• No results found

5,5' [(p Phenyl­enedi­methyl­ene)di­thio]bis­­(1 phen­yl 1H 1,2,3,4 tetra­zole)

N/A
N/A
Protected

Academic year: 2020

Share "5,5' [(p Phenyl­enedi­methyl­ene)di­thio]bis­­(1 phen­yl 1H 1,2,3,4 tetra­zole)"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o1163–o1164 doi:10.1107/S1600536805009001 Wanget al. C

22H18N8S2

o1163

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

5,5’-[(

p

-Phenylenedimethylene)dithio]-bis(1-phenyl-1

H

-1,2,3,4-tetrazole)

Wei Wang,a* Bing Zhao,b Peng-Wu Zhengcand Xue-Min Duanc

aDepartment of Chemical Engineering, Anshan

University of Science and Technology, Anshan 114002, People’s Republic of China,bSchool of

Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China, andcSchool of Pharmaceuticals and Biotechnology, Jiangxi Science and Technology Normal University, Nanchang 330013, People’s Republic of China

Correspondence e-mail: wangweitfj@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.040

wRfactor = 0.129

Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C22H18N8S2, was synthesized by the

reaction of,0-dibromo-p-xylene and

1-phenyl-5-thio-1,2,3,4-tetrazole. In the molecule, the two tetrazole rings are almost parallel, making a dihedral angle of 9.8 (3). The two terminal

phenyl rings attached to the tetrazole rings are perpendicular to the central benzene ring.

Comment

Dithioethers are often used as bridging ligands in the construction of coordination polymers with soft metal ions.

Flexible and rigid chain-linked dithioethers containing

N-heterocyclic groups have been synthesized and investigated (Constableet al., 2002; Honget al., 2000). Some of the tetra-zole derivatives possess diverse pharmacological properties (Julyet al., 1968; 1982). However, the crystal structures of only a few complexes of monosubstituted tetrazole derivatives have been reported to date (Lyakhov et al., 2003). The title compound, (I), has been synthesized by the reaction of,0

-dibromo-p-xylene and 1-phenyl-5-thio-1,2,3,4-tetrazole. We present its crystal structure here.

In (I) (Fig. 1), the two tetrazole rings are almost parallel, with a dihedral angle of 9.8 (3)between them. Interestingly,

the two terminal phenyl rings, C1–C6 (A) and C17–C22 (B), attached to these tetrazole rings make a dihedral angle of 29.7 (3). RingsAandBare essentially perpendicular to the

central benzene ring C9–C14, making dihedral angles of 97.3 (3) and 94.8 (3), respectively, with the latter. Atoms C7

and C16 in the tetrazole moieties each have distorted trigonal geometry, with the N—C—N and N—C—S angles (Table 1) deviating significantly from the ideal sp2 hybridized values.

The average lengths of the S—Csp3 and S—Csp2 bonds

[1.800 (3) and 1.720 (8) A˚ , respectively] are close to the values of 1.811 (2) and 1.726 (2) A˚ reported in the literature (Wanget al., 2004).

In the crystal structure of (I), there are no short inter-molecular contacts.

An isomer of (I) is reported in the preceding paper (Luoet al., 2005).

(2)

Experimental

A solution of ,0-dibromo-p-xylene (1.07 g, 5 mmol) in ethanol (10 ml) was added dropwise to a mixture of 1-phenyl-5-thio-1,2,3,4-tetrazole (1.96 g, 11 mmol), KOH (0.615 g, 11 mmol) and ethanol (10 ml). The reaction mixture was then stirred for 24 h at room temperature. The precipitate was filtered off, washed with water and recrystallized from ethanol (yield 70%; m.p. 460–461 K). Spectro-scopic analysis: IR (KBr,, cm1): 3062, 2363, 1594, 1500, 1460, 1382, 1274, 1235, 763, 693;1H NMR (CDCl3,, p.p.m.): 4.57 (4H,s), 7.37

(4H, s), 7.48–7.53 (10H, m). Analysis calculated for C22H18N8S2:

C 57.64, H 3.93, N 24.45%; found: C 57.59, H 4.01, N 24.36%. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in acetonitrile.

Crystal data

C22H18N8S2

Mr= 458.58

Monoclinic,P21=c a= 10.114 (15) A˚ b= 10.537 (15) A˚ c= 20.92 (3) A˚

= 95.56 (3) V= 2219 (6) A˚3

Z= 4

Dx= 1.373 Mg m

3

MoKradiation Cell parameters from 955

reflections

= 2.9–25.8

= 0.27 mm1 T= 293 (2) K Prism, colourless 0.300.280.24 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.923,Tmax= 0.938

11 289 measured reflections

3916 independent reflections 2692 reflections withI> 2(I) Rint= 0.030

max= 25.0

h=12!11 k=12!12 l=13!24

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.040

wR(F2) = 0.129 S= 1.06 3916 reflections 289 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0619P)2

+ 0.5887P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.20 e A˚ 3

[image:2.610.46.300.74.192.2]

min=0.21 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

S1—C7 1.719 (3)

S1—C8 1.797 (3)

S2—C16 1.721 (3)

S2—C15 1.803 (3)

N4—C7—N1 109.2 (2)

N4—C7—S1 126.3 (2)

N8—C16—N5 109.0 (2)

N8—C16—S2 128.0 (2)

All H atoms were positioned geometrically and refined as riding (C—H = 0.93–0.97 A˚ ), withUiso(H) = 1.2Ueq(parent).

Data collection:SMART(Bruker, 1997); cell refinement:SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

References

Bruker (1997).SMART,SAINTandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Constable, E. C., Housecroft, C. E., Kariuki, B. M., Kelly, N. & Smith, C. B. (2002).Inorg. Chem. Commun.5, 199–202.

Hong, M. C., Su, W. P., Cao, R., Fujita, M. & Lu, J. X. (2000).Chem. Eur. J.6, 427–431.

July, P. F., Hudyma, Y. W. & Brown, M. (1968). J. Med. Chem.11, 111– 117.

July, P. F., Hudyma, Y. W., Brown, M., Essery, J. M. & Partyka, R. A. (1982). J. Med. Chem.25, 1145–1150.

Luo, X.-L., Wang, W., Ma, G.-C. & Zhang, W.-Q. (2005).Acta Cryst. E61, o1161–o1162.

Lyakhov, A. S., Gaponik, P. N., Degtyarik, M. M. & Lvashkevich, L. S. (2003). Acta Cryst.E59, m38–m40.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Wang, W., Liu, H. M. & Zhang, W. Q. (2004). Acta Cryst.E60, o1107– o1109.

Figure 1

[image:2.610.313.564.195.248.2]
(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o1163–o1164

supporting information

Acta Cryst. (2005). E61, o1163–o1164 [https://doi.org/10.1107/S1600536805009001]

5,5

-[(

p

-Phenylenedimethylene)dithio]bis(1-phenyl-1

H

-1,2,3,4-tetrazole)

Wei Wang, Bing Zhao, Peng-Wu Zheng and Xue-Min Duan

5,5′-[(p-phenylenedimethylene)dithio]bis(1-phenyl-1H-1,2,3,4-tetrazole)

Crystal data C22H18N8S2

Mr = 458.58

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 10.114 (15) Å b = 10.537 (15) Å c = 20.92 (3) Å β = 95.56 (3)° V = 2219 (6) Å3

Z = 4

F(000) = 952 Dx = 1.373 Mg m−3

Melting point: 460 K

Mo radiation, λ = 0.71073 Å Cell parameters from 955 reflections θ = 2.9–25.8°

µ = 0.27 mm−1

T = 293 K Prism, colourless 0.30 × 0.28 × 0.24 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.923, Tmax = 0.938

11289 measured reflections 3916 independent reflections 2692 reflections with I > 2σ(I) Rint = 0.030

θmax = 25.0°, θmin = 2.0°

h = −12→11 k = −12→12 l = −13→24

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.040

wR(F2) = 0.129

S = 1.06 3916 reflections 289 parameters 6 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0619P)2 + 0.5887P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.20 e Å−3

Δρmin = −0.21 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.36561 (8) −0.21748 (7) 0.34149 (3) 0.0619 (3)

S2 0.17576 (9) 0.40769 (7) 0.40125 (3) 0.0649 (3)

N1 0.4101 (2) −0.44831 (19) 0.29066 (10) 0.0502 (6)

N2 0.4754 (3) −0.5569 (2) 0.30717 (13) 0.0697 (7)

N3 0.5343 (3) −0.5390 (2) 0.36313 (13) 0.0749 (8)

N4 0.5101 (3) −0.4213 (2) 0.38557 (12) 0.0630 (7)

N5 0.0351 (2) 0.62323 (19) 0.40452 (9) 0.0450 (5)

N6 0.0143 (3) 0.7203 (2) 0.44403 (12) 0.0655 (7)

N7 0.0872 (3) 0.6982 (2) 0.49629 (12) 0.0699 (7)

N8 0.1558 (2) 0.5893 (2) 0.49292 (10) 0.0579 (6)

C1 0.3268 (3) −0.3271 (3) 0.19743 (12) 0.0512 (7)

H1 0.3807 −0.2594 0.2118 0.061*

C2 0.2451 (3) −0.3170 (3) 0.14182 (13) 0.0599 (7)

H2 0.2421 −0.2414 0.1188 0.072*

C3 0.1683 (3) −0.4159 (3) 0.11987 (15) 0.0718 (9)

H3 0.1124 −0.4082 0.0821 0.086*

C4 0.1733 (4) −0.5268 (4) 0.15357 (17) 0.0907 (12)

H4 0.1221 −0.5953 0.1379 0.109*

C5 0.2524 (4) −0.5389 (3) 0.21013 (15) 0.0760 (10)

H5 0.2542 −0.6143 0.2333 0.091*

C6 0.3288 (3) −0.4378 (2) 0.23193 (12) 0.0492 (6)

C7 0.4322 (3) −0.3674 (2) 0.33977 (12) 0.0485 (6)

C8 0.4143 (3) −0.1758 (2) 0.42370 (12) 0.0568 (7)

H8A 0.3697 −0.2302 0.4523 0.068*

H8B 0.5094 −0.1861 0.4333 0.068*

C9 0.3759 (3) −0.0404 (2) 0.43266 (11) 0.0459 (6)

C10 0.2616 (3) −0.0089 (3) 0.45894 (14) 0.0617 (8)

H10 0.2041 −0.0726 0.4698 0.074*

C11 0.2309 (3) 0.1154 (3) 0.46945 (14) 0.0627 (8)

H11 0.1528 0.1352 0.4874 0.075*

C12 0.3133 (3) 0.2108 (2) 0.45405 (12) 0.0486 (7)

C13 0.4268 (3) 0.1797 (3) 0.42624 (12) 0.0519 (7)

H13 0.4830 0.2435 0.4144 0.062*

C14 0.4575 (3) 0.0553 (3) 0.41586 (12) 0.0515 (7)

H14 0.5347 0.0355 0.3972 0.062*

C15 0.2823 (3) 0.3464 (3) 0.46830 (13) 0.0609 (8)

H15A 0.3636 0.3956 0.4743 0.073*

H15B 0.2380 0.3517 0.5073 0.073*

C16 0.1212 (3) 0.5444 (2) 0.43531 (12) 0.0455 (6)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o1163–o1164

C18 0.0091 (3) 0.6881 (3) 0.29366 (13) 0.0730 (9)

H18 0.0812 0.7426 0.3015 0.088*

C19 −0.0581 (3) 0.6799 (4) 0.23336 (14) 0.0894 (12)

H19 −0.0310 0.7291 0.2001 0.107*

C20 −0.1634 (4) 0.6006 (4) 0.22205 (16) 0.0859 (11)

H20 −0.2085 0.5951 0.1812 0.103*

C21 −0.2023 (5) 0.5295 (4) 0.27093 (17) 0.1157 (16)

H21 −0.2745 0.4751 0.2632 0.139*

C22 −0.1373 (4) 0.5362 (4) 0.33142 (15) 0.0921 (12)

H22 −0.1651 0.4874 0.3647 0.111*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0848 (6) 0.0435 (4) 0.0520 (4) 0.0194 (4) −0.0207 (4) −0.0097 (3)

S2 0.0860 (6) 0.0561 (5) 0.0484 (4) 0.0271 (4) −0.0147 (4) −0.0145 (3)

N1 0.0666 (14) 0.0316 (11) 0.0524 (13) 0.0058 (10) 0.0064 (11) 0.0008 (10)

N2 0.095 (2) 0.0431 (14) 0.0708 (17) 0.0195 (13) 0.0060 (15) 0.0011 (12)

N3 0.094 (2) 0.0502 (15) 0.0794 (19) 0.0246 (14) 0.0010 (16) 0.0065 (14)

N4 0.0732 (17) 0.0496 (14) 0.0637 (15) 0.0147 (12) −0.0057 (13) 0.0048 (12)

N5 0.0530 (13) 0.0371 (11) 0.0444 (11) 0.0069 (10) 0.0017 (10) −0.0046 (9)

N6 0.0829 (17) 0.0517 (14) 0.0597 (15) 0.0186 (13) −0.0043 (13) −0.0162 (12) N7 0.0899 (19) 0.0591 (16) 0.0586 (15) 0.0154 (14) −0.0036 (14) −0.0201 (12) N8 0.0676 (16) 0.0553 (15) 0.0489 (13) 0.0081 (12) −0.0045 (11) −0.0123 (11) C1 0.0652 (17) 0.0404 (14) 0.0491 (14) −0.0031 (13) 0.0109 (13) −0.0039 (12)

C2 0.079 (2) 0.0560 (18) 0.0464 (15) 0.0034 (16) 0.0126 (15) −0.0002 (13)

C3 0.084 (2) 0.081 (2) 0.0496 (17) −0.0113 (19) 0.0008 (16) −0.0040 (16)

C4 0.115 (3) 0.082 (3) 0.072 (2) −0.044 (2) −0.007 (2) −0.014 (2)

C5 0.112 (3) 0.0487 (18) 0.0660 (19) −0.0257 (18) 0.0031 (19) −0.0010 (15)

C6 0.0661 (18) 0.0387 (14) 0.0441 (14) −0.0031 (13) 0.0109 (13) −0.0042 (11)

C7 0.0558 (16) 0.0386 (14) 0.0501 (15) 0.0060 (12) 0.0001 (13) 0.0011 (12)

C8 0.079 (2) 0.0458 (15) 0.0429 (14) 0.0076 (14) −0.0058 (14) 0.0010 (12)

C9 0.0598 (17) 0.0436 (14) 0.0331 (12) 0.0061 (13) −0.0023 (12) 0.0006 (11)

C10 0.069 (2) 0.0540 (18) 0.0637 (18) −0.0061 (15) 0.0162 (15) −0.0010 (15)

C11 0.0634 (19) 0.0618 (19) 0.0652 (18) 0.0104 (16) 0.0183 (15) −0.0066 (15) C12 0.0607 (17) 0.0444 (15) 0.0381 (13) 0.0096 (13) −0.0090 (12) −0.0052 (11) C13 0.0549 (17) 0.0477 (15) 0.0525 (15) −0.0013 (13) 0.0017 (13) 0.0032 (13) C14 0.0543 (16) 0.0517 (16) 0.0488 (15) 0.0089 (13) 0.0071 (13) −0.0003 (13) C15 0.0752 (19) 0.0510 (17) 0.0523 (16) 0.0171 (15) −0.0151 (14) −0.0077 (13) C16 0.0511 (15) 0.0428 (14) 0.0420 (13) 0.0031 (12) 0.0011 (12) −0.0045 (11) C17 0.0506 (15) 0.0438 (15) 0.0455 (14) 0.0072 (12) 0.0012 (12) −0.0011 (12)

C18 0.0539 (18) 0.098 (3) 0.0667 (19) −0.0028 (17) 0.0047 (15) 0.0154 (18)

C19 0.078 (2) 0.136 (4) 0.0547 (19) 0.018 (2) 0.0099 (18) 0.028 (2)

C20 0.088 (3) 0.114 (3) 0.0523 (19) 0.010 (2) −0.0122 (18) −0.009 (2)

C21 0.126 (4) 0.136 (4) 0.077 (3) −0.061 (3) −0.028 (2) −0.004 (3)

(6)

Geometric parameters (Å, º)

S1—C7 1.719 (3) C8—C9 1.495 (4)

S1—C8 1.797 (3) C8—H8A 0.9700

S2—C16 1.721 (3) C8—H8B 0.9700

S2—C15 1.803 (3) C9—C10 1.369 (4)

N1—C7 1.337 (3) C9—C14 1.370 (4)

N1—N2 1.349 (3) C10—C11 1.369 (4)

N1—C6 1.415 (4) C10—H10 0.9300

N2—N3 1.275 (4) C11—C12 1.364 (4)

N3—N4 1.357 (4) C11—H11 0.9300

N4—C7 1.310 (3) C12—C13 1.376 (4)

N5—C16 1.325 (3) C12—C15 1.499 (4)

N5—N6 1.345 (3) C13—C14 1.369 (4)

N5—C17 1.419 (3) C13—H13 0.9300

N6—N7 1.279 (3) C14—H14 0.9300

N7—N8 1.347 (3) C15—H15A 0.9700

N8—C16 1.311 (3) C15—H15B 0.9700

C1—C2 1.365 (4) C17—C22 1.352 (4)

C1—C6 1.370 (4) C17—C18 1.365 (3)

C1—H1 0.9300 C18—C19 1.376 (4)

C2—C3 1.353 (4) C18—H18 0.9300

C2—H2 0.9300 C19—C20 1.357 (4)

C3—C4 1.363 (5) C19—H19 0.9300

C3—H3 0.9300 C20—C21 1.356 (4)

C4—C5 1.369 (5) C20—H20 0.9300

C4—H4 0.9300 C21—C22 1.370 (4)

C5—C6 1.368 (4) C21—H21 0.9300

C5—H5 0.9300 C22—H22 0.9300

C7—S1—C8 99.96 (13) C14—C9—C8 120.0 (3)

C16—S2—C15 99.71 (14) C11—C10—C9 120.7 (3)

C7—N1—N2 107.6 (2) C11—C10—H10 119.7

C7—N1—C6 131.1 (2) C9—C10—H10 119.7

N2—N1—C6 121.2 (2) C12—C11—C10 121.0 (3)

N3—N2—N1 106.5 (2) C12—C11—H11 119.5

N2—N3—N4 111.6 (2) C10—C11—H11 119.5

C7—N4—N3 105.0 (2) C11—C12—C13 118.5 (3)

C16—N5—N6 108.2 (2) C11—C12—C15 120.8 (3)

C16—N5—C17 130.1 (2) C13—C12—C15 120.7 (3)

N6—N5—C17 121.7 (2) C14—C13—C12 120.4 (3)

N7—N6—N5 106.0 (2) C14—C13—H13 119.8

N6—N7—N8 111.6 (2) C12—C13—H13 119.8

C16—N8—N7 105.2 (2) C13—C14—C9 120.8 (3)

C2—C1—C6 119.5 (3) C13—C14—H14 119.6

C2—C1—H1 120.3 C9—C14—H14 119.6

C6—C1—H1 120.3 C12—C15—S2 107.89 (18)

(7)

supporting information

sup-5

Acta Cryst. (2005). E61, o1163–o1164

C3—C2—H2 119.7 S2—C15—H15A 110.1

C1—C2—H2 119.7 C12—C15—H15B 110.1

C2—C3—C4 119.5 (3) S2—C15—H15B 110.1

C2—C3—H3 120.2 H15A—C15—H15B 108.4

C4—C3—H3 120.2 N8—C16—N5 109.0 (2)

C3—C4—C5 121.1 (3) N8—C16—S2 128.0 (2)

C3—C4—H4 119.4 N5—C16—S2 123.1 (2)

C5—C4—H4 119.4 C22—C17—C18 121.3 (3)

C6—C5—C4 118.7 (3) C22—C17—N5 119.0 (2)

C6—C5—H5 120.7 C18—C17—N5 119.7 (2)

C4—C5—H5 120.7 C17—C18—C19 118.9 (3)

C5—C6—C1 120.5 (3) C17—C18—H18 120.6

C5—C6—N1 119.4 (3) C19—C18—H18 120.6

C1—C6—N1 120.1 (2) C20—C19—C18 120.5 (3)

N4—C7—N1 109.2 (2) C20—C19—H19 119.7

N4—C7—S1 126.3 (2) C18—C19—H19 119.7

N1—C7—S1 124.4 (2) C21—C20—C19 119.3 (3)

C9—C8—S1 107.62 (17) C21—C20—H20 120.4

C9—C8—H8A 110.2 C19—C20—H20 120.4

S1—C8—H8A 110.2 C20—C21—C22 121.3 (3)

C9—C8—H8B 110.2 C20—C21—H21 119.3

S1—C8—H8B 110.2 C22—C21—H21 119.3

H8A—C8—H8B 108.5 C17—C22—C21 118.8 (3)

C10—C9—C14 118.5 (3) C17—C22—H22 120.6

C10—C9—C8 121.4 (3) C21—C22—H22 120.6

C7—N1—N2—N3 −0.8 (3) C8—C9—C10—C11 177.1 (3)

C6—N1—N2—N3 −177.1 (2) C9—C10—C11—C12 0.0 (4)

N1—N2—N3—N4 0.5 (4) C10—C11—C12—C13 1.5 (4)

N2—N3—N4—C7 0.0 (3) C10—C11—C12—C15 −177.3 (3)

C16—N5—N6—N7 0.2 (3) C11—C12—C13—C14 −1.6 (4)

C17—N5—N6—N7 178.9 (2) C15—C12—C13—C14 177.2 (2)

N5—N6—N7—N8 −0.1 (3) C12—C13—C14—C9 0.2 (4)

N6—N7—N8—C16 −0.1 (3) C10—C9—C14—C13 1.3 (4)

C6—C1—C2—C3 −1.4 (4) C8—C9—C14—C13 −177.2 (2)

C1—C2—C3—C4 −0.3 (5) C11—C12—C15—S2 −87.1 (3)

C2—C3—C4—C5 1.6 (6) C13—C12—C15—S2 94.2 (3)

C3—C4—C5—C6 −1.1 (6) C16—S2—C15—C12 165.9 (2)

C4—C5—C6—C1 −0.6 (5) N7—N8—C16—N5 0.3 (3)

C4—C5—C6—N1 179.4 (3) N7—N8—C16—S2 179.4 (2)

C2—C1—C6—C5 1.8 (4) N6—N5—C16—N8 −0.3 (3)

C2—C1—C6—N1 −178.1 (2) C17—N5—C16—N8 −178.9 (2)

C7—N1—C6—C5 −136.6 (3) N6—N5—C16—S2 −179.5 (2)

N2—N1—C6—C5 38.7 (4) C17—N5—C16—S2 1.9 (4)

C7—N1—C6—C1 43.3 (4) C15—S2—C16—N8 2.8 (3)

N2—N1—C6—C1 −141.4 (3) C15—S2—C16—N5 −178.2 (2)

N3—N4—C7—N1 −0.5 (3) C16—N5—C17—C22 77.2 (4)

(8)

N2—N1—C7—N4 0.8 (3) C16—N5—C17—C18 −104.0 (3)

C6—N1—C7—N4 176.6 (3) N6—N5—C17—C18 77.6 (4)

N2—N1—C7—S1 −178.4 (2) C22—C17—C18—C19 −0.5 (5)

C6—N1—C7—S1 −2.6 (4) N5—C17—C18—C19 −179.3 (3)

C8—S1—C7—N4 −7.7 (3) C17—C18—C19—C20 0.1 (5)

C8—S1—C7—N1 171.4 (2) C18—C19—C20—C21 0.2 (6)

C7—S1—C8—C9 174.3 (2) C19—C20—C21—C22 0.0 (7)

S1—C8—C9—C10 98.6 (3) C18—C17—C22—C21 0.7 (6)

S1—C8—C9—C14 −82.9 (3) N5—C17—C22—C21 179.4 (4)

Figure

Figure 1A view of (I), showing the atom-labelling scheme. DisplacementS1—C7

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical