• No results found

2 tert Butyl 4 methyl 6 (phenyl­diazenyl)­phenol

N/A
N/A
Protected

Academic year: 2020

Share "2 tert Butyl 4 methyl 6 (phenyl­diazenyl)­phenol"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1932

Hasan Kocaokutgenet al. C17H20N2O DOI: 10.1107/S1600536803025261 Acta Cryst.(2003). E59, o1932±o1934 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2-

tert

-Butyl-4-methyl-6-(phenyldiazenyl)phenol

Hasan Kocaokutgen,a* M. Serkan Soylu,bPeter LoÈnneckecand Sevil OÈ zkõnalõa

aDepartment of Chemistry, Faculty of Arts and

Sciences, Ondokuz MayõÂs University, TR-55139, Kurupelit±Samsun, Turkey,

bDepartment of Physics, Faculty of Arts and

Sciences, Ondokuz MayõÂs University, TR-55139, Kurupelit±Samsun, Turkey, and

cFakultaÈt fuÈr Chemie und Mineralogie,

UniversitaÈt Leipzig, Leipzig, Germany

Correspondence e-mail: hkocaok@omu.edu.tr

Key indicators Single-crystal X-ray study

T= 208 K

Mean(C±C) = 0.003 AÊ

Rfactor = 0.037

wRfactor = 0.089 Data-to-parameter ratio = 8.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The crystal structure of the title compound, C17H20N2O,

determined at 208 K, shows that the molecule is approx-imately planar in the solid state, having atranscon®guration with respect to the azo double bond, as found for other diazene derivatives. The dihedral angle between the planes of the two aromatic rings is 5.04 (12). The hydroxy group and an

N atom of the azo group are linked by an intramolecular OÐ H N hydrogen bond.

Comment

Diazenes have been the most widely used class of dyes owing to their versatile applications in various ®elds, such as dyeing textile ®bres, colouring different materials, plastics, biological± medical studies, lasers, liquid crystalline displays, electro-optical devices, and ink-jet printers in high technology areas (Catino & Farris, 1985; Gregory, 1991). As part of our studies on azo derivatives, the title compound, (I), was synthesized and its crystal structure is reported here.

AnORTEP-3 (Farrugia, 1997) view of the molecule of (I) and the molecular packing are shown in Figs. 1 and 2, respectively. Selected bond distances and angles are given in Table 1. The structure of (I) is very similar to an azo

Received 20 October 2003 Accepted 3 November 2003 Online 15 November 2003

Figure 1

(2)

compound studied previously (IsËik, 1998). The aromatic rings are in a trans con®guration with respect to the azo double bond.

The dihedral angle 1 between the mean planes of the phenyl ring (C1±C6) and the C1ÐN1 N2ÐC7 azo bridge is 6.8(2), and the angle2between the C1ÐN1 N2ÐC7 azo

group and the substituted phenyl ring (C7±C12) is 1.9 (2).

The angle3between the planes of the rings is 5.11 (14),i.e.

the substituted and unsubstituted phenyl rings are approx-imately coplanar. The N1ÐC1 and N2ÐC7 bond lengths of 1.429 (3) and 1.411 (3) AÊ, respectively, indicate single-bond character and the N N bond length of 1.268 (2) AÊ is indi-cative of signi®cant double-bond character. These values are comparable with those found for similar compounds (Huanget al., 2002; Zhanget al., 1998; Maginn, 1993; Jimenez-Cruzet al., 2000; Kocaokutgenet al., 2003).

The near coplanarity of the aromatic rings with the azo bridge is facilitated by an O1ÐH1 N1 intramolecular hydrogen bond. C16ÐH16B O1 and C15ÐH15B O1 hydrogen bonds are also observed in the molecular structure (see Table 2 for details).

The molecules are stacked along thea axis such that the centroid of the unsubstituted ring and that of the substituted ring in the molecule at (1 +x, y, z) are separated by 3.770 (1) AÊ. The molecular packing is further stabilized by CÐ H interactions (Table 2), involving the unsubstituted ring (centroidCg1).

Experimental

A mixture of aniline (0.91 ml, 0.01 mol), water (12 ml) and concen-trated hydrochloric acid (3.47 ml, 0.04 mol) was heated while stirring until a clear solution was obtained. This solution was cooled to 273± 278 K and a solution of sodium nitrite (0.76 g, 0.01 mol) in 5 ml water was then added dropwise while maintaining the temperature below 278 K. The resulting mixture was stirred for an additional 30 min in an ice bath. This solution was buffered with solid sodium acetate at pH 4±5. 2-tert-Butyl-4-methylphenol (1.47 g, 0.01 mol) dissolved with sodium acetate in 5 ml ethyl alcohol was cooled to 273±278 K in an ice bath and then gradually added to the solution of cooled benzenediazonium chloride, prepared as described above. The resulting mixture was stirred for 60 min in an ice bath. The crude oily product was decanted, washed several times with water and dried under vacuum. The product was crystallized from ethyl alcohol to give the title compound (m.p. 379±380 K; yield 25%). Its purity was monitored by thin-layer chromatography. The compound was recrystallized from ethyl alcohol to produce crystals of suitable quality for X-ray diffraction analysis. Elemental analysis found: C 76.05, H 7.61, N 10.26%; calculated: C 76.12, H 7.46, N 10.45%.

Crystal data

C17H20N2O

Mr= 268.35

Orthorhombic,P212121

a= 6.2333 (7) AÊ

b= 10.4182 (12) AÊ

c= 22.788 (3) AÊ

V= 1479.8 (3) AÊ3

Z= 4

Dx= 1.204 Mg mÿ3

MoKradiation

Cell parameters from 12915 re¯ections

= 2.2±31.8

= 0.08 mmÿ1

T= 208 (2) K Prism, orange 0.200.200.20 mm

Data collection

Bruker AXS SMART CCD diffractometer

!scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin= 0.985,Tmax= 0.985

8784 measured re¯ections

1543 independent re¯ections 1355 re¯ections withI> 2(I)

Rint= 0.042

max= 25.0

h=ÿ7!7

k=ÿ12!10

l=ÿ23!27

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.037

wR(F2) = 0.089

S= 1.07 1543 re¯ections 181 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0448P)2

+ 0.273P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.15 e AÊÿ3 min=ÿ0.18 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

O1ÐC8 1.350 (3)

N1ÐN2 1.268 (2) N1ÐC1N2ÐC7 1.429 (3)1.411 (3)

N2ÐN1ÐC1 115.24 (19) N1ÐN2ÐC7 116.48 (19) C6ÐC1ÐN1 116.6 (2) C2ÐC1ÐN1 123.3 (2) C12ÐC7ÐN2 114.7 (2) O1ÐC8ÐC9 120.07 (19) O1ÐC8ÐC7 120.32 (19) C10ÐC9ÐC8 117.0 (2)

C10ÐC9ÐC14 121.9 (2) C9ÐC10ÐC11 124.5 (2) C12ÐC11ÐC10 117.1 (2) C12ÐC11ÐC13 122.1 (2) C16ÐC14ÐC15 110.1 (2) C16ÐC14ÐC9 110.58 (18) C17ÐC14ÐC9 111.16 (19)

C1ÐN1ÐN2ÐC7 ÿ179.46 (19) N2ÐN1ÐC1ÐC6 ÿ173.4 (2) N2ÐN1ÐC1ÐC2 6.6 (3)

N1ÐN2ÐC7ÐC12 178.03 (19) N1ÐN2ÐC7ÐC8 ÿ0.7 (3) N2ÐC7ÐC8ÐO1 0.9 (3)

Acta Cryst.(2003). E59, o1932±o1934 Hasan Kocaokutgenet al. C17H20N2O

o1933

organic papers

Figure 2

(3)

organic papers

o1934

Hasan Kocaokutgenet al. C17H20N2O Acta Cryst.(2003). E59, o1932±o1934 Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O1ÐH1 N1 0.82 1.83 2.551 (2) 145 C16ÐH16B O1 0.96 2.30 2.958 (3) 125 C15ÐH15C O1 0.96 2.44 3.063 (3) 123 C4ÐH4 Cg1i 0.93 2.90 3.625 (3) 136

Symmetry code: (i)1

2‡x;12ÿy;ÿz.Cg1 is the centroid of the unsubstituted phenyl ring C1±C6.

H atoms were placed in calculated positions [OÐH = 0.82 AÊ and CÐH = 0.93±0.96 AÊ], withUisovalues constrained to be 1.5Ueqof the

carrier atom for the methyl H atoms and 1.2Ueqfor the remaining H

atoms. Friedel re¯ections were merged before the ®nal re®nement because of the absence of signi®cant anomalous scattering effects.

Data collection:SMART(Bruker, 1998); cell re®nement:SAINT

(Bruker, 1998); data reduction: SAINT; program(s) used to solve structure:SHELXS86 (Sheldrick, 1990); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

References

Bruker (1998).SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Catino, S. C. & Farris, R. E. (1985). Azo Dyes, in Kirk-Othmer Concise Encyclopaedia of Chemical Technology, edited by M. Grayson. New York: John Wiley and Sons.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838.

Gregory, P. (1991).Colorants for High Technology.Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters and H. S. Freeman. London, New York: Elsevier.

Huang, X., Genevieve, H. K., Vladimir, N. N., Boris, B. A., Benjamin, P., Mikhail, Y. A. & Tatiana, V. T. (2002).Acta Cryst.C58, o624±o628. IsËik, SË., AyguÈn, M., Kocaokutgen, H. & Tahir, M. N. (1998).Acta Cryst.C54,

1145±1146.

Jimenez-Cruz, F., Perez-Caballaro, G., Hernendez-Ortega, S. & Rubio-Arroyo, M. (2000).Acta Cryst.C56, 1028±1029.

Kocaokutgen, H., GuÈr, M., Soylu, M. S. & LoÈnnecke, P. (2003).Acta Cryst.

E59, o1613±o1615.

Maginn, S. J. (1993).Dyes Pigm.,23, 159±178. Sheldrick, G. M. (1990).Acta Cryst.A46, 467±473.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Zhang, D. C., Ge, L. O., Fei, Z. H., Zhang, Y. O. & Yu, K. B. (1998).Acta Cryst.

(4)

supporting information

sup-1

Acta Cryst. (2003). E59, o1932–o1934

supporting information

Acta Cryst. (2003). E59, o1932–o1934 [https://doi.org/10.1107/S1600536803025261]

2-tert-Butyl-4-methyl-6-(phenyldiazenyl)phenol

Hasan Kocaokutgen, M. Serkan Soylu, Peter L

ö

nnecke and Sevil

Ö

zk

ı

nal

ı

2-tert-butyl-4-metyl-6-(phenyldiazenyl)phenol

Crystal data

C17H20N2O Mr = 268.35

Orthorhombic, P212121 Hall symbol: P 2ac 2ab a = 6.2333 (7) Å b = 10.4182 (12) Å c = 22.788 (3) Å V = 1479.8 (3) Å3 Z = 4

F(000) = 576 Dx = 1.204 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 12915 reflections θ = 2.2–31.8°

µ = 0.08 mm−1 T = 208 K Prism, orange

0.20 × 0.20 × 0.20 mm

Data collection

Bruker AXS SMART CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1998) Tmin = 0.985, Tmax = 0.985

8784 measured reflections 1543 independent reflections 1355 reflections with I > 2σ(I) Rint = 0.042

θmax = 25.0°, θmin = 2.2° h = −7→7

k = −12→10 l = −23→27

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.037 wR(F2) = 0.089 S = 1.07 1543 reflections 181 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0448P)2 + 0.273P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.15 e Å−3 Δρmin = −0.18 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, o1932–o1934

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.1895 (3) 0.02999 (15) 0.20142 (7) 0.0379 (4)

H1 0.2884 0.0473 0.1791 0.057*

N1 0.4083 (3) 0.01523 (19) 0.10704 (8) 0.0313 (5)

N2 0.2864 (3) −0.06981 (18) 0.08529 (8) 0.0306 (4)

C1 0.5837 (4) 0.0535 (2) 0.07062 (10) 0.0302 (5)

C2 0.6092 (4) 0.0120 (2) 0.01294 (10) 0.0373 (6)

H2 0.5088 −0.0426 −0.0041 0.045*

C3 0.7857 (4) 0.0528 (2) −0.01870 (11) 0.0427 (6)

H3 0.8047 0.0252 −0.0572 0.051*

C4 0.9341 (4) 0.1344 (3) 0.00651 (12) 0.0427 (7)

H4 1.0523 0.1614 −0.0151 0.051*

C5 0.9083 (4) 0.1761 (3) 0.06334 (11) 0.0420 (6)

H5 1.0086 0.2310 0.0802 0.050*

C6 0.7321 (4) 0.1357 (2) 0.09535 (11) 0.0352 (6)

H6 0.7136 0.1641 0.1337 0.042*

C7 0.1107 (4) −0.1087 (2) 0.12009 (10) 0.0285 (5)

C8 0.0638 (3) −0.0609 (2) 0.17689 (10) 0.0274 (5)

C9 −0.1172 (4) −0.1071 (2) 0.20728 (9) 0.0264 (5)

C10 −0.2438 (4) −0.1969 (2) 0.17856 (10) 0.0301 (5)

H10 −0.3638 −0.2280 0.1982 0.036*

C11 −0.2030 (4) −0.2438 (2) 0.12196 (10) 0.0320 (5)

C12 −0.0225 (4) −0.1987 (2) 0.09399 (10) 0.0314 (5)

H12 0.0109 −0.2293 0.0568 0.038*

C13 −0.3528 (4) −0.3379 (2) 0.09345 (11) 0.0404 (6)

H13A −0.3003 −0.3593 0.0551 0.061*

H13B −0.4929 −0.3003 0.0901 0.061*

H13C −0.3611 −0.4143 0.1169 0.061*

C14 −0.1723 (4) −0.0581 (2) 0.26954 (10) 0.0287 (5)

C15 −0.2292 (4) 0.0855 (2) 0.26698 (11) 0.0397 (6)

H15A −0.2635 0.1155 0.3057 0.060*

H15B −0.3507 0.0977 0.2417 0.060*

H15C −0.1091 0.1328 0.2520 0.060*

C16 0.0164 (4) −0.0798 (3) 0.31134 (10) 0.0419 (6)

H16A −0.0206 −0.0489 0.3497 0.063*

H16B 0.1398 −0.0342 0.2972 0.063*

H16C 0.0483 −0.1698 0.3134 0.063*

C17 −0.3670 (4) −0.1291 (2) 0.29479 (11) 0.0413 (6)

H17A −0.3977 −0.0969 0.3334 0.062*

H17B −0.3361 −0.2192 0.2970 0.062*

(6)

supporting information

sup-3

Acta Cryst. (2003). E59, o1932–o1934 Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0353 (9) 0.0437 (9) 0.0348 (9) −0.0140 (8) 0.0085 (8) −0.0079 (7)

N1 0.0273 (10) 0.0362 (11) 0.0305 (10) −0.0011 (9) 0.0039 (9) 0.0016 (8)

N2 0.0274 (9) 0.0319 (10) 0.0325 (10) −0.0024 (9) 0.0024 (8) 0.0012 (8)

C1 0.0281 (11) 0.0325 (12) 0.0301 (12) 0.0030 (11) 0.0041 (10) 0.0046 (9)

C2 0.0363 (13) 0.0405 (13) 0.0352 (13) −0.0007 (12) 0.0026 (11) 0.0007 (11)

C3 0.0452 (15) 0.0511 (15) 0.0317 (13) 0.0066 (15) 0.0116 (12) 0.0046 (11)

C4 0.0313 (13) 0.0499 (15) 0.0468 (16) 0.0033 (12) 0.0117 (12) 0.0187 (13)

C5 0.0349 (14) 0.0446 (15) 0.0465 (16) −0.0073 (13) 0.0013 (12) 0.0104 (12)

C6 0.0357 (13) 0.0408 (13) 0.0292 (12) 0.0000 (12) 0.0022 (11) 0.0045 (10)

C7 0.0264 (11) 0.0292 (12) 0.0298 (12) 0.0020 (11) 0.0033 (10) 0.0033 (9)

C8 0.0255 (11) 0.0274 (11) 0.0292 (11) 0.0009 (10) −0.0002 (9) −0.0008 (9)

C9 0.0251 (11) 0.0265 (11) 0.0276 (11) 0.0031 (10) 0.0000 (10) 0.0038 (9)

C10 0.0258 (11) 0.0329 (11) 0.0315 (12) −0.0010 (11) 0.0029 (10) 0.0032 (10)

C11 0.0333 (12) 0.0308 (12) 0.0318 (13) −0.0017 (12) −0.0034 (11) 0.0002 (9)

C12 0.0330 (12) 0.0338 (12) 0.0273 (12) 0.0013 (11) 0.0010 (10) −0.0039 (10)

C13 0.0362 (14) 0.0434 (14) 0.0416 (14) −0.0083 (12) −0.0002 (12) −0.0055 (12)

C14 0.0289 (11) 0.0308 (11) 0.0264 (11) 0.0009 (10) 0.0042 (10) −0.0009 (9)

C15 0.0436 (14) 0.0379 (13) 0.0376 (14) 0.0027 (12) 0.0063 (12) −0.0038 (11)

C16 0.0393 (14) 0.0584 (16) 0.0281 (12) 0.0071 (13) 0.0001 (11) −0.0016 (12)

C17 0.0390 (14) 0.0472 (15) 0.0377 (14) −0.0030 (12) 0.0137 (12) −0.0034 (11)

Geometric parameters (Å, º)

O1—C8 1.350 (3) C10—C11 1.403 (3)

O1—H1 0.82 C10—H10 0.93

N1—N2 1.268 (2) C11—C12 1.376 (3)

N1—C1 1.429 (3) C11—C13 1.502 (3)

N2—C7 1.411 (3) C12—H12 0.93

C1—C6 1.381 (3) C13—H13A 0.96

C1—C2 1.393 (3) C13—H13B 0.96

C2—C3 1.383 (3) C13—H13C 0.96

C2—H2 0.93 C14—C16 1.530 (3)

C3—C4 1.381 (4) C14—C17 1.533 (3)

C3—H3 0.93 C14—C15 1.538 (3)

C4—C5 1.375 (4) C15—H15A 0.96

C4—H4 0.93 C15—H15B 0.96

C5—C6 1.384 (3) C15—H15C 0.96

C5—H5 0.93 C16—H16A 0.96

C6—H6 0.93 C16—H16B 0.96

C7—C12 1.387 (3) C16—H16C 0.96

C7—C8 1.417 (3) C17—H17A 0.96

C8—C9 1.409 (3) C17—H17B 0.96

C9—C10 1.388 (3) C17—H17C 0.96

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, o1932–o1934

C8—O1—H1 109.5 C10—C11—C13 120.8 (2)

N2—N1—C1 115.24 (19) C11—C12—C7 121.5 (2)

N1—N2—C7 116.48 (19) C11—C12—H12 119.3

C6—C1—C2 120.1 (2) C7—C12—H12 119.3

C6—C1—N1 116.6 (2) C11—C13—H13A 109.5

C2—C1—N1 123.3 (2) C11—C13—H13B 109.5

C3—C2—C1 119.2 (2) H13A—C13—H13B 109.5

C3—C2—H2 120.4 C11—C13—H13C 109.5

C1—C2—H2 120.4 H13A—C13—H13C 109.5

C4—C3—C2 120.4 (2) H13B—C13—H13C 109.5

C4—C3—H3 119.8 C16—C14—C17 107.66 (19)

C2—C3—H3 119.8 C16—C14—C15 110.1 (2)

C5—C4—C3 120.5 (2) C17—C14—C15 107.5 (2)

C5—C4—H4 119.7 C16—C14—C9 110.58 (18)

C3—C4—H4 119.7 C17—C14—C9 111.16 (19)

C4—C5—C6 119.6 (3) C15—C14—C9 109.72 (18)

C4—C5—H5 120.2 C14—C15—H15A 109.5

C6—C5—H5 120.2 C14—C15—H15B 109.5

C1—C6—C5 120.3 (2) H15A—C15—H15B 109.5

C1—C6—H6 119.8 C14—C15—H15C 109.5

C5—C6—H6 119.8 H15A—C15—H15C 109.5

C12—C7—N2 114.7 (2) H15B—C15—H15C 109.5

C12—C7—C8 120.4 (2) C14—C16—H16A 109.5

N2—C7—C8 124.9 (2) C14—C16—H16B 109.5

O1—C8—C9 120.07 (19) H16A—C16—H16B 109.5

O1—C8—C7 120.32 (19) C14—C16—H16C 109.5

C9—C8—C7 119.6 (2) H16A—C16—H16C 109.5

C10—C9—C8 117.0 (2) H16B—C16—H16C 109.5

C10—C9—C14 121.9 (2) C14—C17—H17A 109.5

C8—C9—C14 121.1 (2) C14—C17—H17B 109.5

C9—C10—C11 124.5 (2) H17A—C17—H17B 109.5

C9—C10—H10 117.8 C14—C17—H17C 109.5

C11—C10—H10 117.8 H17A—C17—H17C 109.5

C12—C11—C10 117.1 (2) H17B—C17—H17C 109.5

C12—C11—C13 122.1 (2)

C1—N1—N2—C7 −179.46 (19) C7—C8—C9—C10 −1.3 (3)

N2—N1—C1—C6 −173.4 (2) O1—C8—C9—C14 −1.7 (3)

N2—N1—C1—C2 6.6 (3) C7—C8—C9—C14 179.46 (19)

C6—C1—C2—C3 0.8 (4) C8—C9—C10—C11 0.1 (3)

N1—C1—C2—C3 −179.1 (2) C14—C9—C10—C11 179.3 (2)

C1—C2—C3—C4 −0.4 (4) C9—C10—C11—C12 1.3 (3)

C2—C3—C4—C5 0.0 (4) C9—C10—C11—C13 −178.0 (2)

C3—C4—C5—C6 0.0 (4) C10—C11—C12—C7 −1.4 (3)

C2—C1—C6—C5 −0.8 (4) C13—C11—C12—C7 177.9 (2)

N1—C1—C6—C5 179.1 (2) N2—C7—C12—C11 −178.6 (2)

C4—C5—C6—C1 0.4 (4) C8—C7—C12—C11 0.2 (3)

(8)

supporting information

sup-5

Acta Cryst. (2003). E59, o1932–o1934

N1—N2—C7—C8 −0.7 (3) C8—C9—C14—C16 −56.7 (3)

C12—C7—C8—O1 −177.7 (2) C10—C9—C14—C17 4.6 (3)

N2—C7—C8—O1 0.9 (3) C8—C9—C14—C17 −176.2 (2)

C12—C7—C8—C9 1.1 (3) C10—C9—C14—C15 −114.2 (2)

N2—C7—C8—C9 179.8 (2) C8—C9—C14—C15 65.0 (3)

O1—C8—C9—C10 177.62 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1···N1 0.82 1.83 2.551 (2) 145

C16—H16B···O1 0.96 2.30 2.958 (3) 125

C15—H15C···O1 0.96 2.44 3.063 (3) 123

C4—H4···Cg1i 0.93 2.90 3.625 (3) 136

References

Related documents

The holistic approach derived from old institutionalism grasps the evolutionary dynamics of economic process and human behavior - considered in a social dimension - but

Experiment II has shown that when using small data sets to train an attribute selection algorithm, results can be achieved that are not significantly different from those obtained

Above study shows that Levobupivacaine is a safe alternative to Bupivacaine for patients undergoing lower limb vascular surgery, with epidural block

Specifically, our research examines the impact of perceived power differential on the strategies and the results of negotiations in a situation of power asymmetry between public

“The Japan Municipal Bond Yield Curve: 2002 to the Present.” International Journal of Economics and Finance, 8 (2016, forthcoming). “Comparative Analysis of Zero Coupon

The output of the word alignment systems (GIZA++ or ITG) were fed to a standard phrase extraction procedure that extracted all phrases of length up to 7 and esti- mated the

The candidate mentions are found in the parsed test corpus by matching the specified event hypotheses, either directly or via the given set of en- tailment rules, using a

In addition, all knowledge sources we used in the core perceptron and the outside-layer linear model come from the training corpus, whereas many open knowl- edge sources (lexicon