)

O5—Ti1—O7 82.99 (10) O4—C14—O5 121.6 (3)

O6—Ti1—O2 169.50 (10) O4—C14—C13 119.6 (3)

O6—Ti1—O5 84.54 (10) O5—C14—C13 118.8 (3)

O6—Ti1—O7 94.26 (11) C16—C15—C20 123.4 (4)

O8—Ti1—O1 96.52 (11) C16—C15—H15 118.3

O8—Ti1—O2 98.46 (11) C20—C15—H15 118.3

O8—Ti1—O5 166.89 (11) C15—C16—C17 118.1 (4)

O8—Ti1—O6 91.87 (11) C15—C16—H16 120.9

O8—Ti1—O7 84.72 (10) C17—C16—H16 120.9

C19—O1—Ti1 134.6 (2) C18—C17—C16 121.0 (4)

C21—O2—Ti1 133.8 (2) C18—C17—H17 119.5

C14—O5—Ti1 133.3 (2) C16—C17—H17 119.5

C8—O6—Ti1 135.3 (2) C17—C18—C19 119.7 (4)

C7—O7—Ti1 133.1 (3) C17—C18—H18 120.2

C1—O8—Ti1 130.7 (2) C19—C18—H18 120.2

(8)

C26—N1—C28 121.7 (4) O1—C19—C18 118.3 (3)

C27—N1—C28 118.4 (4) C20—C19—C18 118.6 (4)

C24—N2—C23 111.7 (3) C19—C20—C15 119.0 (4)

C24—N2—H2A 109.3 C19—C20—C21 121.7 (3)

C23—N2—H2A 109.3 C15—C20—C21 119.3 (3)

C24—N2—H2B 109.3 O3—C21—O2 120.8 (3)

C23—N2—H2B 109.3 O3—C21—C20 120.7 (3)

H2A—N2—H2B 107.9 O2—C21—C20 118.5 (3)

C25—N3—C22 111.3 (3) N3—C22—C23 110.1 (3)

C25—N3—H3A 109.4 N3—C22—H22A 109.6

C22—N3—H3A 109.4 C23—C22—H22A 109.6

C25—N3—H3B 109.4 N3—C22—H22B 109.6

C22—N3—H3B 109.4 C23—C22—H22B 109.6

H3A—N3—H3B 108.0 H22A—C22—H22B 108.2

O8—C1—C2 119.2 (3) N2—C23—C22 110.1 (3)

O8—C1—C6 122.1 (3) N2—C23—H23A 109.6

C2—C1—C6 118.7 (4) C22—C23—H23A 109.6

C3—C2—C1 120.9 (4) N2—C23—H23B 109.6

C3—C2—H2 119.5 C22—C23—H23B 109.6

C1—C2—H2 119.5 H23A—C23—H23B 108.1

C4—C3—C2 120.8 (4) N2—C24—C25 111.1 (3)

C4—C3—H3 119.6 N2—C24—H24A 109.4

C2—C3—H3 119.6 C25—C24—H24A 109.4

C5—C4—C3 118.4 (4) N2—C24—H24B 109.4

C5—C4—H4 120.8 C25—C24—H24B 109.4

C3—C4—H4 120.8 H24A—C24—H24B 108.0

C4—C5—C6 122.9 (4) N3—C25—C24 110.5 (3)

C4—C5—H5 118.5 N3—C25—H25A 109.6

C6—C5—H5 118.5 C24—C25—H25A 109.6

C5—C6—C1 118.2 (3) N3—C25—H25B 109.6

C5—C6—C7 120.1 (3) C24—C25—H25B 109.6

C1—C6—C7 121.7 (3) H25A—C25—H25B 108.1

O9—C7—O7 122.2 (4) O10—C26—N1 126.2 (5)

O9—C7—C6 119.6 (3) O10—C26—H26 116.9

O7—C7—C6 118.1 (4) N1—C26—H26 116.9

O6—C8—C9 118.7 (3) N1—C27—H27A 109.5

O6—C8—C13 122.3 (3) N1—C27—H27B 109.5

C9—C8—C13 119.0 (3) H27A—C27—H27B 109.5

C10—C9—C8 120.6 (4) N1—C27—H27C 109.5

C10—C9—H9 119.7 H27A—C27—H27C 109.5

C8—C9—H9 119.7 H27B—C27—H27C 109.5

C11—C10—C9 121.2 (4) N1—C28—H28A 109.5

C11—C10—H10 119.4 N1—C28—H28B 109.5

C9—C10—H10 119.4 H28A—C28—H28B 109.5

C10—C11—C12 119.0 (4) N1—C28—H28C 109.5

C10—C11—H11 120.5 H28A—C28—H28C 109.5

(9)

supporting information

sup-7 Acta Cryst. (2005). E61, m2228–m2229

O8—Ti1—O1—C19 113.0 (3) C1—C6—C7—O7 −17.9 (5)

O6—Ti1—O1—C19 −154.4 (3) Ti1—O6—C8—C9 −176.4 (3)

O2—Ti1—O1—C19 15.0 (3) Ti1—O6—C8—C13 4.8 (5)

O5—Ti1—O1—C19 −69.3 (3) O6—C8—C9—C10 −178.8 (3)

O7—Ti1—O1—C19 16.7 (8) C13—C8—C9—C10 0.1 (6)

O8—Ti1—O2—C21 −117.9 (3) C8—C9—C10—C11 1.3 (6)

O1—Ti1—O2—C21 −22.1 (3) C9—C10—C11—C12 −0.4 (6)

O6—Ti1—O2—C21 72.2 (7) C10—C11—C12—C13 −2.0 (6)

O5—Ti1—O2—C21 74.8 (3) C11—C12—C13—C8 3.4 (5)

O7—Ti1—O2—C21 158.2 (3) C11—C12—C13—C14 −172.2 (3)

O8—Ti1—O5—C14 53.0 (6) O6—C8—C13—C12 176.5 (3)

O1—Ti1—O5—C14 −117.0 (3) C9—C8—C13—C12 −2.3 (5)

O6—Ti1—O5—C14 −21.6 (3) O6—C8—C13—C14 −8.0 (5)

O2—Ti1—O5—C14 158.9 (3) C9—C8—C13—C14 173.1 (3)

O7—Ti1—O5—C14 73.4 (3) Ti1—O5—C14—O4 −157.4 (3)

O8—Ti1—O6—C8 −161.0 (3) Ti1—O5—C14—C13 23.7 (5)

O1—Ti1—O6—C8 102.2 (3) C12—C13—C14—O4 −8.9 (5)

O2—Ti1—O6—C8 9.0 (8) C8—C13—C14—O4 175.7 (3)

O5—Ti1—O6—C8 6.4 (3) C12—C13—C14—O5 170.1 (3)

O7—Ti1—O6—C8 −76.2 (3) C8—C13—C14—O5 −5.4 (5)

O8—Ti1—O7—C7 9.4 (3) C20—C15—C16—C17 3.5 (7)

O1—Ti1—O7—C7 106.8 (6) C15—C16—C17—C18 −3.7 (7)

O6—Ti1—O7—C7 −82.1 (3) C16—C17—C18—C19 0.3 (7)

O2—Ti1—O7—C7 108.4 (3) Ti1—O1—C19—C20 −7.4 (5)

O5—Ti1—O7—C7 −166.1 (3) Ti1—O1—C19—C18 172.3 (3)

O1—Ti1—O8—C1 157.8 (3) C17—C18—C19—O1 −176.6 (4)

O6—Ti1—O8—C1 61.6 (3) C17—C18—C19—C20 3.2 (6)

O2—Ti1—O8—C1 −116.6 (3) O1—C19—C20—C15 176.4 (3)

O5—Ti1—O8—C1 −12.2 (7) C18—C19—C20—C15 −3.4 (5)

O7—Ti1—O8—C1 −32.5 (3) O1—C19—C20—C21 −2.7 (5)

Ti1—O8—C1—C2 −146.9 (3) C18—C19—C20—C21 177.6 (3)

Ti1—O8—C1—C6 34.6 (5) C16—C15—C20—C19 0.0 (6)

O8—C1—C2—C3 179.5 (3) C16—C15—C20—C21 179.1 (4)

C6—C1—C2—C3 −1.9 (6) Ti1—O2—C21—O3 −162.0 (3)

C1—C2—C3—C4 2.9 (6) Ti1—O2—C21—C20 19.9 (5)

C2—C3—C4—C5 −1.3 (7) C19—C20—C21—O3 178.5 (3)

C3—C4—C5—C6 −1.3 (7) C15—C20—C21—O3 −0.6 (5)

C4—C5—C6—C1 2.2 (6) C19—C20—C21—O2 −3.4 (5)

C4—C5—C6—C7 −177.2 (4) C15—C20—C21—O2 177.5 (3)

O8—C1—C6—C5 178.0 (3) C25—N3—C22—C23 −58.8 (4)

C2—C1—C6—C5 −0.6 (5) C24—N2—C23—C22 −55.2 (5)

O8—C1—C6—C7 −2.6 (5) N3—C22—C23—N2 56.3 (4)

C2—C1—C6—C7 178.8 (3) C23—N2—C24—C25 54.9 (4)

Ti1—O7—C7—O9 −172.5 (3) C22—N3—C25—C24 58.1 (4)

Ti1—O7—C7—C6 10.8 (5) N2—C24—C25—N3 −55.9 (4)

C5—C6—C7—O9 −15.4 (6) C27—N1—C26—O10 2.8 (7)

C1—C6—C7—O9 165.3 (4) C28—N1—C26—O10 179.0 (4)

(10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N3—H3B···O9 0.90 1.83 2.722 (4) 170

N3—H3A···O3i 0.90 1.82 2.715 (4) 172

N2—H2B···O10ii 0.90 1.90 2.665 (5) 142

N2—H2A···O4 0.90 1.92 2.782 (4) 159

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical