• No results found

4 [2 (Di­phenyl­phosphino)phenyl­imino­meth­yl] N,N di­methyl­aniline, a new Schiff base containing tri­phenyl­phosphine

N/A
N/A
Protected

Academic year: 2020

Share "4 [2 (Di­phenyl­phosphino)phenyl­imino­meth­yl] N,N di­methyl­aniline, a new Schiff base containing tri­phenyl­phosphine"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2440

Yanget al. C

27H25N2P doi:10.1107/S160053680601871X Acta Cryst.(2006). E62, o2440–o2441

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

4-[2-(Diphenylphosphino)phenyliminomethyl]-N

,

N

-dimethylaniline, a new Schiff base

containing triphenylphosphine

Kai-Bin Yang, Li-Rong Lin and Rong-Bin Huang*

Department of Chemistry, Xiamen University, Xiamen 361005, People’s Republic of China

Correspondence e-mail: rbhuang@xmu.edu.cn

Key indicators

Single-crystal X-ray study T= 173 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.056 wRfactor = 0.141

Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 10 May 2006 Accepted 19 May 2006

#2006 International Union of Crystallography All rights reserved

The title compound, C27H25N2P, is a Schiff base containing triphenylphosphine. The molecule has a trans configuration about the C N double bond [1.277 (2) A˚ ]. The crystal packing is stabilized by van der Waals forces.

Comment

Schiff base ligands have various applications in the fields of synthesis and catalysis, and exhibit biological activity (Cozziet al., 2003; Qiaoet al., 2004; Maciejewskaet al., 1999; Jalilet al., 2001; Li et al., 2005). Some Schiff bases containing oxygen, sulfur and complexes of transition metal ions have been synthesized (Riveraet al., 2006; Sahet al., 2006; Sharif et al., 2006) but few Schiff bases containing phosphorus have been reported. A Schiff base containing triphenylphosphine may be expected to be a useful bidentate ligand with new properties, because triphenylphosphine is a well known ligand for coordination compounds. Here we present the title compound, (I), a new Schiff base derivative containing triphenlphosphine.

In (I) (Fig. 1), all bond lengths and angles show normal values. The molecule has a trans configuration about the C9 N2 double bond. The crystal packing is stabilized by van der Waals forces.

Experimental

2-(Diphenylphosphino)benzenamine was prepared according to the literature method of Papathanasiouet al.(1997). The Schiff base was synthesized by refluxing an ethanol solution (20 ml) of

4-(dimethyl-amino)benzaldehyde (10 mmol) and

(2)

Crystal data

C27H25N2P

Mr= 408.46

Monoclinic,P21=c

a= 17.579 (4) A˚

b= 14.419 (3) A˚

c= 8.732 (2) A˚

= 100.985 (4)

V= 2172.7 (8) A˚3

Z= 4

Dx= 1.249 Mg m 3

MoKradiation

= 0.14 mm 1

T= 173 (2) K Block, yellow 0.500.430.21 mm

Data collection

Bruker SMART APEX 2000 CCD diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.932,Tmax= 0.971

12521 measured reflections 4719 independent reflections 4172 reflections withI> 2(I)

Rint= 0.024

max= 27.0

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.056

wR(F2) = 0.141

S= 1.11 4719 reflections 271 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0695P)2 + 0.8283P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.57 e A˚ 3

min= 0.42 e A˚ 3

All H atoms were positioned geometrically, with C—H distances of 0.95–0.98 A˚ , and refined using a riding model, withUiso(H) = 1.2 or

1.5Ueq(C).

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

References

Bruker (2001).SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Cozzi, P. G., Dolci, L. S., Garelli, A., Montalti, M., Prodi, L. & Zaccheroni, N. (2003).New J. Chem.27, 692–697.

Jalil, M. A., Fujinami, S. & Nishikawa, H. (2001).J. Chem. Soc. Dalton Trans.

pp. 1091–1098.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Li, L.-Z., Zhao, C., Xu, T., Ji, H.-W., Yu, Y.-H., Guo, G.-Q. & Chao, H. (2005).

J. Inorg. Biochem.99, 1076–1082.

Maciejewska, D., Pawlak, D. & Koleva, V. (1999).J. Phys. Org. Chem.12, 875– 880.

Papathanasiou, P., Salem, G., Waring, P. & Willis, A. C. (1997).J. Chem. Soc. Dalton Trans.pp. 3435–3443.

Qiao, J., Wang, L.-D., Duan, L., Li, Y., Zhang, D.-Q. & Qiu, Y. (2004).Inorg. Chem.43, 5096–5102.

Rivera, J. M., Reyes, H., Cortes, A. & Santillan, R. (2006).Chem. Mater.18, 1174–1183.

Sah, A. K., Tanase, T. & Mikuriya, M. (2006).Inorg. Chem.45, 2083–2092. Sharif, S., Denisov, G. S., Toney, M. D. & Limbach, H. (2006).J. Am. Chem.

Soc.128, 3375–3387.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

[image:2.610.316.565.71.228.2]

Go¨ttingen, Germany. Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2440–o2441

supporting information

Acta Cryst. (2006). E62, o2440–o2441 [https://doi.org/10.1107/S160053680601871X]

4-[2-(Diphenylphosphino)phenyliminomethyl]-N,N-dimethylaniline, a new

Schiff base containing triphenylphosphine

Kai-Bin Yang, Li-Rong Lin and Rong-Bin Huang

4-[2-(Diphenylphosphino)phenyliminomethyl]-N,N-dimethylaniline

Crystal data

C27H25N2P

Mr = 408.46

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 17.579 (4) Å

b = 14.419 (3) Å

c = 8.732 (2) Å

β = 100.985 (4)°

V = 2172.7 (8) Å3

Z = 4

F(000) = 864

Dx = 1.249 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5143 reflections

θ = 2.4–28.3°

µ = 0.14 mm−1

T = 173 K Block, yellow

0.50 × 0.43 × 0.21 mm

Data collection

Bruker SMART APEX 2000 CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.932, Tmax = 0.971

12521 measured reflections 4719 independent reflections 4172 reflections with I > 2σ(I)

Rint = 0.024

θmax = 27.0°, θmin = 1.8°

h = −18→22

k = −15→18

l = −11→10

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.056

wR(F2) = 0.141

S = 1.11 4719 reflections 271 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0695P)2 + 0.8283P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.57 e Å−3

Δρmin = −0.42 e Å−3

Special details

Experimental. Elemental analysis found: C 79.40; H 6.19; N 6.85%; calculated for C27H25N2P: C 79.39; H 6.17; N 6.86;

P 7.58%. MS: M+/Z, 408. Spectroscopic analysis: 1H NMR (DMSO-d

6, p.p.m.) 8.195(CH), 7.698–7.497(ArH),7.395–

(4)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is

used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2440–o2441

C18 0.37715 (17) 0.70615 (15) 0.3252 (3) 0.0549 (7) H18A 0.3589 0.7474 0.2415 0.066* C19 0.45444 (18) 0.68644 (17) 0.3650 (3) 0.0593 (7) H19A 0.4899 0.7135 0.3084 0.071* C20 0.48064 (15) 0.62753 (16) 0.4868 (3) 0.0514 (6) H20A 0.5345 0.6154 0.5167 0.062* C21 0.42884 (12) 0.58548 (14) 0.5666 (2) 0.0382 (5) H21A 0.4476 0.5440 0.6498 0.046* C22 0.33259 (10) 0.48142 (12) 0.7738 (2) 0.0284 (4) C23 0.34387 (12) 0.38636 (14) 0.7739 (2) 0.0374 (4) H23A 0.3218 0.3507 0.6850 0.045* C24 0.38727 (13) 0.34310 (15) 0.9034 (3) 0.0452 (5) H24A 0.3945 0.2778 0.9030 0.054* C25 0.41996 (13) 0.39410 (16) 1.0329 (3) 0.0446 (5) H25A 0.4501 0.3641 1.1208 0.054* C26 0.40883 (12) 0.48808 (16) 1.0345 (2) 0.0400 (5) H26A 0.4313 0.5234 1.1236 0.048* C27 0.36496 (11) 0.53156 (14) 0.9067 (2) 0.0345 (4) H27A 0.3567 0.5966 0.9094 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C23 0.0388 (11) 0.0353 (10) 0.0355 (11) 0.0013 (8) 0.0006 (8) 0.0005 (8) C24 0.0472 (12) 0.0378 (11) 0.0473 (12) 0.0056 (9) 0.0010 (10) 0.0090 (9) C25 0.0394 (11) 0.0562 (13) 0.0346 (11) 0.0020 (10) −0.0020 (9) 0.0114 (9) C26 0.0359 (10) 0.0536 (12) 0.0282 (10) −0.0058 (9) 0.0002 (8) 0.0003 (9) C27 0.0331 (10) 0.0381 (10) 0.0318 (10) −0.0044 (8) 0.0049 (8) −0.0008 (8)

Geometric parameters (Å, º)

P1—C22 1.828 (2) C11—H11A 0.9500

P1—C15 1.833 (2) C12—C13 1.371 (3)

P1—C16 1.834 (2) C12—H12A 0.9500

N1—C3 1.360 (3) C13—C14 1.388 (3)

N1—C1 1.432 (3) C13—H13A 0.9500

N1—C2 1.447 (3) C14—C15 1.390 (3)

N2—C9 1.277 (2) C14—H14A 0.9500

N2—C10 1.410 (2) C16—C21 1.377 (3)

C1—H1O 0.9800 C16—C17 1.391 (3)

C1—H1N 0.9800 C17—C18 1.384 (3)

C1—H1M 0.9800 C17—H17A 0.9500

C2—H2Z 0.9800 C18—C19 1.367 (4)

C2—H2Y 0.9800 C18—H18A 0.9500

C2—H2X 0.9800 C19—C20 1.370 (4)

C3—C4 1.404 (3) C19—H19A 0.9500

C3—C8 1.409 (3) C20—C21 1.387 (3)

C4—C5 1.371 (3) C20—H20A 0.9500

C4—H4A 0.9500 C21—H21A 0.9500

C5—C6 1.388 (3) C22—C23 1.385 (3)

C5—H5A 0.9500 C22—C27 1.393 (3)

C6—C7 1.396 (3) C23—C24 1.386 (3)

C6—C9 1.445 (3) C23—H23A 0.9500

C7—C8 1.368 (3) C24—C25 1.379 (3)

C7—H7A 0.9500 C24—H24A 0.9500

C8—H8A 0.9500 C25—C26 1.370 (3)

C9—H9A 0.9500 C25—H25A 0.9500

C10—C11 1.396 (3) C26—C27 1.380 (3)

C10—C15 1.400 (2) C26—H26A 0.9500

C11—C12 1.374 (3) C27—H27A 0.9500

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o2440–o2441

Figure

Figure 1

References

Related documents

Conclusions: This randomized, placebo controlled, clinical trial with crossover design revealed that the naturally derived oil, Neuragen PN ® , provided significant relief

In this paper, considering the real observation scenario by a radar, we propose a method to extract an MD signature of a ballistic missile engaged in the real flight scenario

Eine mögliche Erklärung für den niedrigen Altersdurchschnitt bei Infektionen mit dem Serovar copenhageni könnte sein, dass die meisten adulten Hunde in Deutschland gegen

The performance and emission test was conducted in 17.5 compression ratio at different injection pressures like 200, 220, and 240 bar at ratted power 4.4 Kw.The test

Since the natural immune response to hepatitis C virus (HCV) is often unable to clear the infection, to enhance immunogenicity we studied substituted peptides from an HCV cytotoxic

Tumor necrosis a activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-KB sites in the long terminal repeat. Immunopathogenesis of

Surprisingly, in the strong viscous-heating regime, the conformation dynamics is dominated by the thermal agitation of polymer chains rather than the local flow field, so that the