• No results found

8a,13b cis 8,8,13 Tri­methyl 11 phenyl 8,8a,9,13b tetra­hydro­pyrazolo­[3′′,4′′ b′]­thia­pyrano­[5′,4′:3,4]­pyrano­[5,6 c]­coumarin

N/A
N/A
Protected

Academic year: 2020

Share "8a,13b cis 8,8,13 Tri­methyl 11 phenyl 8,8a,9,13b tetra­hydro­pyrazolo­[3′′,4′′ b′]­thia­pyrano­[5′,4′:3,4]­pyrano­[5,6 c]­coumarin"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o2155±o2156 doi: 10.1107/S1600536804026674 S. Selvanayagamet al. C25H22N2O3S

o2155

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

8a,13b-

cis

-8,8,13-Trimethyl-11-phenyl-8,8a,9,13b-tetrahydropyrazolo[3

000000

,4

000000

-

b

000

]-thiapyrano[5

000

,4

000

:3,4]pyrano[5,6-

c

]coumarin

S. Selvanayagam,a

D. Velmurugan,a*

K. Ravikumar,bS. Narasinga

Rao,cJ. Jayashankaran,d

R. Rathna Durgadand

R. Raghunathand

aDepartment of Crystallography and Biophysics,

University of Madras, Guindy Campus, Chennai 600 025, India,bLaboratory of X-ray

Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India,

cUniversity of Central Oklahoma, Edmond,

Oklahoma, USA, anddDepartment of Organic

Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.084

wRfactor = 0.194

Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, C25H22N2O3S, the dihydropyran ring adopts a half-chair conformation and the dihydrothiapyran ring adopts a sofa conformation.

Comment

Coumarin derivatives show antimicrobial (Zaha & Hazem, 2002) and vasorelaxant (Campos-Toimilet al., 2002) activities and serve as antiplatelet agents (Roma et al., 2003). These derivatives occurring in plants have different biological activities (Cisowski, 1983, 1984) and are used as dual inhibitors of acetylcholinesterase and monoamine oxidase (Bruhlmann

et al., 2001). Recent results have shown that these derivatives act as potent and anti-HIV agents (Yuet al., 2003; Shikishima

et al., 2001). In view of the above biological importance, the title compound, (I), was chosen for crystallographic study to determine its structure and conformation.

The title molecule (Fig. 1) consists of two benzene rings (A

andF), one pyran ring (B), one dihydropyran ring (C), one dihydrothiapyran ring (D) and one pyrazole ring (E).

The geometry of the coumarin ring system is comparable to that observed in other coumarin derivatives (Chinnakaliet al., 1998, 1999; Krishnaet al., 2003). The bond distances agree well with the mean literature values (Allenet al., 1987). The sum of the angles at N23 of the pyrazole ring (E), 358.7is in

accor-dance withsp2-hybridization. In the coumarin moiety (Aand

B), the pyran ring (B) is planar within 0.052 (3) AÊ and the dihedral angle between the weighted least-squares planes through the benzene and pyran ring is 2.0 (1). The pyrazole

ring (E) is planar, with a maximum deviation ofÿ0.018 (3) AÊ for atom C21. The pyrazole ring (E) and the phenyl ring (F) subtend an angle of 51.2 (1). The dihydropyran ring (C)

adopts a half-chair conformation, with the lowest asymmetry parameter of C2(C9ÐC8) = 0.045 (1) (Nardelli, 1983). The dihydrothiapyran ring adopts a sofa conformation, with asymmetry parametersCs(C13) = 0.021 (1) andC2(C20Ð C13) = 0.087 (1) (Nardelli, 1983).

(2)

Experimental

To a solution of 3-methyl-5-(2-methylpropenylsulfanyl)-1-phenyl-1H -pyrazole-4-carbaldehyde (1 mmol) in ethanol was added an alcohol solution of 4-hydroxycoumarin (1 mmol) and ethylenediamine (1 drop)/diacetic acid (2 drops) (catalyst) at room temperature. The solution was re¯uxed for 3±4 h. The completion of the reaction was evidenced by thin-layer chromatography. The solvent was removedin vacuo and subjected to column chromatography using petroleum ether and ethyl acetate (8:2) as eluant. Good quality crystals were obtained from a mixture of ethyl acetate and hexane (1:1) by slow evaporation.

Crystal data C25H22N2O3S Mr= 430.51

Monoclinic,P21=n a= 10.1017 (11) AÊ b= 10.2760 (12) AÊ c= 20.187 (2) AÊ

= 95.278 (2)

V= 2086.7 (4) AÊ3 Z= 4

Dx= 1.370 Mg mÿ3

MoKradiation Cell parameters from 2365

re¯ections

= 2.4±21.7 = 0.19 mmÿ1 T= 293 (2) K Block, colourless 0.240.200.16 mm Data collection

Bruker SMART APEX diffractometer

!scans

Absorption correction: none 12360 measured re¯ections 4420 independent re¯ections

3260 re¯ections withI> 2(I) Rint= 0.041

max= 28.0 h=ÿ13!13 k=ÿ13!13 l=ÿ21!25 Refinement

Re®nement onF2 R[F2> 2(F2)] = 0.084 wR(F2) = 0.194 S= 1.16 4420 re¯ections 283 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0803P)2

+ 0.9689P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.43 e AÊÿ3 min=ÿ0.24 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

S1ÐC19 1.737 (3)

S1ÐC20 1.801 (4)

C5ÐO6 1.368 (4)

O6ÐC7 1.392 (4)

C9ÐC10 1.465 (4)

C14ÐO15 1.475 (4)

C19ÐN23 1.352 (4)

N22ÐN23 1.368 (3)

N23ÐC25 1.421 (4)

C13ÐC20ÐS1 117.0 (2)

C19ÐN23ÐN22 110.8 (2) C19ÐN23ÐC25N22ÐN23ÐC25 127.3 (3)120.6 (3)

C19ÐC18ÐC21ÐC24 ÿ173.0 (3)

C24ÐC21ÐN22ÐN23 174.4 (3) C19ÐN23ÐC25ÐC26 ÿ57.4 (4)

The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic CÐH distances of 0.93 AÊ, methyl CÐH distances of 0.96 AÊ, ethylene CÐH distances of 0.97 AÊ and methylene CÐH distances of 0.98 AÊ, and with Uiso =

1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Data collection:SMART(Bruker, 2001); cell re®nement:SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve

structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication:SHELXL97 and PARST (Nardelli, 1995).

SSthanks the Council of Scienti®c and Industrial Research (CSIR) for providing a Senior Research Fellowship. DV thanks the Department of Biotechnology (DBT) and University Grants Commission (UGC) for providing support under major research projects.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans.2, pp. S1±19.

Bruhlmann, C., Ooms, F., Carrupt, P. A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001).J. Med. Chem.44, 3195±3198. Bruker (2001).SAINT(Version 6.28a) andSMART(Version 5.625). Bruker

AXS Inc., Madison, Wisconsin, USA.

Campos-Toimil, M., Orallo, F., Santana, L. & Uriarte, E. (2002).Bioorg. Med. Chem. Lett.12, 783±786.

Chinnakali, K., Fun, H.-K., Sriraghavan, K. & Ramakrishnan, V. T. (1998). Acta Cryst.C54, 542±544.

Chinnakali, K., Fun, H.-K., Sriraghavan, K. & Ramakrishnan, V. T. (1999). Acta Cryst.C55, 946±948.

Cisowski, W. (1983).Herba Pol.29, 301±318. Cisowski, W. (1984).Herba Pol.30, 71±79. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Krishna, R., Selvanayagam, S., Yogavel, M., Velmurugan, D. & Manikandan, S. (2003).Acta Cryst.E59, o667±o669.

Nardelli, M. (1983).Acta Cryst.C39, 1141±1142. Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Roma, G., Braccio, M. D., Carrieri, A., Grossi, G., Leoncini, G., Grazia Signorello, M. & Carotti, A. (2003).Bioorg. Med. Chem.11, 123±138. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7±13.

Shikishima, Y., Takaishi, Y., Honda, G., Ito, M., Takfda, Y., Kodzhimatov, O. K., Ashurmetov, O. & Lee, K. H. (2001).Chem. Pharm. Bull (Tokyo),49, 877±880.

Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003).Med. Res. Rev.23, 322±345.

Zaha, A. A. & Hazem, A. (2002).New Microbiol.25, 213±222.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, o2155–o2156

supporting information

Acta Cryst. (2004). E60, o2155–o2156 [https://doi.org/10.1107/S1600536804026674]

8a,13b-

cis

-8,8,13-Trimethyl-11-phenyl-8,8a,9,13b-tetrahydropyrazolo[3

′′

,4

′′

-b

]thiapyrano[5

,4

:3,4]pyrano[5,6-

c

]coumarin

S. Selvanayagam, D. Velmurugan, K. Ravikumar, S. Narasinga Rao, J. Jayashankaran, R. Rathna

Durga and R. Raghunathan

8a,13b-cis-8,8,13-Trimethyl-11-phenyl-8,8a,9,13b- tetrahydropyrazolo[3′′,4′′ -b′]thiapyrano[5′,4′:3,4]pyrano[5,6-c]coumarin

Crystal data

C25H22N2O3S

Mr = 430.51 Monoclinic, P21/n Hall symbol: -P 2yn

a = 10.1017 (11) Å

b = 10.2760 (12) Å

c = 20.187 (2) Å

β = 95.278 (2)°

V = 2086.7 (4) Å3

Z = 4

F(000) = 904

Dx = 1.370 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2365 reflections

θ = 2.4–21.7°

µ = 0.19 mm−1

T = 293 K Block, colourless 0.24 × 0.20 × 0.16 mm

Data collection

CCD Aread Detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

12360 measured reflections 4420 independent reflections

3260 reflections with I > 2σ(I)

Rint = 0.041

θmax = 28.0°, θmin = 2.0°

h = −13→13

k = −13→13

l = −21→25

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.084

wR(F2) = 0.194

S = 1.16 4420 reflections 283 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0803P)2 + 0.9689P] where P = (Fo2 + 2Fc2)/3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.31200 (10) 0.00358 (9) 0.00828 (5) 0.0541 (3)

C1 0.4548 (3) −0.5434 (3) 0.15394 (18) 0.0481 (9)

H1 0.4518 −0.4951 0.1928 0.058*

C2 0.5403 (4) −0.6465 (4) 0.1524 (2) 0.0590 (10)

H2 0.5954 −0.6682 0.1902 0.071*

C3 0.5449 (4) −0.7181 (3) 0.0951 (2) 0.0623 (11)

H3 0.6029 −0.7883 0.0949 0.075*

C4 0.4658 (4) −0.6880 (3) 0.0382 (2) 0.0521 (9)

H4 0.4700 −0.7361 −0.0006 0.063*

C5 0.3788 (3) −0.5832 (3) 0.04049 (18) 0.0431 (8)

O6 0.2971 (2) −0.5587 (2) −0.01595 (12) 0.0511 (6)

C7 0.2047 (4) −0.4578 (3) −0.01916 (18) 0.0441 (8)

C8 0.2058 (3) −0.3705 (3) 0.03712 (15) 0.0379 (7)

C9 0.2793 (3) −0.4016 (3) 0.09376 (16) 0.0397 (7)

C10 0.3727 (3) −0.5110 (3) 0.09746 (17) 0.0402 (7)

O11 0.1326 (3) −0.4537 (3) −0.06932 (14) 0.0688 (8)

C12 0.1174 (3) −0.2490 (3) 0.03312 (15) 0.0383 (7)

H12 0.0269 −0.2760 0.0406 0.046*

C13 0.1689 (3) −0.1582 (3) 0.09076 (16) 0.0439 (8)

H13 0.1046 −0.0876 0.0940 0.053*

C14 0.1792 (4) −0.2357 (4) 0.15634 (16) 0.0514 (9)

O15 0.2813 (2) −0.3369 (2) 0.15154 (11) 0.0469 (6)

C16 0.0518 (4) −0.3021 (5) 0.17093 (19) 0.0680 (12)

H16A 0.0250 −0.3621 0.1358 0.102*

H16B −0.0165 −0.2380 0.1741 0.102*

H16C 0.0659 −0.3485 0.2123 0.102*

C17 0.2317 (5) −0.1533 (4) 0.21509 (19) 0.0705 (12)

H17A 0.2282 −0.2023 0.2554 0.106*

H17B 0.1783 −0.0764 0.2170 0.106*

H17C 0.3221 −0.1290 0.2102 0.106*

C18 0.1109 (3) −0.1757 (3) −0.03175 (15) 0.0358 (7)

C19 0.1917 (3) −0.0743 (3) −0.04455 (15) 0.0357 (7)

C20 0.3038 (4) −0.0986 (3) 0.08029 (17) 0.0508 (9)

H20A 0.3670 −0.1690 0.0776 0.061*

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, o2155–o2156

C21 0.0246 (3) −0.1874 (3) −0.09068 (16) 0.0397 (7)

N22 0.0551 (3) −0.1050 (2) −0.13700 (13) 0.0423 (7)

N23 0.1593 (3) −0.0343 (2) −0.10779 (13) 0.0399 (6)

C24 −0.0948 (4) −0.2738 (4) −0.10294 (19) 0.0567 (10)

H24A −0.1602 −0.2315 −0.1331 0.085*

H24B −0.1316 −0.2906 −0.0616 0.085*

H24C −0.0690 −0.3545 −0.1220 0.085*

C25 0.2348 (3) 0.0479 (3) −0.14666 (17) 0.0407 (8)

C26 0.2710 (3) 0.1715 (3) −0.12345 (18) 0.0487 (9)

H26 0.2435 0.2015 −0.0835 0.058*

C27 0.3476 (4) 0.2485 (4) −0.1601 (2) 0.0615 (11)

H27 0.3729 0.3308 −0.1445 0.074*

C28 0.3871 (4) 0.2065 (4) −0.2191 (2) 0.0636 (11)

H28 0.4399 0.2595 −0.2431 0.076*

C29 0.3489 (4) 0.0855 (4) −0.2431 (2) 0.0660 (11)

H29 0.3737 0.0574 −0.2840 0.079*

C30 0.2730 (4) 0.0057 (3) −0.20591 (19) 0.0530 (9)

H30 0.2483 −0.0767 −0.2215 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0531 (6) 0.0494 (5) 0.0567 (6) −0.0180 (4) −0.0120 (4) −0.0002 (4)

C1 0.045 (2) 0.0426 (17) 0.057 (2) −0.0027 (15) 0.0078 (17) 0.0023 (15)

C2 0.047 (2) 0.052 (2) 0.077 (3) 0.0051 (17) 0.002 (2) 0.009 (2)

C3 0.050 (2) 0.0422 (19) 0.097 (3) 0.0107 (17) 0.020 (2) 0.000 (2)

C4 0.050 (2) 0.0364 (16) 0.072 (3) −0.0027 (16) 0.020 (2) −0.0029 (17)

C5 0.0400 (18) 0.0347 (15) 0.056 (2) −0.0113 (14) 0.0101 (16) 0.0026 (14)

O6 0.0607 (16) 0.0394 (12) 0.0538 (15) 0.0003 (11) 0.0082 (12) −0.0107 (10)

C7 0.050 (2) 0.0331 (15) 0.049 (2) −0.0039 (14) 0.0068 (17) −0.0052 (14)

C8 0.0357 (17) 0.0375 (15) 0.0412 (17) −0.0065 (13) 0.0076 (14) −0.0011 (13)

C9 0.0377 (18) 0.0386 (16) 0.0443 (19) −0.0022 (14) 0.0109 (15) −0.0030 (14)

C10 0.0353 (18) 0.0368 (16) 0.0505 (19) −0.0060 (14) 0.0142 (15) 0.0033 (14)

O11 0.083 (2) 0.0575 (15) 0.0620 (17) 0.0067 (14) −0.0162 (16) −0.0177 (13)

C12 0.0306 (16) 0.0407 (16) 0.0443 (18) 0.0014 (13) 0.0064 (14) −0.0014 (13)

C13 0.0418 (19) 0.0477 (18) 0.0423 (18) 0.0128 (15) 0.0051 (15) −0.0063 (14)

C14 0.053 (2) 0.063 (2) 0.0381 (18) 0.0177 (18) 0.0061 (16) −0.0055 (16)

O15 0.0463 (14) 0.0534 (13) 0.0406 (13) 0.0118 (11) 0.0016 (11) −0.0028 (10)

C16 0.054 (2) 0.100 (3) 0.052 (2) 0.011 (2) 0.0151 (19) 0.010 (2)

C17 0.082 (3) 0.085 (3) 0.043 (2) 0.029 (2) −0.003 (2) −0.014 (2)

C18 0.0317 (16) 0.0347 (15) 0.0406 (17) 0.0002 (13) 0.0016 (13) −0.0060 (12)

C19 0.0325 (16) 0.0325 (14) 0.0411 (17) −0.0003 (13) −0.0016 (14) −0.0095 (12)

C20 0.057 (2) 0.0478 (18) 0.0439 (19) 0.0008 (16) −0.0145 (17) −0.0034 (15)

C21 0.0349 (17) 0.0368 (15) 0.0477 (19) −0.0049 (13) 0.0052 (15) −0.0067 (14)

N22 0.0375 (15) 0.0418 (14) 0.0467 (16) −0.0093 (12) −0.0006 (12) −0.0031 (12)

N23 0.0389 (15) 0.0363 (13) 0.0441 (15) −0.0077 (11) 0.0014 (12) −0.0011 (11)

C24 0.045 (2) 0.064 (2) 0.059 (2) −0.0217 (18) −0.0050 (18) 0.0006 (18)

(6)

C26 0.050 (2) 0.0397 (17) 0.056 (2) −0.0012 (15) 0.0006 (17) 0.0013 (15)

C27 0.058 (2) 0.048 (2) 0.077 (3) −0.0128 (18) −0.005 (2) 0.0171 (19)

C28 0.050 (2) 0.065 (2) 0.077 (3) −0.0039 (19) 0.007 (2) 0.033 (2)

C29 0.070 (3) 0.075 (3) 0.055 (2) 0.014 (2) 0.015 (2) 0.013 (2)

C30 0.057 (2) 0.0451 (18) 0.058 (2) 0.0027 (17) 0.0074 (19) 0.0042 (17)

Geometric parameters (Å, º)

S1—C19 1.737 (3) C16—H16A 0.9600

S1—C20 1.801 (4) C16—H16B 0.9600

C1—C2 1.369 (5) C16—H16C 0.9600

C1—C10 1.387 (5) C17—H17A 0.9600

C1—H1 0.9300 C17—H17B 0.9600

C2—C3 1.375 (6) C17—H17C 0.9600

C2—H2 0.9300 C18—C19 1.363 (4)

C3—C4 1.372 (5) C18—C21 1.414 (4)

C3—H3 0.9300 C19—N23 1.352 (4)

C4—C5 1.393 (5) C20—H20A 0.9700

C4—H4 0.9300 C20—H20B 0.9700

C5—O6 1.368 (4) C21—N22 1.319 (4)

C5—C10 1.375 (5) C21—C24 1.500 (4)

O6—C7 1.392 (4) N22—N23 1.368 (3)

C7—O11 1.193 (4) N23—C25 1.421 (4)

C7—C8 1.447 (4) C24—H24A 0.9600

C8—C9 1.343 (4) C24—H24B 0.9600

C8—C12 1.533 (4) C24—H24C 0.9600

C9—O15 1.341 (4) C25—C30 1.361 (5)

C9—C10 1.465 (4) C25—C26 1.391 (4)

C12—C18 1.507 (4) C26—C27 1.371 (5)

C12—C13 1.544 (4) C26—H26 0.9300

C12—H12 0.9800 C27—C28 1.359 (6)

C13—C20 1.526 (5) C27—H27 0.9300

C13—C14 1.540 (5) C28—C29 1.377 (6)

C13—H13 0.9800 C28—H28 0.9300

C14—O15 1.475 (4) C29—C30 1.389 (5)

C14—C16 1.509 (5) C29—H29 0.9300

C14—C17 1.513 (5) C30—H30 0.9300

C19—S1—C20 98.36 (15) H16A—C16—H16C 109.5

C2—C1—C10 119.8 (3) H16B—C16—H16C 109.5

C2—C1—H1 120.1 C14—C17—H17A 109.5

C10—C1—H1 120.1 C14—C17—H17B 109.5

C1—C2—C3 120.3 (4) H17A—C17—H17B 109.5

C1—C2—H2 119.9 C14—C17—H17C 109.5

C3—C2—H2 119.9 H17A—C17—H17C 109.5

C4—C3—C2 121.4 (3) H17B—C17—H17C 109.5

C4—C3—H3 119.3 C19—C18—C21 103.8 (3)

(7)

supporting information

sup-5

Acta Cryst. (2004). E60, o2155–o2156

C3—C4—C5 117.8 (3) C21—C18—C12 131.5 (3)

C3—C4—H4 121.1 N23—C19—C18 108.3 (2)

C5—C4—H4 121.1 N23—C19—S1 122.3 (2)

O6—C5—C10 121.8 (3) C18—C19—S1 129.3 (2)

O6—C5—C4 116.7 (3) C13—C20—S1 117.0 (2)

C10—C5—C4 121.5 (3) C13—C20—H20A 108.1

C5—O6—C7 121.8 (3) S1—C20—H20A 108.1

O11—C7—O6 114.8 (3) C13—C20—H20B 108.1

O11—C7—C8 127.2 (3) S1—C20—H20B 108.1

O6—C7—C8 117.9 (3) H20A—C20—H20B 107.3

C9—C8—C7 119.0 (3) N22—C21—C18 112.1 (3)

C9—C8—C12 120.8 (3) N22—C21—C24 120.0 (3)

C7—C8—C12 120.1 (3) C18—C21—C24 127.9 (3)

O15—C9—C8 125.8 (3) C21—N22—N23 104.8 (2)

O15—C9—C10 112.2 (3) C19—N23—N22 110.8 (2)

C8—C9—C10 121.9 (3) C19—N23—C25 127.3 (3)

C5—C10—C1 119.2 (3) N22—N23—C25 120.6 (3)

C5—C10—C9 116.7 (3) C21—C24—H24A 109.5

C1—C10—C9 124.0 (3) C21—C24—H24B 109.5

C18—C12—C8 115.5 (3) H24A—C24—H24B 109.5

C18—C12—C13 109.7 (2) C21—C24—H24C 109.5

C8—C12—C13 107.3 (2) H24A—C24—H24C 109.5

C18—C12—H12 108.0 H24B—C24—H24C 109.5

C8—C12—H12 108.0 C30—C25—C26 120.0 (3)

C13—C12—H12 108.0 C30—C25—N23 120.4 (3)

C20—C13—C14 109.6 (3) C26—C25—N23 119.6 (3)

C20—C13—C12 112.4 (3) C27—C26—C25 119.3 (4)

C14—C13—C12 109.1 (3) C27—C26—H26 120.4

C20—C13—H13 108.6 C25—C26—H26 120.4

C14—C13—H13 108.6 C28—C27—C26 121.0 (4)

C12—C13—H13 108.6 C28—C27—H27 119.5

O15—C14—C16 107.9 (3) C26—C27—H27 119.5

O15—C14—C17 104.4 (3) C27—C28—C29 120.0 (4)

C16—C14—C17 110.1 (3) C27—C28—H28 120.0

O15—C14—C13 107.5 (3) C29—C28—H28 120.0

C16—C14—C13 114.2 (3) C28—C29—C30 119.5 (4)

C17—C14—C13 112.1 (3) C28—C29—H29 120.2

C9—O15—C14 116.9 (2) C30—C29—H29 120.2

C14—C16—H16A 109.5 C25—C30—C29 120.2 (4)

C14—C16—H16B 109.5 C25—C30—H30 119.9

H16A—C16—H16B 109.5 C29—C30—H30 119.9

C14—C16—H16C 109.5

C10—C1—C2—C3 0.0 (5) C10—C9—O15—C14 −172.3 (3)

C1—C2—C3—C4 0.6 (6) C16—C14—O15—C9 80.6 (3)

C2—C3—C4—C5 −0.8 (5) C17—C14—O15—C9 −162.2 (3)

C3—C4—C5—O6 −177.3 (3) C13—C14—O15—C9 −43.0 (4)

(8)

C10—C5—O6—C7 1.2 (5) C13—C12—C18—C19 29.1 (4)

C4—C5—O6—C7 179.0 (3) C8—C12—C18—C21 90.1 (4)

C5—O6—C7—O11 −174.2 (3) C13—C12—C18—C21 −148.5 (3)

C5—O6—C7—C8 5.9 (4) C21—C18—C19—N23 −3.0 (3)

O11—C7—C8—C9 169.3 (4) C12—C18—C19—N23 178.9 (3)

O6—C7—C8—C9 −10.7 (5) C21—C18—C19—S1 173.7 (2)

O11—C7—C8—C12 −6.9 (5) C12—C18—C19—S1 −4.4 (5)

O6—C7—C8—C12 173.1 (3) C20—S1—C19—N23 −179.5 (3)

C7—C8—C9—O15 −173.8 (3) C20—S1—C19—C18 4.3 (3)

C12—C8—C9—O15 2.4 (5) C14—C13—C20—S1 −176.9 (2)

C7—C8—C9—C10 8.8 (5) C12—C13—C20—S1 61.6 (3)

C12—C8—C9—C10 −175.0 (3) C19—S1—C20—C13 −31.9 (3)

O6—C5—C10—C1 177.7 (3) C19—C18—C21—N22 3.4 (4)

C4—C5—C10—C1 0.0 (5) C12—C18—C21—N22 −178.7 (3)

O6—C5—C10—C9 −3.3 (4) C19—C18—C21—C24 −173.0 (3)

C4—C5—C10—C9 178.9 (3) C12—C18—C21—C24 4.9 (6)

C2—C1—C10—C5 −0.2 (5) C18—C21—N22—N23 −2.3 (4)

C2—C1—C10—C9 −179.1 (3) C24—C21—N22—N23 174.4 (3)

O15—C9—C10—C5 −179.6 (3) C18—C19—N23—N22 1.8 (4)

C8—C9—C10—C5 −1.9 (5) S1—C19—N23—N22 −175.2 (2)

O15—C9—C10—C1 −0.6 (4) C18—C19—N23—C25 −165.0 (3)

C8—C9—C10—C1 177.0 (3) S1—C19—N23—C25 18.0 (4)

C9—C8—C12—C18 142.4 (3) C21—N22—N23—C19 0.4 (3)

C7—C8—C12—C18 −41.5 (4) C21—N22—N23—C25 168.2 (3)

C9—C8—C12—C13 19.7 (4) C19—N23—C25—C30 121.9 (4)

C7—C8—C12—C13 −164.2 (3) N22—N23—C25—C30 −43.7 (4)

C18—C12—C13—C20 −56.4 (3) C19—N23—C25—C26 −57.4 (4)

C8—C12—C13—C20 69.9 (3) N22—N23—C25—C26 137.0 (3)

C18—C12—C13—C14 −178.2 (3) C30—C25—C26—C27 −1.4 (5)

C8—C12—C13—C14 −51.9 (3) N23—C25—C26—C27 177.8 (3)

C20—C13—C14—O15 −58.8 (3) C25—C26—C27—C28 0.8 (5)

C12—C13—C14—O15 64.7 (3) C26—C27—C28—C29 0.8 (6)

C20—C13—C14—C16 −178.5 (3) C27—C28—C29—C30 −1.7 (6)

C12—C13—C14—C16 −55.0 (4) C26—C25—C30—C29 0.5 (5)

C20—C13—C14—C17 55.4 (4) N23—C25—C30—C29 −178.8 (3)

C12—C13—C14—C17 178.9 (3) C28—C29—C30—C25 1.1 (6)

References

Related documents

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are