• No results found

Methyl {2 [(3 phenyl 1,2,4 oxa­diazol 5 yl)­meth­oxy]­phenyl}acetate

N/A
N/A
Protected

Academic year: 2020

Share "Methyl {2 [(3 phenyl 1,2,4 oxa­diazol 5 yl)­meth­oxy]­phenyl}acetate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1478

Wang, Chen and Wang C18H16N2O4 DOI: 10.1107/S1600536804018458 Acta Cryst.(2004). E60, o1478±o1480 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Methyl

{2-[(3-phenyl-1,2,4-oxadiazol-5-yl)-methoxy]phenyl}acetate

Hai-Bo Wang,* Jia-Hui Chen and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.056

wRfactor = 0.186

Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C18H16N2O4, was synthesized by the reaction of methyl (2-hydroxyphenyl)acetate and 5-chloro-methyl-3-phenyl-1,2,4-oxadiazole. In the crystal structure, there are weak intermolecular CÐH O hydrogen bonds and weak CÐH (arene) interactions.

Comment

1,2,4-Oxadiazole derivatives are of great interest because of their biological properties. Some derivatives of 1,2,4-oxa-diazoles have intrinsic analgesic (Terashitaet al., 2002), anti-in¯ammatory (Nicolaides et al., 1998), and antipicornaviral (Romero, 2001) properties and are ef®cient as agonists [e.g.

formuscarinic (Macor et al., 1996), adrenergic agents (Quagliato & Andrae, 2002) and 5-hydroxytryptamine (Guret al., 2001)] and antagonists [e.g. for angiotension (Naka & Kubo, 1999 and adhesion (Juraszyket al., 1997)] for different receptors.

The molecular structure of (I) is shown in Fig. 1 and the bond lengths and angles are given in Table 1. In the crystal structure, molecules are linked by CÐH O hydrogen bonds and there is also an intermolecular contact which indicates a weak CÐH (arene) interaction. Full details of the hydrogen bonding are given in Table 2 (see also Fig. 2 and Fig. 3). The combination of both types of weak interactions generates a three-dimensional network.

Received 7 July 2004 Accepted 28 July 2004 Online 7 August 2004

Figure 1

(2)

Experimental

Methyl (2-hydroxyphenyl)acetate (20 mmol) was dissolved in acetone (20 ml) and potassium carbonate (30 mmol) was added in one portion. 5-Chloro-3-phenyl-1,2,4-oxadiazole (20 mmol) in acetone (20 ml) was added to this mixture. The resulting mixture was re¯uxed for 4 h, then concentrated under reduced pressure to afford crude compound (I). Pure compound (I) was obtained by recrys-tallization from ethyl acetate (m.p. 354±355 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Spectroscopic analysis,1H NMR (CDCl

3, p.p.m.): 8.12±8.13 (m, 2H), 7.50±7.55 (m, 3H), 7.26±7.32 (m, 2H), 7.01±7.06 (m, 2H), 5.39 (s, 2H), 3.77 (s, 2H), 3.73 (s, 3H)).

Crystal data

C18H16N2O4

Mr= 324.33 Triclinic,P1

a= 8.7850 (18) AÊ

b= 9.848 (2) AÊ

c= 10.345 (2) AÊ

= 77.90 (3)

= 79.12 (3)

= 67.39 (3)

V= 802.0 (3) AÊ3

Z= 2

Dx= 1.343 Mg mÿ3 MoKradiation Cell parameters from 25

re¯ections

= 10±13

= 0.10 mmÿ1

T= 293 (2) K Block, colourless 0.400.300.30 mm

Data collection

Enraf±Nonius CAD-4 diffractometer

!/2scans

Absorption correction: scan (SHELXTL; Siemens, 1996)

Tmin= 0.963,Tmax= 0.972

3347 measured re¯ections 3129 independent re¯ections 2141 re¯ections withI> 2(I)

Rint= 0.022

max= 26.0

h= 0!10

k=ÿ11!12

l=ÿ12!12 3 standard re¯ections

every 200 re¯ections intensity decay: negligible

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.056

wR(F2) = 0.186

S= 1.17 3129 re¯ections 217 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.076P)2 + 0.34P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.23 e AÊÿ3

min=ÿ0.32 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

O1ÐC8 1.326 (3) O1ÐN1 1.418 (3) O2ÐC10 1.375 (3) O2ÐC9 1.418 (3) O3ÐC17 1.328 (3) O3ÐC18 1.450 (4) O4ÐC17 1.200 (3)

N1ÐC7 1.296 (4) N2ÐC8 1.291 (3) N2ÐC7 1.383 (4) C8ÐC9 1.497 (4) C15ÐC16 1.504 (4) C16ÐC17 1.499 (4)

C8ÐO1ÐN1 106.2 (2) C10ÐO2ÐC9 118.2 (2) C17ÐO3ÐC18 116.0 (2) C7ÐN1ÐO1 103.3 (2) C8ÐN2ÐC7 102.5 (2) N1ÐC7ÐN2 114.3 (3) N1ÐC7ÐC3 122.3 (3)

N2ÐC8ÐO1 113.8 (2) N2ÐC8ÐC9 131.1 (3) O2ÐC9ÐC8 112.3 (2) C17ÐC16ÐC15 112.7 (2) O4ÐC17ÐO3 122.9 (2) O4ÐC17ÐC16 125.7 (3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C11ÐH11A O4i 0.93 2.47 3.319 (4) 152

C18ÐH18A O3ii 0.96 2.55 3.272 (5) 132

C9ÐH9A Cg3i 0.97 2.81 3.503 (4) 129

Symmetry codes: (i) 1ÿx;ÿy;ÿz; (ii)ÿx;ÿy;1ÿz.Cg3 is the centroid of the ring C10± C15.

All H atoms were placed in calculated positions, with CÐH distances in the range 0.93±0.97 AÊ. They were included in the riding-model approximation, withUiso= 1.2Ueq(C) or 1.5eq(CMe).

Data collection: CAD-4 Software (Enraf±Nonius, 1989); cell re®nement:CAD-4Software; data reduction:XCAD4 (Harms, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication:SHELXL97.

References

Enraf±Nonius (1989).CAD-4Software. Version 5.0. Enraf±Nonius, Delft, The Netherlands.

organic papers

Acta Cryst.(2004). E60, o1478±o1480 Wang, Chen and Wang C18H16N2O4

o1479

Figure 2

The crystal structure of (I). Dashed lines indicate weak CÐH O hydrogen bonds.

Figure 3

(3)

Gur, E., Dremencov, E., Lerer, B. & Newman, M. E. (2001).Eur. J. Pharmacol. 411, 115±122.

Harms, K. (1995).XCAD4. University of Marburg, Germany.

Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. & Melzer, G. (1997). PCT Int. Appl. No. 9744333.

Macor, J. E., Ordway, T., Smith, R. L., Verhoest, P. R. & Mack, R. A. (1996).J. Org. Chem.61, 3228±3229.

Naka, T. & Kubo, K. (1999).Curr. Pharm. Des.5, 453±472.

Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998).Eur. J. Med. Chem.33, 715±724.

Quagliato, D. A. & Andrae, P. M. (2002). PCT Int. Appl. WO 0206250. Romero, J. R. (2001).Expert Opin. Invest. Drugs,10, 369±379.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Terashita, Z., Naruo, K. & Morimoto, S. (2002). PCT Int. Appl. WO 0260439.

organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, o1478–o1480

supporting information

Acta Cryst. (2004). E60, o1478–o1480 [https://doi.org/10.1107/S1600536804018458]

Methyl {2-[(3-phenyl-1,2,4-oxadiazol-5-yl)methoxy]phenyl}acetate

Hai-Bo Wang, Jia-Hui Chen and Jin-Tang Wang

Methyl {2-[(3-phenyl-1,2,4-oxadiazol-5-yl)methoxy]phenyl}acetate

Crystal data

C18H16N2O4

Mr = 324.33

Triclinic, P1 Hall symbol: -P 1 a = 8.7850 (18) Å b = 9.848 (2) Å c = 10.345 (2) Å α = 77.90 (3)° β = 79.12 (3)° γ = 67.39 (3)° V = 802.0 (3) Å3

Z = 2 F(000) = 340 Dx = 1.343 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections θ = 10–13°

µ = 0.10 mm−1

T = 293 K Block, colourless 0.40 × 0.30 × 0.30 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω/2θ scans

Absorption correction: ψ scan (SHELXTL; Siemens, 1996) Tmin = 0.963, Tmax = 0.972 3347 measured reflections

3129 independent reflections 2141 reflections with I > 2σ(I) Rint = 0.022

θmax = 26.0°, θmin = 2.0°

h = 0→10 k = −11→12 l = −12→12

3 standard reflections every 200 reflections intensity decay: none

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.056

wR(F2) = 0.186

S = 1.17 3129 reflections 217 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.076P)2 + 0.34P] where P = (Fo2 + 2Fc2)/3

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, o1478–o1480

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.2479 (3) 0.4841 (2) −0.1489 (2) 0.0762 (7)

O2 0.2278 (2) 0.1422 (2) 0.05165 (18) 0.0534 (5)

O3 0.1390 (2) −0.0864 (3) 0.3905 (2) 0.0711 (7)

O4 0.3701 (2) −0.2030 (2) 0.26622 (19) 0.0618 (6)

N1 0.1397 (4) 0.5793 (3) −0.2430 (3) 0.0794 (9)

N2 0.0624 (3) 0.3849 (3) −0.1466 (2) 0.0530 (6)

C1 −0.2137 (5) 0.7279 (4) −0.5191 (4) 0.0782 (10)

H1B −0.2143 0.8041 −0.5897 0.094*

C2 −0.0981 (4) 0.6836 (4) −0.4302 (3) 0.0694 (9)

H2B −0.0214 0.7303 −0.4411 0.083*

C3 −0.0962 (4) 0.5703 (3) −0.3254 (3) 0.0529 (7)

C4 −0.2143 (4) 0.5058 (3) −0.3092 (3) 0.0632 (8)

H4A −0.2161 0.4311 −0.2378 0.076*

C5 −0.3303 (4) 0.5515 (4) −0.3986 (4) 0.0739 (9)

H5A −0.4100 0.5080 −0.3867 0.089*

C6 −0.3272 (4) 0.6605 (4) −0.5039 (3) 0.0740 (10)

H6A −0.4025 0.6889 −0.5656 0.089*

C7 0.0349 (4) 0.5142 (3) −0.2375 (3) 0.0531 (7)

C8 0.1926 (3) 0.3738 (3) −0.0985 (3) 0.0486 (6)

C9 0.2904 (4) 0.2589 (3) 0.0044 (3) 0.0553 (7)

H9A 0.4053 0.2175 −0.0337 0.066*

H9B 0.2877 0.3060 0.0787 0.066*

C10 0.2695 (3) 0.0319 (3) −0.0251 (2) 0.0436 (6)

C11 0.3642 (3) 0.0286 (3) −0.1483 (3) 0.0491 (7)

H11A 0.4031 0.1054 −0.1857 0.059*

C12 0.4007 (4) −0.0896 (3) −0.2154 (3) 0.0559 (7)

H12A 0.4660 −0.0931 −0.2975 0.067*

C13 0.3411 (4) −0.2019 (3) −0.1617 (3) 0.0591 (8)

H13A 0.3646 −0.2804 −0.2079 0.071*

C14 0.2466 (4) −0.1981 (3) −0.0393 (3) 0.0574 (8)

H14A 0.2063 −0.2744 −0.0037 0.069*

C15 0.2106 (3) −0.0829 (3) 0.0315 (2) 0.0463 (6)

C16 0.1145 (3) −0.0810 (4) 0.1682 (3) 0.0536 (7)

H16A 0.0361 0.0191 0.1754 0.064*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, o1478–o1480

C17 0.2243 (3) −0.1305 (3) 0.2768 (3) 0.0484 (7)

C18 0.2333 (4) −0.1292 (5) 0.5027 (3) 0.0835 (11)

H18A 0.1605 −0.0933 0.5798 0.125*

H18B 0.3185 −0.0868 0.4825 0.125*

H18C 0.2834 −0.2357 0.5202 0.125*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0855 (16) 0.0648 (14) 0.0962 (17) −0.0423 (12) −0.0490 (14) 0.0138 (12)

O2 0.0604 (12) 0.0550 (11) 0.0457 (10) −0.0225 (9) −0.0088 (9) −0.0039 (9)

O3 0.0482 (11) 0.1049 (17) 0.0471 (12) −0.0092 (11) −0.0118 (9) −0.0137 (11)

O4 0.0430 (11) 0.0860 (15) 0.0498 (11) −0.0174 (10) −0.0117 (9) −0.0024 (10)

N1 0.093 (2) 0.0656 (17) 0.092 (2) −0.0405 (16) −0.0517 (18) 0.0208 (15)

N2 0.0541 (14) 0.0526 (13) 0.0558 (14) −0.0216 (11) −0.0179 (11) −0.0008 (11)

C1 0.077 (2) 0.078 (2) 0.063 (2) −0.0115 (19) −0.0255 (18) 0.0093 (17)

C2 0.066 (2) 0.071 (2) 0.066 (2) −0.0229 (17) −0.0193 (16) 0.0068 (16)

C3 0.0535 (16) 0.0502 (15) 0.0526 (16) −0.0119 (13) −0.0154 (13) −0.0077 (13)

C4 0.0602 (18) 0.0590 (18) 0.067 (2) −0.0148 (15) −0.0246 (15) −0.0003 (15)

C5 0.062 (2) 0.080 (2) 0.079 (2) −0.0174 (17) −0.0246 (17) −0.0129 (19)

C6 0.0576 (19) 0.086 (2) 0.065 (2) −0.0026 (18) −0.0234 (16) −0.0149 (19)

C7 0.0591 (17) 0.0469 (15) 0.0546 (17) −0.0177 (13) −0.0152 (13) −0.0058 (13)

C8 0.0515 (15) 0.0433 (14) 0.0547 (16) −0.0167 (12) −0.0172 (12) −0.0062 (12)

C9 0.0621 (18) 0.0526 (16) 0.0553 (17) −0.0193 (14) −0.0217 (14) −0.0061 (13)

C10 0.0430 (14) 0.0511 (15) 0.0389 (13) −0.0171 (12) −0.0145 (11) −0.0020 (11)

C11 0.0522 (15) 0.0557 (16) 0.0420 (14) −0.0247 (13) −0.0115 (12) 0.0028 (12)

C12 0.0541 (17) 0.076 (2) 0.0391 (14) −0.0255 (15) −0.0057 (12) −0.0076 (14)

C13 0.0673 (19) 0.0619 (18) 0.0561 (18) −0.0248 (15) −0.0191 (15) −0.0123 (14)

C14 0.0680 (19) 0.0625 (18) 0.0523 (17) −0.0355 (15) −0.0191 (14) 0.0034 (14)

C15 0.0443 (14) 0.0563 (16) 0.0401 (14) −0.0209 (12) −0.0157 (11) 0.0043 (12)

C16 0.0438 (15) 0.0716 (19) 0.0456 (15) −0.0264 (14) −0.0105 (12) 0.0063 (13)

C17 0.0428 (15) 0.0596 (17) 0.0431 (15) −0.0238 (13) −0.0051 (11) 0.0021 (12)

C18 0.063 (2) 0.130 (3) 0.0474 (18) −0.016 (2) −0.0186 (15) −0.0191 (19)

Geometric parameters (Å, º)

O1—C8 1.326 (3) C6—H6A 0.9300

O1—N1 1.418 (3) C8—C9 1.497 (4)

O2—C10 1.375 (3) C9—H9A 0.9700

O2—C9 1.418 (3) C9—H9B 0.9700

O3—C17 1.328 (3) C10—C11 1.383 (4)

O3—C18 1.450 (4) C10—C15 1.396 (4)

O4—C17 1.200 (3) C11—C12 1.381 (4)

N1—C7 1.296 (4) C11—H11A 0.9300

N2—C8 1.291 (3) C12—C13 1.372 (4)

N2—C7 1.383 (4) C12—H12A 0.9300

C1—C6 1.366 (5) C13—C14 1.376 (4)

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, o1478–o1480

C1—H1B 0.9300 C14—C15 1.382 (4)

C2—C3 1.381 (4) C14—H14A 0.9300

C2—H2B 0.9300 C15—C16 1.504 (4)

C3—C4 1.380 (4) C16—C17 1.499 (4)

C3—C7 1.467 (4) C16—H16A 0.9700

C4—C5 1.387 (4) C16—H16B 0.9700

C4—H4A 0.9300 C18—H18A 0.9600

C5—C6 1.364 (5) C18—H18B 0.9600

C5—H5A 0.9300 C18—H18C 0.9600

C8—O1—N1 106.2 (2) H9A—C9—H9B 107.9

C10—O2—C9 118.2 (2) O2—C10—C11 124.7 (2)

C17—O3—C18 116.0 (2) O2—C10—C15 114.7 (2)

C7—N1—O1 103.3 (2) C11—C10—C15 120.6 (2)

C8—N2—C7 102.5 (2) C12—C11—C10 119.6 (3)

C6—C1—C2 120.4 (3) C12—C11—H11A 120.2

C6—C1—H1B 119.8 C10—C11—H11A 120.2

C2—C1—H1B 119.8 C13—C12—C11 120.4 (3)

C3—C2—C1 120.2 (3) C13—C12—H12A 119.8

C3—C2—H2B 119.9 C11—C12—H12A 119.8

C1—C2—H2B 119.9 C12—C13—C14 119.9 (3)

C4—C3—C2 118.8 (3) C12—C13—H13A 120.0

C4—C3—C7 120.7 (3) C14—C13—H13A 120.0

C2—C3—C7 120.4 (3) C13—C14—C15 121.1 (3)

C3—C4—C5 120.6 (3) C13—C14—H14A 119.4

C3—C4—H4A 119.7 C15—C14—H14A 119.4

C5—C4—H4A 119.7 C14—C15—C10 118.4 (2)

C6—C5—C4 119.8 (3) C14—C15—C16 121.7 (2)

C6—C5—H5A 120.1 C10—C15—C16 119.8 (3)

C4—C5—H5A 120.1 C17—C16—C15 112.7 (2)

C5—C6—C1 120.2 (3) C17—C16—H16A 109.1

C5—C6—H6A 119.9 C15—C16—H16A 109.1

C1—C6—H6A 119.9 C17—C16—H16B 109.1

N1—C7—N2 114.3 (3) C15—C16—H16B 109.1

N1—C7—C3 122.3 (3) H16A—C16—H16B 107.8

N2—C7—C3 123.4 (3) O4—C17—O3 122.9 (2)

N2—C8—O1 113.8 (2) O4—C17—C16 125.7 (3)

N2—C8—C9 131.1 (3) O3—C17—C16 111.4 (2)

O1—C8—C9 115.0 (2) O3—C18—H18A 109.5

O2—C9—C8 112.3 (2) O3—C18—H18B 109.5

O2—C9—H9A 109.1 H18A—C18—H18B 109.5

C8—C9—H9A 109.1 O3—C18—H18C 109.5

O2—C9—H9B 109.2 H18A—C18—H18C 109.5

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, o1478–o1480

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C11—H11A···O4i 0.93 2.47 3.319 (4) 152

C18—H18A···O3ii 0.96 2.55 3.272 (5) 132

C9—H9A···Cg3i 0.97 2.81 3.503 (4) 129

References

Related documents

It seems that individuals with lower levels of internal resources (in the form of human, financial, and social capital) will have lower growth expectations for their new ventures

The emotion analysis that IlluMe performed is to find the emotions that texts in messenger logs bear in order to create a comfort ambient by sound and lighting accordingly..

The results consists of (1) the procyclicality of inflation, (2) inflation control through interest rate manipulation, (3) the persistence of inflation since World War II, (4) the

We present a mobile touchable application for online topic graph extraction and exploration of web content. The system has been imple- mented for operation on an iPad. The topic

It generates a steady- state level of capital per capita bounded by the golden rule level, where the resulting equilibrium saving rate reaches a maximum value of

Din rezervorul de șlam de calcar acesta este preluat cu ajutorul unei pompe și transportat spre cele 2 ramuri din absorber care permit introducerea șlamului de

Whereas prior review studies focus on the costs and benefits of disclosure regulation on financial reporting in US and Europe, (e.g., Bushman and Landsman, 2010; Defond, 2010;

The research in the second part analyses the degree to which new technologies are used by the museums in Baia Mare in comparison with the international trends