• No results found

Hexa­carbonyl­hexa­kis­(μ 3,4 di­methyl­benzene­thiol­ato)­triiron(II)

N/A
N/A
Protected

Academic year: 2020

Share "Hexa­carbonyl­hexa­kis­(μ 3,4 di­methyl­benzene­thiol­ato)­triiron(II)"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1045–m1047 doi:10.1107/S1600536805013024 Mingqiang Huet al. [Fe

3(C8H9S)6(CO)6]

m1045

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hexacarbonylhexakis(

l

-3,4-dimethyl-benzenethiolato)triiron(II)

Mingqiang Hu, Chengbing Ma and Changneng Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People’s Republic of China

Correspondence e-mail: ccn@fjirsm.ac.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.006 A˚

Rfactor = 0.049

wRfactor = 0.106

Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title complex, [Fe3(C8H9S)6(CO)6], contains one Fe II atom and two Fe(CO)3subclusters connected through six 3,4-dimethylbenzenethiolate (2-S) ligands. The compound crys-tallizes in the trigonal space groupR3 with two independent molecules in the asymmetric unit, one molecule possessing an inversion center and the other possessing 3 symmetry. The Fe—S bond lengths are in the range 2.3386 (9)–2.5733 (8) A˚ and the S—Fe—S angles are in the range 81.20 (3)–83.74 (3).

Comment

Hydrogenases are highly efficient hydrogen-processing enzymes present in microorganisms for both the production and the uptake of dihydrogen. In the two major types of organometallic hydrogenases, all iron hydrogenases are more O2-sensitive than [NiFe] hydrogenases and are more efficient for H2 production (Adams, 1990). X-ray crystallographic studies for Fe-only hydrogenases on the H2-uptake enzyme from D. desulfuricans and the H2-evolving enzyme from C.

pasteurianum have recently shown that the H-cluster (hydrogen-producing cluster) is actually composed of a binuclear iron unit,viz. (-SRS)[Fe(CO)2L]2(withR= alkyl,

L = cyano or hydride), and a typical [4Fe4S] cluster bridged through a cysteine-S residue to each other (Peterset al., 1998; Nicoletet al., 1999, 2001). Encouraged by the details revealed by high-resolution protein crystallography, new biologically relevant structures, simulating the organometallic structure Fe2(SR)2(CN)2(CO)4 of the H-cluster, have been proposed. We repeated the preparation of Fe2(SR)2(CO)6by the reac-tion of Fe3(CO)12 with the arenethiol species, using the method of Rauchfuss (Gloaguenet al., 2001).

We obtained the title compound, (I), which represents a new example of a [3Fe6S] core cluster containing bridging arenethiolate ligands. Similar clusters have been reported in

(2)

other complexes, e.g. Fe3(CO)6(C6H5S)6 (Berger & Strahle, 1984; Walters & Dewan, 1986).

Complex (I) crystallizes in a solvent-free form in the trigonal space groupR3, with parts of two independent neutral linear triiron clusters per asymmetric unit. The molecular structure of the triiron cluster possessing an inversion center (atom Fe2) is shown in Fig. 1. The molecular structure of the triiron cluster possessing 3 symmetry (atom Fe4) is shown in Fig. 2. Each Fe atom has an 18-electron shell attributed to four electrons of2–S and two electrons of the terminal carbonyl groups. The central FeII atoms are bridged to two outer symmetrical Fe(CO)3 subclusters through six dimethyl-benzenethiolate ligands, with the Fecentral—S distances ranging from 2.4726 (8) to 2.5733 (8) A˚ and the Fecentral—S—Fecarbonyl angles ranging from 81.20 (3) to 83.74 (3). The Fe(CO)

3 subcluster has an octahedral coordination and is comparable in size to that of the organometallic model complexes for the H-cluster. The average Fecarbonyl—S and Fecarbonyl—C distances of 2.3473 (5) and 1.803 (2) A˚ , respectively, fall within the range of those from the binuclear organometallic models,

e.g. (SCH2C6H4CH2S)Fe2(CO)6 (Lyon et al., 2001), (SC6H5)2Fe2(CO)6(Adelekeet al., 1992).

Experimental

Reactions were carried out under an atmosphere of purified nitrogen, using standard Schlenk techniques. Fe3(CO)12(1 g) was suspended in

tetrahydrofuran (4 ml), followed by the addition of 2 equivalents of 3,4-dimethylbenzenethiol. The solution changed from very dark green to very dark red after stirring for 1 h. Stirring at 343 K was continued overnight, after which the solution was cooled to room temperature, filtered and evaporated to dryness in a vacuum. The residue was extracted with hexane (310 ml), and the combined extracts were then reduced toca5 ml in a vacuum. Red crystals of (I) were obtained from this solution at 253 K.

Crystal data

[Fe3(C8H9S)6(CO)6] Mr= 1158.88

Trigonal,R3

a= 40.0008 (12) A˚

c= 12.0928 (6) A˚

V= 16756.9 (7) A˚3 Z= 12

Dx= 1.378 Mg m

3

MoKradiation

Cell parameters from 10 404 reflections

= 1.8–25.0 = 1.04 mm1 T= 293 (2) K Prism, black

0.500.300.15 mm

Data collection

BrukerP4 diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.695,Tmax= 0.856

34 520 measured reflections 6567 independent reflections

5848 reflections withI> 2(I)

Rint= 0.038 max= 25.0 h=47!44

k=47!47

l=14!14

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.049

wR(F2) = 0.106 S= 1.09 6567 reflections 417 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0398P)2

+ 59.4153P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.31 e A˚

3 min=0.27 e A˚

3

H atoms were placed in calculated positions and treated as riding atoms, with C—H distances of 0.93 A˚ and withUiso(H) = 1.2Ueq(C).

Data collection: CrystalClear (Rigaku, 2000); cell refinement:

CrystalClear; data reduction:CrystalClear; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

metal-organic papers

m1046

Mingqiang Huet al. [Fe

[image:2.610.312.564.72.290.2]

3(C8H9S)6(CO)6] Acta Cryst.(2005). E61, m1045–m1047 Figure 1

A view of the molecular structure of the triiron cluster in (I), which possesses an inversion center (atom Fe2). Unlabeled atoms are related to labeled atoms by (1x,y,z). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2

[image:2.610.46.300.74.263.2]
(3)

This work was financially supported by NNSFC (Nos. 20471061 and 30170229).

References

Adams, M. W. W. (1990).Biochim. Biophys. Acta,1020, 115–145.

Adeleke, J. A., Chen, Y.-W. & Liu, L.-K. (1992).Organometallics,11, 2543– 2550.

Berger, U. & Strahle, J. (1984).Z. Anorg. Allg. Chem.516, 19–29.

Gloaguen, F., Lawrence, J. D., Schmidt, M., Wilson, S. R. & Rauchfuss, T. B. (2001).J. Am. Chem. Soc.123, 12518–12527.

Lyon, E. J., Georgakaki, I. P., Reibenspies, J. H. & Darensbourg, M. Y. (2001).

J. Am. Chem. Soc.123, 3268–3278.

Nicolet, Y., de Lacey, A. L., Verne´de, X., Fernandez, V. M., Hatchikian, E. C. & Fontecilla-Camps, J. C. (2001).J. Am. Chem. Soc.123, 1596–1601. Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C.

(1999).Structure,7, 13–23.

Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998).Science,

283, 1853–1858.

Rigaku (2000). CrystalClear. Version 1.35. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.

Sheldrick, G. M. (1996).SADABS.University of Go¨ttingen, Germany. Siemens (1994).SHELXTL.Version 5. Siemens Analytical X-ray Instruments

Inc., Madison, Wisconsin, USA.

Walters, M. A. & Dewan, J. C. (1986).Inorg. Chem.25, 4889–4893.

metal-organic papers

Acta Cryst.(2005). E61, m1045–m1047 Mingqiang Huet al. [Fe

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, m1045–m1047

supporting information

Acta Cryst. (2005). E61, m1045–m1047 [https://doi.org/10.1107/S1600536805013024]

Hexacarbonylhexakis(

µ

-3,4-dimethylbenzenethiolato)triiron(II)

Mingqiang Hu, Chengbing Ma and Changneng Chen

Hexacarbonylhexakis(µ-3,4-dimethylbenzenethiolato)triiron(II)

Crystal data

[Fe3(C8H9S)6(CO)6]

Mr = 1158.88

Trigonal, R3 Hall symbol: -R 3

a = 40.0008 (12) Å

c = 12.093 Å

V = 16756.9 (7) Å3

Z = 12

F(000) = 7200

Dx = 1.378 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 10404 reflections

θ = 1.8–25.0°

µ = 1.04 mm−1

T = 293 K Prism, black

0.50 × 0.30 × 0.15 mm

Data collection

Bruker P4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 14.6306 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.695, Tmax = 0.856

34520 measured reflections 6567 independent reflections 5848 reflections with I > 2σ(I)

Rint = 0.038

θmax = 25.0°, θmin = 1.8°

h = −47→44

k = −47→47

l = −14→14

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.049

wR(F2) = 0.106

S = 1.09 6567 reflections 417 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0398P)2 + 59.4153P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.31 e Å−3

Δρmin = −0.27 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, m1045–m1047

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, m1045–m1047

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, m1045–m1047

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, m1045–m1047

O3 0.085 (2) 0.104 (3) 0.0451 (18) 0.051 (2) −0.0245 (16) −0.0178 (17) O2 0.0415 (17) 0.096 (2) 0.104 (3) 0.0347 (17) 0.0072 (16) −0.013 (2) C18 0.170 (6) 0.110 (5) 0.066 (3) 0.088 (5) 0.006 (4) −0.027 (3)

Geometric parameters (Å, º)

Fe3—C28i 1.802 (4) C5—H5A 0.9300

Fe3—C28ii 1.802 (4) C4—C9 1.387 (5)

Fe3—C28 1.802 (4) C3—O3 1.138 (4)

Fe3—S4 2.3481 (10) C2—O2 1.128 (4)

Fe3—S4i 2.3481 (10) C1—O1 1.128 (4)

Fe3—S4ii 2.3481 (10) C25—C20 1.380 (5)

Fe4—S4i 2.5440 (9) C25—C24 1.387 (5)

Fe4—S4ii 2.5440 (9) C25—H25A 0.9300

Fe4—S4iii 2.5440 (9) C17—C16 1.388 (5)

Fe4—S4 2.5440 (9) C17—H17A 0.9300

Fe4—S4iv 2.5440 (9) C22—C21 1.390 (5)

Fe4—S4v 2.5440 (9) C22—C23 1.391 (5)

S4—C29 1.789 (3) C22—C26 1.508 (5)

C30—C31 1.392 (5) C8—C9 1.375 (5)

C30—C29 1.389 (5) C8—C7 1.378 (6)

C30—H30A 0.9300 C8—H8A 0.9300

C29—C34 1.376 (5) C16—C15 1.375 (6)

O4—C28 1.136 (4) C16—H16A 0.9300

C32—C31 1.383 (6) C6—C7 1.401 (6)

C32—C33 1.377 (6) C6—C11 1.509 (5)

C32—C36 1.518 (5) C7—C10 1.514 (5)

C34—C33 1.393 (5) C23—C24 1.379 (6)

C34—H34A 0.9300 C23—C27 1.514 (5)

C31—C35 1.511 (6) C20—C21 1.392 (5)

C33—H33A 0.9300 C13—C14 1.398 (5)

C36—H36A 0.9600 C13—H13A 0.9300

C36—H36B 0.9600 C11—H11A 0.9600

C36—H36C 0.9600 C11—H11B 0.9600

C35—H35A 0.9600 C11—H11C 0.9600

C35—H35B 0.9600 C9—H9A 0.9300

C35—H35C 0.9600 C15—C14 1.393 (6)

Fe1—C1 1.801 (4) C15—C19 1.514 (5)

Fe1—C3 1.803 (4) C21—H21A 0.9300

Fe1—C2 1.807 (4) C24—H24A 0.9300

Fe1—S2 2.3386 (9) C27—H27A 0.9600

Fe1—S1 2.3436 (9) C27—H27B 0.9600

Fe1—S3 2.3589 (9) C27—H27C 0.9600

Fe2—S1vi 2.4726 (8) C14—C18 1.514 (6)

Fe2—S1 2.4726 (8) C26—H26A 0.9600

Fe2—S2vi 2.5207 (8) C26—H26B 0.9600

Fe2—S2 2.5207 (8) C26—H26C 0.9600

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, m1045–m1047

Fe2—S3vi 2.5733 (8) C19—H19B 0.9600

S2—C12 1.781 (3) C19—H19C 0.9600

S3—C20 1.788 (3) C10—H10A 0.9600

S1—C4 1.784 (3) C10—H10B 0.9600

C12—C13 1.378 (5) C10—H10C 0.9600

C12—C17 1.390 (5) C18—H18A 0.9600

C5—C6 1.392 (5) C18—H18B 0.9600

C5—C4 1.387 (5) C18—H18C 0.9600

C28i—Fe3—C28ii 92.80 (17) C20—S3—Fe2 116.82 (11)

C28i—Fe3—C28 92.80 (17) Fe1—S3—Fe2 81.20 (3)

C28ii—Fe3—C28 92.80 (17) C4—S1—Fe1 111.04 (11)

C28i—Fe3—S4 173.78 (13) C4—S1—Fe2 115.38 (11)

C28ii—Fe3—S4 90.39 (12) Fe1—S1—Fe2 83.67 (3)

C28—Fe3—S4 92.38 (12) C13—C12—C17 118.9 (3) C28i—Fe3—S4i 92.38 (12) C13—C12—S2 118.5 (3)

C28ii—Fe3—S4i 173.78 (13) C17—C12—S2 122.4 (3)

C28—Fe3—S4i 90.39 (12) C6—C5—C4 121.6 (3)

S4—Fe3—S4i 84.14 (4) C6—C5—H5A 119.2

C28i—Fe3—S4ii 90.39 (12) C4—C5—H5A 119.2

C28ii—Fe3—S4ii 92.38 (12) C9—C4—C5 118.9 (3)

C28—Fe3—S4ii 173.78 (13) C9—C4—S1 118.0 (3)

S4—Fe3—S4ii 84.14 (4) C5—C4—S1 123.1 (3)

S4i—Fe3—S4ii 84.14 (4) O3—C3—Fe1 179.5 (6)

S4i—Fe4—S4ii 76.41 (3) O2—C2—Fe1 178.9 (4)

S4i—Fe4—S4iii 103.59 (3) O1—C1—Fe1 178.6 (4)

S4ii—Fe4—S4iii 180.00 (4) C20—C25—C24 119.9 (4)

S4i—Fe4—S4 76.41 (3) C20—C25—H25A 120.0

S4ii—Fe4—S4 76.41 (3) C24—C25—H25A 120.0

S4iii—Fe4—S4 103.59 (3) C16—C17—C12 119.5 (3)

S4i—Fe4—S4iv 180.00 (4) C16—C17—H17A 120.2

S4ii—Fe4—S4iv 103.59 (3) C12—C17—H17A 120.2

S4iii—Fe4—S4iv 76.41 (3) C21—C22—C23 119.7 (3)

S4—Fe4—S4iv 103.59 (3) C21—C22—C26 119.4 (3)

S4i—Fe4—S4v 103.59 (3) C23—C22—C26 121.0 (4)

S4ii—Fe4—S4v 103.59 (3) C9—C8—C7 122.1 (4)

S4iii—Fe4—S4v 76.41 (3) C9—C8—H8A 119.0

S4—Fe4—S4v 180.00 (4) C7—C8—H8A 119.0

S4iv—Fe4—S4v 76.41 (3) C15—C16—C17 121.8 (4)

(10)

supporting information

sup-7 Acta Cryst. (2005). E61, m1045–m1047

C31—C32—C33 118.6 (4) C24—C23—C27 120.3 (4) C31—C32—C36 121.8 (4) C22—C23—C27 121.4 (4) C33—C32—C36 119.6 (4) C25—C20—C21 118.3 (3) O4—C28—Fe3 176.6 (4) C25—C20—S3 119.2 (3) C29—C34—C33 119.4 (4) C21—C20—S3 122.5 (3) C29—C34—H34A 120.3 C12—C13—C14 121.6 (4) C33—C34—H34A 120.3 C12—C13—H13A 119.2 C32—C31—C30 119.6 (4) C14—C13—H13A 119.2 C32—C31—C35 121.6 (4) C6—C11—H11A 109.5 C30—C31—C35 118.8 (4) C6—C11—H11B 109.5 C32—C33—C34 122.1 (4) H11A—C11—H11B 109.5 C32—C33—H33A 118.9 C6—C11—H11C 109.5 C34—C33—H33A 118.9 H11A—C11—H11C 109.5 C32—C36—H36A 109.5 H11B—C11—H11C 109.5 C32—C36—H36B 109.5 C8—C9—C4 119.7 (4) H36A—C36—H36B 109.5 C8—C9—H9A 120.1 C32—C36—H36C 109.5 C4—C9—H9A 120.1 H36A—C36—H36C 109.5 C16—C15—C14 119.0 (3) H36B—C36—H36C 109.5 C16—C15—C19 119.5 (4) C31—C35—H35A 109.5 C14—C15—C19 121.5 (4) C31—C35—H35B 109.5 C22—C21—C20 121.7 (3) H35A—C35—H35B 109.5 C22—C21—H21A 119.2 C31—C35—H35C 109.5 C20—C21—H21A 119.2 H35A—C35—H35C 109.5 C23—C24—C25 122.2 (4) H35B—C35—H35C 109.5 C23—C24—H24A 118.9 C1—Fe1—C3 95.14 (17) C25—C24—H24A 118.9 C1—Fe1—C2 94.56 (16) C23—C27—H27A 109.5 C3—Fe1—C2 94.67 (17) C23—C27—H27B 109.5 C1—Fe1—S2 88.78 (12) H27A—C27—H27B 109.5 C3—Fe1—S2 92.12 (12) C23—C27—H27C 109.5 C2—Fe1—S2 172.13 (12) H27A—C27—H27C 109.5 C1—Fe1—S1 173.89 (12) H27B—C27—H27C 109.5 C3—Fe1—S1 86.71 (13) C15—C14—C13 119.1 (4) C2—Fe1—S1 91.08 (12) C15—C14—C18 121.8 (4) S2—Fe1—S1 85.33 (3) C13—C14—C18 119.1 (4) C1—Fe1—S3 91.92 (12) C22—C26—H26A 109.5 C3—Fe1—S3 171.31 (13) C22—C26—H26B 109.5 C2—Fe1—S3 89.81 (13) H26A—C26—H26B 109.5 S2—Fe1—S3 82.94 (3) C22—C26—H26C 109.5 S1—Fe1—S3 85.76 (3) H26A—C26—H26C 109.5 S1vi—Fe2—S1 180.00 (5) H26B—C26—H26C 109.5

S1vi—Fe2—S2vi 78.91 (3) C15—C19—H19A 109.5

S1—Fe2—S2vi 101.09 (3) C15—C19—H19B 109.5

S1vi—Fe2—S2 101.09 (3) H19A—C19—H19B 109.5

S1—Fe2—S2 78.91 (3) C15—C19—H19C 109.5 S2vi—Fe2—S2 180.00 (5) H19A—C19—H19C 109.5

S1vi—Fe2—S3 101.31 (3) H19B—C19—H19C 109.5

(11)

supporting information

sup-8 Acta Cryst. (2005). E61, m1045–m1047

S2vi—Fe2—S3 104.72 (3) C7—C10—H10B 109.5

S2—Fe2—S3 75.28 (3) H10A—C10—H10B 109.5 S1vi—Fe2—S3vi 78.69 (3) C7—C10—H10C 109.5

S1—Fe2—S3vi 101.31 (3) H10A—C10—H10C 109.5

S2vi—Fe2—S3vi 75.28 (3) H10B—C10—H10C 109.5

S2—Fe2—S3vi 104.72 (3) C14—C18—H18A 109.5

S3—Fe2—S3vi 180.00 (7) C14—C18—H18B 109.5

C12—S2—Fe1 112.01 (11) H18A—C18—H18B 109.5 C12—S2—Fe2 117.88 (12) C14—C18—H18C 109.5 Fe1—S2—Fe2 82.72 (3) H18A—C18—H18C 109.5 C20—S3—Fe1 109.96 (11) H18B—C18—H18C 109.5

Figure

Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical