• No results found

[2,6 Bis(2 pyridylamino)pyridine]dinitratocadmium monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "[2,6 Bis(2 pyridylamino)pyridine]dinitratocadmium monohydrate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1123–m1125 doi:10.1107/S1600536805014649 Fanget al. [Cd(NO

3)2(C15H13N5)]H2O

m1123

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

[2,6-Bis(2-pyridylamino)pyridine]dinitratocadmium

monohydrate

Xiao-Niu Fang, Xin-Fa Li and Xi-Rui Zeng*

Department of Chemistry, JingGangShan College, 343009 Ji’an, Jiangxi, People’s Republic of China

Correspondence e-mail: xiruizeng@jgsu.edu.cn

Key indicators

Single-crystal X-ray study T= 295 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.026 wRfactor = 0.060

Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The Cd atom in the title complex, [Cd(NO3)2(C15H13N5)]H2O

or [Cd(NO3)2(tpdaH2)]H2O (tpdaH2 is tripyridyldiamine),

has a pentagonal–bipyramidal coordination formed by the tridentate tpdaH2ligand and two chelate nitrate groups. The

tpdaH2 ligand is mer-coordinated, with the N atom of the

central pyridine ring in the equatorial position [Cd—N = 2.3148 (17) A˚ ] and the N atoms of the peripheral pyridine rings in the axial positions [Cd—N = 2.2345 (19) and 2.2351 (19) A˚ , and N—Cd—N = 169.39 (6)]. The remaining

four equatorial positions are occupied by the four O atoms of two nitrate groups, one of which has almost equal Cd—O bond lengths [2.431 (2) and 2.4644 (19) A˚ ], whereas the other shows a significant difference between the Cd—O bond lengths [2.441 (2) and 2.603 (2) A˚ ]. The H atoms of both NH groups of the tpdaH2ligand are involved in hydrogen bonds with water

O atoms as acceptors, whereas both water H atoms form hydrogen bonds with the O atoms of one of the nitrate groups. The hydrogen bonds link the molecules of the title complex and solvent molecules into an infinite three-dimensional network.

Comment

Transition metal complexes with polypyridylamine ligands have attracted considerable interest because of their diverse structures and special optical and electromagnetic properties (Xu et al., 2004). The tripyridyldiamine ligand exhibits

-donor and-acceptor properties and represents a popular chelating ligand (Jinget al., 2000). Metal chain complexes have mostly been used in fundamental studies of metal–metal interactions (Yang et al., 1997; Cottonet al., 1998) and metal string complexes have been investigated for their potential application as molecular metal wires (Peng et al., 2000). Previously, a series of polynuclear metal chain complexes has been successfully synthesized and characterized (Sheu et al., 1996; Shieh et al., 1997; Changet al., 1999). We have tried to extend these studies by synthesizing some new transition metal complexes having metal atoms with larger atomic radii. In particular, on the basis of earlier methods (Sheuet al., 1996; Shieh et al., 1997), we attempted to design the synthesis of complexes with Cd metal chains by reaction of the cadmium(II) ion with tripyridyldiamine (tpdaH2). However,

the only product that we could isolate in this way happened to be a mononuclear Cd complex; this result shows that the synthetic conditions we used are not suitable for the preparation of metal chains based on Cd—Cd bonds. We report here the synthesis and crystal structure of the title complex, (I), which was crystallized as the monohydrate.

(2)

The Cd1 atom in the title complex has a distorted penta-gonal–bipyramidal coordination formed by the tridentate tpdaH2 ligand and two chelate nitrate groups (Fig. 1). The

tpdaH2ligand ismer-coordinated, with the peripheral N1 and

N5 atoms in the axial positions [Cd1—N1 = 2.2345 (19) A˚ , Cd1—N5 = 2.2351 (19) A˚ and N1—Cd1—N5 = 169.39 (6)]

and the central N3 atom in the equatorial plane of the bipyramid [Cd1—N3 = 2.3148 (17) A˚ ]. The remaining four equatorial positions are occupied by two chelate nitrate groups, one of which has almost equal Cd—O bond lengths [Cd1—O1 = 2.4644 (19) A˚ and Cd1—O2 = 2.431 (2) A˚ ], whereas the other shows a significant difference in the Cd—O bond lengths [Cd1—O4 = 2.603 (2) A˚ and Cd1—O5 = 2.441 (2) A˚ ]. Even though the Cd—O distances for chelate nitrate groups are known to exhibit substantial variations (Wanget al., 1999; Nathan & Traina, 2003), the difference in bond-length pattern between the two nitrate groups in the structure of (I) seems surprising, given the identical functions of these two groups within the coordination sphere of atom Cd1. The notable difference between the two nitrate groups in the crystal structure of (I) is that the non-symmetrically coordinated group is more heavily involved in the hydrogen-bond system of the crystal structure (see Table 2).

Atoms O1, O2, O4, O5 and N3 in the equatorial plane of the pentagonal bipyramid are approximately coplanar with the central Cd atom, the maximum deviation from the least-squares plane through all six atoms being 0.172 (3) A˚ (for atom O5). The three pyridine rings of the tpdaH2ligand are

not coplanar. The dihedral angles between the planes of the central pyridine ring and two peripheral rings are 26.71 (11) and 22.51 (11). The planes of the nitrate groups form a

dihedral angle of 11.22 (11)with each other.

There are four ‘active’ H atoms in the structure. Atoms H2Aand H4Aof the tpdaH2ligand are involved in hydrogen

bonds with water atom O7 as an acceptor. The water H atoms, H7Band H7C, form hydrogen bonds with atoms O5 and O6 of one of the chelate nitrate groups (Table 2). These hydrogen bonds link the molecules of the complex as well as the solvent water molecules into an infinite three-dimensional network (Fig. 2).

metal-organic papers

m1124

Fanget al. [Cd(NO

[image:2.610.315.563.74.293.2] [image:2.610.105.237.85.245.2]

3)2(C15H13N5)]H2O Acta Cryst.(2005). E61, m1123–m1125

Figure 1

[image:2.610.316.561.358.719.2]

Molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

(3)

Experimental

Tripyridyldiamine (0.157 g) and Cd(NO3)24H2O (0.12 g) were mixed

in methanol (20 ml) and heated for several hours under reflux. The solvent was then removed, and the residue was recrystallized from a 1:1 mixture of diethyl ether and dichloromethane; single crystals suitable for X-ray diffraction analysis precipitated after 2 d.

Crystal data

[Cd(NO3)2(C15H13N5)]H2O

Mr= 517.74

Monoclinic, P21=c a= 9.3371 (3) A˚ b= 17.5155 (5) A˚ c= 11.6735 (3) A˚

= 96.964 (1)

V= 1895.05 (9) A˚3

Z= 4

Dx= 1.815 Mg m 3 MoKradiation Cell parameters from 6355

reflections

= 2.1–27.5

= 1.21 mm1 T= 295 (2) K

Irregular fragment, yellow 0.250.250.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 1998; Blessing, 1995)

Tmin= 0.687,Tmax= 0.773 16 790 measured reflections

4346 independent reflections 3059 reflections withI> 2(I) Rint= 0.025

max= 27.5

h=12!12 k=22!22 l=15!13

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.026

wR(F2) = 0.060

S= 1.01 4346 reflections 278 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.03P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.003

max= 0.37 e A˚

3 min=0.50 e A˚

3

Extinction correction:SHELXL97 Extinction coefficient: 0.00097 (18)

Table 1

Selected geometric parameters (A˚ ,).

Cd1—N1 2.2345 (19) Cd1—N3 2.3148 (17) Cd1—N5 2.2351 (19) Cd1—O1 2.4644 (19)

Cd1—O2 2.431 (2) Cd1—O4 2.603 (2) Cd1—O5 2.441 (2)

N1—Cd1—N3 85.62 (6) N1—Cd1—N5 169.39 (6) N1—Cd1—O1 96.37 (7) N1—Cd1—O2 97.71 (7) N1—Cd1—O4 88.99 (7) N1—Cd1—O5 85.90 (7) N3—Cd1—O1 94.57 (6) N3—Cd1—O2 145.78 (7) N3—Cd1—O4 94.83 (6) N3—Cd1—O5 143.15 (6) N5—Cd1—O1 88.70 (7)

[image:3.610.312.566.111.167.2]

N5—Cd1—O2 92.73 (7) N5—Cd1—O4 87.53 (7) N5—Cd1—O5 99.33 (7) N5—Cd1—N3 84.70 (6) O1—Cd1—O4 169.50 (7) O2—Cd1—O1 51.22 (6) O2—Cd1—O4 119.20 (7) O2—Cd1—O5 70.97 (7) O5—Cd1—O1 121.99 (6) O5—Cd1—O4 49.23 (6)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N2—H2A O7i

0.86 2.14 2.938 (3) 153 N4—H4A O7 0.86 2.22 3.009 (3) 153 O7—H7B O5ii

0.86 (3) 2.03 (3) 2.843 (2) 158 O7—H7C O6iii

0.78 (3) 2.31 (3) 3.063 (2) 163

Symmetry codes: (i)x1;y;z; (ii)x;y1 2;zþ

1

2; (iii)x;yþ1;zþ1.

All H atoms bonded to C and N atoms were placed geometrically and refined in a riding model (C—H = 0.93 A˚ and N—H = 0.86 A˚).

Uiso(H) values were constrained to be 1.2Ueqof the carrier atom.

Water H atoms were refined isotropically withUiso(H) constrained to

1.5Ueq(O).

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1998); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL-Plus(Sheldrick, 1997b); software used to prepare mate-rial for publication:SHELXTL-Plus.

The authors are grateful for the support of this work by the Natural Science Foundation of Jiangxi Province (grant Nos. 0320026 and 0320024).

References

Blessing, R. H. (1995).Acta Cryst.A51, 33–37.

Bruker (1998).SMART,SAINTandSADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chang, H.-C., Li, J.-T., Wang, C.-C., Lin, T.-W., Lee, H.-C., Lee, G.-H. & Peng, S.-M. (1999).Eur. J. Inorg. Chem.pp. 1243–1251.

Cotton, F. A., Daniels, L. M., Murillo, C. A. & Wang, X. (1998).Chem. Commun.pp. 39–40.

Jing, B.-W., Wu, T., Zhang, M.-W. & Shen, T. (2000).Chem. J. Chin. Univ.21, 395–400.

Nathan, L. C. & Traina, C. A. (2003).Polyhedron,22, 3213–3221.

Peng, S.-M., Wang, C.-C., Jang, Y.-L., Chen, Y.-H., Li, F.-Y., Mou, C.-Y. & Leung, M.-K. (2000).J. Magn. Mater.209, 80–83.

Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL-Plus. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheu, J. T., Liu, T. W. & Peng, S. M. (1996).Chem. Commun.pp. 315–316. Shieh, S.-J., Chou, C.-C., Lee, G.-H., Wang, C.-C. & Peng, S.-M. (1997).Angew.

Chem. Int. Ed. Engl.36, 56–58.

Wang, Z., Xiong, R.-G., Naggar, E., Foxman, B. M. & Lin, W.-B. (1999).Inorg. Chim. Acta,288, 215–219.

Xu, C., Qiao, H.-B., Mao, H.-Y., Zhang, H.-Y., Wu, Q.-A., Liu, H.-L. & Zhu, Y. (2004).J. Zheng Zhou Univ.36, 67–70.

Yang, M. H., Lin, T. W., Chou, C. C., Lee, H. C., Chang, H. C., Lee, G. H., Leung, M. K. & Peng, S. M. (1997).Chem. Commun.pp. 39–40.

metal-organic papers

Acta Cryst.(2005). E61, m1123–m1125 Fanget al. [Cd(NO

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, m1123–m1125

supporting information

Acta Cryst. (2005). E61, m1123–m1125 [https://doi.org/10.1107/S1600536805014649]

[2,6-Bis(2-pyridylamino)pyridine]dinitratocadmium monohydrate

Xiao-Niu Fang, Xin-Fa Li and Xi-Rui Zeng

[2,6-Bis(2-pyridylamino)pyridine]dinitratocadmium monohydrate

Crystal data

[Cd(NO3)2(C15H13N5)]·H2O

Mr = 517.74 Monoclinic, P21/c Hall symbol: -P 2ybc

a = 9.3371 (3) Å

b = 17.5155 (5) Å

c = 11.6735 (3) Å

β = 96.964 (1)°

V = 1895.05 (9) Å3

Z = 4

F(000) = 1032

Dx = 1.815 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 6355 reflections

θ = 2.1–27.5°

µ = 1.21 mm−1

T = 295 K Irregular, yellow 0.25 × 0.25 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan

(symmetry-related measurements; Blessing, 1995)

Tmin = 0.687, Tmax = 0.773

16790 measured reflections 4346 independent reflections 3059 reflections with I > 2σ(I)

Rint = 0.025

θmax = 27.5°, θmin = 2.1°

h = −12→12

k = −22→22

l = −15→13

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.026

wR(F2) = 0.060

S = 1.01 4346 reflections 278 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.03P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.003

Δρmax = 0.37 e Å−3 Δρmin = −0.50 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, m1123–m1125

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cd1 −0.22093 (2) 0.580916 (9) 0.241872 (16) 0.05142 (8)

N1 −0.4436 (2) 0.56444 (9) 0.15111 (16) 0.0475 (5)

N2 −0.4763 (2) 0.44358 (10) 0.23418 (17) 0.0497 (5)

H2A −0.5398 0.4230 0.2720 0.060*

N3 −0.21821 (19) 0.44965 (10) 0.26503 (14) 0.0407 (4)

N4 0.0387 (2) 0.44884 (10) 0.30035 (18) 0.0547 (5)

H4A 0.1069 0.4235 0.2745 0.066*

N5 −0.0055 (2) 0.57695 (10) 0.34863 (16) 0.0497 (5)

N6 −0.0945 (2) 0.64868 (13) 0.0541 (2) 0.0684 (6)

N7 −0.3571 (2) 0.67571 (13) 0.4080 (2) 0.0655 (6)

O1 −0.0964 (2) 0.57849 (10) 0.06744 (17) 0.0757 (5)

O2 −0.1512 (2) 0.68745 (10) 0.1272 (2) 0.0879 (6)

O3 −0.0410 (3) 0.67796 (14) −0.0246 (2) 0.1250 (10)

O4 −0.3324 (2) 0.60840 (12) 0.43157 (18) 0.0895 (7)

O5 −0.3134 (3) 0.69907 (10) 0.31589 (19) 0.0903 (7)

O6 −0.4181 (2) 0.71684 (13) 0.4697 (2) 0.1067 (8)

C1 −0.5017 (3) 0.62350 (13) 0.0861 (2) 0.0568 (6)

H1A −0.4426 0.6644 0.0726 0.068*

C2 −0.6429 (3) 0.62553 (15) 0.0395 (2) 0.0611 (7)

H2B −0.6797 0.6675 −0.0031 0.073*

C3 −0.7301 (3) 0.56422 (15) 0.0568 (2) 0.0599 (7)

H3A −0.8266 0.5641 0.0257 0.072*

C4 −0.6729 (3) 0.50356 (13) 0.1201 (2) 0.0532 (6)

H4B −0.7301 0.4614 0.1316 0.064*

C5 −0.5282 (2) 0.50510 (12) 0.16760 (19) 0.0429 (5)

C6 −0.3413 (3) 0.40808 (11) 0.25235 (18) 0.0413 (5)

C7 −0.3422 (3) 0.32918 (12) 0.2591 (2) 0.0492 (5)

H7A −0.4289 0.3024 0.2514 0.059*

C8 −0.2131 (3) 0.29129 (13) 0.2773 (2) 0.0541 (6)

H8A −0.2114 0.2383 0.2814 0.065*

C9 −0.0865 (3) 0.33173 (12) 0.2896 (2) 0.0510 (6)

H9A 0.0020 0.3068 0.3011 0.061*

C10 −0.0936 (2) 0.41097 (11) 0.28450 (19) 0.0433 (5)

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, m1123–m1125

C12 0.2296 (3) 0.52465 (14) 0.3938 (2) 0.0573 (6)

H12A 0.2912 0.4829 0.3934 0.069*

C13 0.2801 (3) 0.59257 (15) 0.4388 (2) 0.0644 (7)

H13A 0.3766 0.5978 0.4684 0.077*

C14 0.1867 (3) 0.65355 (15) 0.4400 (2) 0.0658 (7)

H14A 0.2189 0.7005 0.4701 0.079*

C15 0.0468 (3) 0.64329 (13) 0.3960 (2) 0.0605 (7)

H15A −0.0165 0.6840 0.3986 0.073*

O7 0.2914 (2) 0.34309 (11) 0.29289 (18) 0.0646 (5)

H7B 0.277 (3) 0.304 (2) 0.248 (2) 0.097*

H7C 0.310 (4) 0.3213 (19) 0.351 (3) 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cd1 0.05242 (12) 0.02919 (9) 0.07100 (14) −0.00053 (7) 0.00080 (8) 0.00281 (8)

N1 0.0508 (12) 0.0375 (10) 0.0537 (12) 0.0027 (8) 0.0049 (9) 0.0049 (8)

N2 0.0423 (11) 0.0419 (10) 0.0658 (13) −0.0018 (8) 0.0106 (9) 0.0119 (9)

N3 0.0451 (10) 0.0286 (8) 0.0489 (11) −0.0006 (8) 0.0077 (8) 0.0007 (7)

N4 0.0424 (11) 0.0374 (10) 0.0857 (15) 0.0013 (8) 0.0139 (10) −0.0086 (10)

N5 0.0553 (12) 0.0365 (10) 0.0567 (12) −0.0021 (9) 0.0048 (9) −0.0052 (9)

N6 0.0652 (15) 0.0551 (15) 0.0853 (18) −0.0095 (11) 0.0105 (13) 0.0103 (13)

N7 0.0673 (15) 0.0573 (14) 0.0698 (17) 0.0056 (11) −0.0002 (12) −0.0116 (12)

O1 0.0928 (15) 0.0498 (11) 0.0878 (14) −0.0128 (9) 0.0247 (11) −0.0028 (10)

O2 0.0933 (16) 0.0487 (11) 0.1238 (19) −0.0015 (10) 0.0224 (14) −0.0022 (12)

O3 0.144 (2) 0.1027 (18) 0.139 (2) −0.0056 (16) 0.0598 (19) 0.0548 (16)

O4 0.1170 (18) 0.0683 (13) 0.0889 (15) 0.0332 (12) 0.0355 (13) 0.0237 (11)

O5 0.143 (2) 0.0493 (11) 0.0776 (15) −0.0070 (12) 0.0100 (14) 0.0051 (10)

O6 0.0984 (17) 0.0939 (16) 0.128 (2) 0.0228 (13) 0.0159 (14) −0.0569 (15)

C1 0.0674 (18) 0.0404 (13) 0.0620 (16) 0.0060 (11) 0.0056 (13) 0.0110 (11)

C2 0.0729 (19) 0.0557 (16) 0.0533 (16) 0.0216 (14) 0.0016 (13) 0.0062 (12)

C3 0.0534 (15) 0.0673 (17) 0.0565 (16) 0.0121 (12) −0.0030 (12) −0.0032 (13)

C4 0.0501 (15) 0.0530 (14) 0.0552 (16) −0.0028 (11) 0.0010 (12) −0.0001 (11)

C5 0.0467 (14) 0.0396 (11) 0.0430 (13) 0.0026 (9) 0.0077 (10) 0.0000 (10)

C6 0.0482 (12) 0.0362 (11) 0.0400 (12) −0.0023 (10) 0.0072 (10) 0.0035 (9)

C7 0.0552 (14) 0.0352 (11) 0.0579 (15) −0.0084 (11) 0.0097 (11) −0.0005 (10)

C8 0.0697 (17) 0.0289 (11) 0.0656 (16) 0.0005 (11) 0.0163 (13) 0.0019 (10)

C9 0.0524 (14) 0.0349 (11) 0.0676 (16) 0.0077 (10) 0.0154 (12) 0.0042 (11)

C10 0.0487 (13) 0.0353 (11) 0.0469 (13) 0.0006 (10) 0.0097 (10) −0.0002 (10)

C11 0.0492 (15) 0.0421 (12) 0.0455 (14) −0.0009 (10) 0.0069 (11) 0.0045 (10)

C12 0.0531 (16) 0.0584 (15) 0.0596 (16) 0.0005 (12) 0.0030 (12) 0.0033 (12)

C13 0.0612 (17) 0.0734 (19) 0.0552 (16) −0.0152 (14) −0.0067 (13) 0.0015 (13)

C14 0.081 (2) 0.0572 (16) 0.0557 (17) −0.0210 (14) −0.0042 (14) −0.0054 (13)

C15 0.0744 (19) 0.0429 (14) 0.0625 (17) −0.0022 (12) 0.0016 (14) −0.0078 (12)

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, m1123–m1125

Geometric parameters (Å, º)

Cd1—N1 2.2345 (19) C1—C2 1.365 (3)

Cd1—N3 2.3148 (17) C2—C3 1.377 (4)

Cd1—N5 2.2351 (19) C3—C4 1.365 (3)

Cd1—O1 2.4644 (19) C4—C5 1.397 (3)

Cd1—O2 2.431 (2) C6—C7 1.384 (3)

Cd1—O4 2.603 (2) C7—C8 1.370 (3)

Cd1—O5 2.441 (2) C8—C9 1.371 (3)

N1—C1 1.357 (3) C9—C10 1.391 (3)

N1—C5 1.334 (3) C11—C12 1.398 (3)

N2—C5 1.381 (3) C12—C13 1.361 (3)

N2—C6 1.398 (3) C13—C14 1.380 (4)

N3—C6 1.354 (3) C14—C15 1.356 (4)

N3—C10 1.341 (3) N2—H2A 0.8602

N4—C10 1.395 (3) N4—H4A 0.8603

N4—C11 1.382 (3) C1—H1A 0.9293

N5—C11 1.331 (3) C2—H2B 0.9297

N5—C15 1.353 (3) C3—H3A 0.9297

N6—O1 1.240 (2) C4—H4B 0.9306

N6—O2 1.257 (3) C7—H7A 0.9305

N6—O3 1.211 (3) C8—H8A 0.9294

N7—O4 1.226 (3) C9—H9A 0.9299

N7—O5 1.263 (3) C12—H12A 0.9307

N7—O6 1.209 (3) C13—H13A 0.9296

O7—H7B 0.86 (3) C14—H14A 0.9298

O7—H7C 0.78 (3) C15—H15A 0.9290

N1—Cd1—N3 85.62 (6) N2—C5—C4 117.7 (2)

N1—Cd1—N5 169.39 (6) N3—C6—C7 122.8 (2)

N1—Cd1—O1 96.37 (7) N3—C6—N2 121.02 (18)

N1—Cd1—O2 97.71 (7) N3—C10—C9 123.2 (2)

N1—Cd1—O4 88.99 (7) N3—C10—N4 121.22 (18)

N1—Cd1—O5 85.90 (7) N4—C11—C12 117.6 (2)

N3—Cd1—O1 94.57 (6) N5—C11—N4 121.1 (2)

N3—Cd1—O2 145.78 (7) N5—C11—C12 121.3 (2)

N3—Cd1—O4 94.83 (6) N5—C15—C14 123.5 (2)

N3—Cd1—O5 143.15 (6) N5—C15—H15A 118.24

N5—Cd1—O1 88.70 (7) C1—C2—C3 118.7 (2)

N5—Cd1—O2 92.73 (7) C1—C2—H2B 120.70

N5—Cd1—O4 87.53 (7) C2—C1—H1A 118.51

N5—Cd1—O5 99.33 (7) C2—C3—H3A 120.44

N5—Cd1—N3 84.70 (6) C3—C2—H2B 120.55

O1—Cd1—O4 169.50 (7) C3—C4—C5 119.7 (2)

O1—N6—O2 115.9 (2) C3—C4—H4B 120.12

O2—Cd1—O1 51.22 (6) C4—C3—C2 119.2 (2)

O2—Cd1—O4 119.20 (7) C4—C3—H3A 120.43

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, m1123–m1125

O3—N6—O1 121.9 (3) C5—C4—H4B 120.16

O3—N6—O2 122.2 (3) C6—N2—H2A 113.61

O4—N7—O5 115.5 (2) C6—C7—H7A 120.60

O5—Cd1—O1 121.99 (6) C7—C6—N2 116.2 (2)

O5—Cd1—O4 49.23 (6) C7—C8—C9 119.8 (2)

O6—N7—O4 121.9 (3) C7—C8—H8A 120.07

O6—N7—O5 122.6 (3) C8—C7—C6 118.8 (2)

N6—O1—Cd1 95.86 (16) C8—C7—H7A 120.64

N6—O2—Cd1 97.01 (15) C8—C9—C10 118.4 (2)

N7—O4—Cd1 94.06 (16) C8—C9—H9A 120.83

N7—O5—Cd1 101.03 (15) C9—C8—H8A 120.10

C1—N1—Cd1 116.92 (15) C9—C10—N4 115.6 (2)

C5—N1—C1 118.1 (2) C10—N4—H4A 112.92

C5—N1—Cd1 124.44 (15) C10—C9—H9A 120.79

C5—N2—C6 132.87 (18) C11—N4—H4A 112.87

C6—N3—Cd1 121.62 (14) C11—C12—H12A 120.29

C10—N3—C6 117.02 (18) C12—C13—C14 119.4 (3)

C10—N3—Cd1 121.23 (14) C12—C13—H13A 120.28

C11—N4—C10 134.18 (19) C13—C12—C11 119.5 (2)

C11—N5—C15 118.0 (2) C13—C12—H12A 120.21

C11—N5—Cd1 123.31 (15) C13—C14—H14A 120.84

C15—N5—Cd1 117.23 (16) C14—C13—H13A 120.34

N1—C1—C2 123.0 (2) C14—C15—H15A 118.24

N1—C1—H1A 118.51 C15—C14—C13 118.3 (2)

N1—C5—N2 121.0 (2) C15—C14—H14A 120.85

N1—C5—C4 121.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H2A···O7i 0.86 2.14 2.938 (3) 153

N4—H4A···O7 0.86 2.22 3.009 (3) 153

O7—H7B···O5ii 0.86 (3) 2.03 (3) 2.843 (2) 158

O7—H7C···O6iii 0.78 (3) 2.31 (3) 3.063 (2) 163

Figure

Figure 1
Table 2Hydrogen-bond geometry (A˚ , �).

References

Related documents

Reinforced cement concrete (RCC) used for roof construc- tion has high thermal conductivity. The outer temperature of conventional roofs varies from 32˚C to 55˚C in summer season

оспорване по реда на АПК на реше- нието на КЗД, с което се налага санкция, при препращащата разпоредба на следващата алинея от същия член към производствата по

Although the mobility of Indian immigrants into the UK may have decreased, the relative high fertility rate of immigrant workers (due to a relatively young immigrant

SB − AGR is the agricultural material prices, and SB − M ET is the metal, SB − F OO is the food prices, and SB − ST O is the stock market factors estimated by the Dynamic

and irrelevant records were excluded. Finally, 25 studies were included and five elements identified that are important for integrating traditional and complementary

increase job satisfaction among lower level staff while organisational culture has direct.. relationship

More recently, the state- of-art frame-based semantic role labeling system discussed in (Johansson and Nugues, 2008b) re- ports a 19% drop in accuracy for the argument

Actually what we mean by an adjoining operation is not •eeessarily just one adjoining operation but the minimum number so that no obligatory constraints are