• No results found

(Acetato κO)[benzoyl­acetone (4 meth­oxy­benzoyl)­hydrazonato κ3O,N,O′](pyridine κN)­zinc(II)

N/A
N/A
Protected

Academic year: 2020

Share "(Acetato κO)[benzoyl­acetone (4 meth­oxy­benzoyl)­hydrazonato κ3O,N,O′](pyridine κN)­zinc(II)"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m1281±m1283 DOI: 10.1107/S1600536804019725 Huoet al. [Zn(C18H17N2O3)(C2H3O2)(C5H5N)]

m1281

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

(Acetato-

j

O)[benzoylacetone

(4-methoxybenzoyl)-hydrazonato-

j

3

O,N,O

000

](pyridine-

j

N)zinc(II)

Li-Hua Huo, Shan Gao,* Ji-Wei Liu and Hui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.005 AÊ Rfactor = 0.053 wRfactor = 0.109

Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The asymmetric unit of title complex, [Zn(C18H17N2O3

)-(C2H3O2)(C5H5N)], consists of two independent ZnIIcomplex

molecules, which are held together by NÐH O hydrogen bonds, forming a dimer. Each ZnII atom has a distorted

trigonal±bipyramidal O3N2 con®guration, de®ned by two O

atoms and one N atom from the tridentate hydrazone ligand, one O atom from the acetate group and one N atom from pyridine molecule. The O atoms of the deprotonated hydrazone ligand occupy the axial sites.

Comment

Most hydrazone ligands are coordinated to the metal centre through their O/N atoms, which are similar to the coordination environments in biological system. Although a number of metal complexes with hydrazone ligands have been structur-ally characterized (Chen et al., 1999; Gao et al., 1998; Sangeethaet al., 1999), there are few zinc hydrazonates in the list (MuÈller & Robson, 2000). The hydrazone ligands are readily synthesized by condensing thiosemicarbazone or its derivatives with, for example, acetylacetone (Toshev et al., 1991) and salicylaldehyde (Gerbeleuet al., 1990; Zeleninet al., 1990; Cui & Hu, 1994). On the other hand, benzoylacetone (4-methoxybenzoyl)hydrazone (H2L) is a potentially tridentate

chelating agent. Recently, we have reported the structure of a ZnIIcomplex,viz. [Zn(HL)(OOCCH

3)(C9H7N)] (Gaoet al.,

2004), with this ligand/zinc coordination mode. This coordi-nation mode is also present in the title zinc complex, [Zn(HL)(OOCCH3)(C5H5N)]2, (I).

As shown in Fig. 1, the asymmetric unit of (I) contains two independent mononuclear complexes, which exist as a hydrogen-bonded dimer. The dimeric structure results from the interactions of the hydrazone N atoms (N2 and N5) with the free carbonyl O atoms (O10 and O5) of the actetate group [O N = 2.754 (3) and 2.787 (3) AÊ]. The Zn Zn separation is 7.116 (3) AÊ.

The hydrazone ligands are mono-deprotonated; the C11Ð O2 [1.248 (3) AÊ] and C36ÐO7 [1.257 (3) AÊ] distances are signi®cantly shorter, indicating signi®cant double-bond

(2)

acter. Both Zn1 and Zn2 possess distorted trigonal±bipyr-amidal geometry with N2O3 donor sets, de®ned by two O

atoms and one N atom from the tridentate hydrazone ligand, one O atom from the acetate group and one N atom from pyridine molecule. The equatorial planes in the two molecules are de®ned by an imine N atom, an acetate O atom and a pyridine N atom; the apical positions are occupied by the O atoms of the hydrazone ligands [O1ÐZn1ÐO2 = 162.62 (8)

and O6ÐZn2ÐO7 = 155.27 (9)].

The ZnÐO and ZnÐN bond distances (Table 1) are comparable with the corresponding bond distances observed in a related ZnII hydrazone complex, viz. [Zn(HL

)-(OOCCH3)(C9H7N)] (Gao et al., 2004). In one of the

mol-ecules of (I), that containing Zn1, the dihedral angle between two aromatic rings of the hydrazone ligand is 27.8 (2),

whereas in the other (Zn2), the corresponding dihedral angle is 36.2 (2). The hydrazone ligands coordinated to the ZnII

cations in the tridentate coordination modes form six- and ®ve-membered chelating rings, which are nearly planar.

Experimental

Benzoylacetone (4-methoxybenzoyl)hydrazone was synthesized by condensing benzoylacetone with an equimolar quantity of 4-methoxybenzoylhydrazine in ethanol. The title compound was prepared by the addition of zinc(II) acetate dihydrate (1 mmol) and pyridine (1 ml) to a methanol solution of benzoylacetone (4-methoxybenzoyl)hydrazone (1 mmol). The resulting mixture was re¯uxed with stirring for 30 min, then cooled slowly to room temperature and ®ltered. Yellow crystals separated from the solution after several days. Analysis calculated for C25H25N3O5Zn: C 58.55, H 4.91, N 8.19%; found: C 58.30, H 5.01, N 7.96%.

Crystal data

[Zn(C18H17N2O3)(C2H3O2 )\\-soft-return](C5H5N)]

Mr= 512.87 Triclinic,P1

a= 8.590 (3) AÊ

b= 11.631 (3) AÊ

c= 24.709 (5) AÊ = 97.790 (9)

= 93.76 (1)

= 103.828 (9)

V= 2362.7 (11) AÊ3

Z= 4

Dx= 1.442 Mg mÿ3 MoKradiation Cell parameters from 7440

re¯ections = 3.2±27.3

= 1.08 mmÿ1

T= 293 (2) K Prism, yellow 0.380.260.18 mm

Data collection

Rigaku R-AXIS RAPID diffractometer !scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.684,Tmax= 0.829 22 995 measured re¯ections

10 723 independent re¯ections 6375 re¯ections withI> 2(I)

Rint= 0.049 max= 27.5

h=ÿ11!11

k=ÿ15!14

l=ÿ27!32

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.053

wR(F2) = 0.109

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0472P)2] whereP= (Fo2+ 2Fc2)/3

Table 1

Selected geometric parameters (AÊ,).

Zn1ÐN1 2.048 (2)

Zn1ÐN3 2.094 (2)

Zn1ÐO1 2.025 (2)

Zn1ÐO2 2.173 (2)

Zn1ÐO4 2.015 (2)

Zn2ÐN4 2.043 (2)

Zn2ÐN6 2.100 (2)

Zn2ÐO6 2.012 (2)

Zn2ÐO7 2.162 (2)

Zn2ÐO9 1.966 (2)

N1ÐC2 1.320 (3)

N4ÐC27 1.315 (3)

O1ÐC4 1.288 (3)

O2ÐC11 1.248 (3)

O6ÐC29 1.284 (3)

O7ÐC36 1.257 (3)

C3ÐC4 1.387 (4)

C28ÐC29 1.378 (4)

N1ÐN2 1.395 (3)

N2ÐC11 1.338 (3)

N4ÐN5 1.391 (3)

N5ÐC36 1.339 (3)

N1ÐZn1ÐN3 122.9 (1) N1ÐZn1ÐO2 75.94 (8) N3ÐZn1ÐO2 91.40 (9) N4ÐZn2ÐN6 135.00 (9) N4ÐZn2ÐO7 75.86 (8) N6ÐZn2ÐO7 87.32 (8) O1ÐZn1ÐN1 87.51 (9) O1ÐZn1ÐN3 93.24 (9) O1ÐZn1ÐO2 162.62 (8) O4ÐZn1ÐN1 143.50 (9)

O4ÐZn1ÐN3 93.10 (9) O4ÐZn1ÐO1 96.91 (9) O4ÐZn1ÐO2 99.56 (9) O6ÐZn2ÐN4 88.92 (8) O6ÐZn2ÐN6 90.05 (9) O6ÐZn2ÐO7 155.27 (9) O9ÐZn2ÐN4 122.66 (8) O9ÐZn2ÐN6 101.90 (8) O9ÐZn2ÐO6 99.12 (9) O9ÐZn2ÐO7 105.49 (9)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N2ÐH51 O10 0.86 2.06 2.754 (3) 138 N5ÐH52 O5 0.86 1.96 2.787 (3) 162

H atoms were placed in calculated positions, with CÐH = 0.93 (aromatic) or 0.96 AÊ (methyl) and NÐH = 0.86 AÊ (imino group), and withUiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl), in the riding-model approximation.

Figure 1

(3)

Data collection: RAPID-AUTO(Rigaku, 1998); cell re®nement:

RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B007), the scienti®c fund of Remarkable Teachers of Heilongjiang Province, and Heilongjiang University for supporting the work.

References

Chen, W., Gao, S. & Liu, S.-X. (1999).Acta Cryst.C55, 531±533. Cui, X.-G. & Hu, Q.-P. (1994).Chin. J. Struct. Chem.13, 340±342.

Gao, S., Huo, L.-H., Liu, J.-W., Chi, J.-L. & Zhao, H. (2004).Acta Cryst.E60, m693±m695.

Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998).Polyhedron,17, 3595±3606. Gerbeleu, N. V., Arion, V. B., Simonov, Yu. A., Bourosh, P. N., Dvorkin, A. A.

& Indrichan, K. M. (1990).Zh. Neorg. Khim.35, 918±925. Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

MuÈller, I. M. & Robson, R. (2000).Angew. Chem. Int. Ed.39, 4357±4350. Rigaku (1998).RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails

Drive, The Woodlands, TX 77381, USA.

Sangeetha, N. R., Baradi, K., Gupta, R., Pal, C. K., Manivannan, V. & Pal, S. (1999).Polyhedron,18, 1425±1429.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Toshev, M. T., Yusupov, V. G., Zelenin, K. N., Khorseev, L. A., Alekseev, V. V., Dustov, Kh. B., Aleksandrov, G. G., Ashurov, Z. R. & Parpiev, N. A. (1991).

Koord.Khim.17, 61±69.

Zelenin, K. N., Khorseeva, L. A., Toshev, M. T., Alekseev, V. V. & Dustov, Kh. B. (1990).Zh. Obshch. Khim.60, 2549±2561.

metal-organic papers

(4)

supporting information

Acta Cryst. (2004). E60, m1281–m1283 [https://doi.org/10.1107/S1600536804019725]

(Acetato-

κ

O

)[benzoylacetone (4-methoxybenzoyl)hydrazonato-

κ

3

O,N,O

]

(pyridine-

κ

N

)zinc(II)

Li-Hua Huo, Shan Gao, Ji-Wei Liu and Hui Zhao

(Acetato-κO)[benzoylacetone (4-methoxybenzoyl)hydrazonato-κ3O,N,O](pyridine-κN)zinc(II)

Crystal data

[Zn(C18H17N2O3)(C2H3O2)(C5H5N)] Mr = 512.87

Triclinic, P1 Hall symbol: -P 1

a = 8.590 (3) Å

b = 11.631 (3) Å

c = 24.709 (5) Å

α = 97.790 (9)°

β = 93.76 (1)°

γ = 103.828 (9)°

V = 2362.7 (11) Å3

Z = 4

F(000) = 1064

Dx = 1.442 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 7440 reflections

θ = 3.2–27.3°

µ = 1.08 mm−1 T = 293 K Prism, yellow

0.38 × 0.26 × 0.18 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 10 pixels mm-1 ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.684, Tmax = 0.829

22995 measured reflections 10723 independent reflections 6375 reflections with I > 2σ(I)

Rint = 0.049

θmax = 27.5°, θmin = 3.1° h = −11→11

k = −15→14

l = −27→32

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.053 wR(F2) = 0.109 S = 1.02

10723 reflections 619 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0472P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.44 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, m1281–m1283

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

C28 1.0167 (4) 0.3066 (2) 0.31417 (11) 0.0500 (8) C29 1.0380 (3) 0.3256 (2) 0.37071 (11) 0.0461 (7) C30 1.0771 (3) 0.2320 (2) 0.40100 (12) 0.0469 (7) C31 1.0429 (4) 0.1107 (3) 0.37857 (13) 0.0612 (9) C32 1.0765 (4) 0.0265 (3) 0.40843 (15) 0.0685 (10) C33 1.1447 (4) 0.0599 (3) 0.46154 (15) 0.0650 (9) C34 1.1799 (4) 0.1796 (3) 0.48478 (14) 0.0676 (10) C35 1.1470 (4) 0.2638 (3) 0.45499 (12) 0.0573 (8) C36 0.9607 (3) 0.6831 (2) 0.28227 (11) 0.0442 (7) C37 0.9426 (3) 0.7707 (2) 0.24611 (10) 0.0427 (7) C38 1.0549 (4) 0.8810 (3) 0.25412 (12) 0.0513 (8) C39 1.0442 (4) 0.9671 (3) 0.22194 (12) 0.0562 (8) C40 0.9161 (4) 0.9454 (3) 0.18133 (12) 0.0509 (8) C41 0.8034 (4) 0.8371 (3) 0.17335 (11) 0.0512 (8) C42 0.8165 (4) 0.7508 (3) 0.20509 (11) 0.0496 (7) C43 0.7753 (4) 1.0261 (3) 0.11470 (13) 0.0721 (10) C44 1.1681 (4) 0.6543 (3) 0.48681 (12) 0.0556 (8) C45 1.2832 (4) 0.7214 (3) 0.52766 (12) 0.0620 (9) C46 1.3969 (4) 0.8150 (3) 0.51498 (13) 0.0637 (9) C47 1.3930 (4) 0.8393 (3) 0.46262 (13) 0.0632 (9) C48 1.2728 (4) 0.7700 (2) 0.42403 (12) 0.0507 (7) C49 0.5020 (4) 0.5177 (4) 0.41952 (14) 0.0765 (11) C50 0.6488 (4) 0.5330 (3) 0.38897 (12) 0.0487 (7) H1A 0.2877 0.5306 0.2902 0.086* H1B 0.2946 0.6650 0.2859 0.086* H1C 0.4521 0.6279 0.3036 0.086*

H3 0.3128 0.7248 0.2031 0.059*

H6 0.3393 0.8847 0.1690 0.075*

H7 0.3156 1.0371 0.1216 0.082*

H8 0.3325 1.0166 0.0281 0.080*

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, m1281–m1283

H26B 1.0108 0.2706 0.2118 0.102* H26C 1.0601 0.4050 0.2030 0.102* H28 1.0241 0.2320 0.2971 0.060* H31 0.9963 0.0863 0.3425 0.073* H32 1.0526 −0.0536 0.3924 0.082* H33 1.1673 0.0030 0.4818 0.078* H34 1.2263 0.2031 0.5209 0.081* H35 1.1719 0.3438 0.4712 0.069* H38 1.1393 0.8970 0.2818 0.062* H39 1.1222 1.0396 0.2273 0.067* H41 0.7175 0.8221 0.1463 0.061* H42 0.7395 0.6778 0.1990 0.060* H43A 0.7747 0.9681 0.0830 0.108* H43B 0.7775 1.1023 0.1035 0.108* H43C 0.6801 1.0005 0.1326 0.108* H44 1.0919 0.5896 0.4953 0.067* H45 1.2836 0.7033 0.5632 0.074* H46 1.4761 0.8618 0.5418 0.076* H47 1.4705 0.9019 0.4531 0.076* H48 1.2696 0.7881 0.3885 0.061* H49A 0.4147 0.5317 0.3972 0.115* H49B 0.5247 0.5740 0.4530 0.115* H49C 0.4727 0.4376 0.4279 0.115* H51 0.4639 0.4304 0.2742 0.058* H52 0.9117 0.5417 0.2267 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)
(9)

supporting information

sup-6 Acta Cryst. (2004). E60, m1281–m1283

C50 0.0455 (19) 0.0532 (18) 0.0487 (18) 0.0183 (14) 0.0033 (14) 0.0021 (15)

Geometric parameters (Å, º)

Zn1—N1 2.048 (2) C16—H16 0.93

Zn1—N3 2.094 (2) C17—H17 0.93

Zn1—O1 2.025 (2) C18—H18A 0.96

Zn1—O2 2.173 (2) C18—H18B 0.96

Zn1—O4 2.015 (2) C18—H18C 0.96

Zn2—N4 2.043 (2) C19—C20 1.381 (4)

Zn2—N6 2.100 (2) C19—H19 0.93

Zn2—O6 2.012 (2) C20—C21 1.362 (5)

Zn2—O7 2.162 (2) C20—H20 0.93

Zn2—O9 1.966 (2) C21—C22 1.360 (5)

N1—C2 1.320 (3) C21—H21 0.93

N4—C27 1.315 (3) C22—C23 1.366 (4)

O1—C4 1.288 (3) C22—H22 0.93

O2—C11 1.248 (3) C23—H23 0.93

O6—C29 1.284 (3) C24—C25 1.491 (5)

O7—C36 1.257 (3) C24—H24A 0.96

C3—C4 1.387 (4) C24—H24B 0.96

C28—C29 1.378 (4) C24—H24C 0.96

N1—N2 1.395 (3) C26—C27 1.511 (4)

N2—C11 1.338 (3) C26—H26A 0.96

N4—N5 1.391 (3) C26—H26B 0.96

N5—C36 1.339 (3) C26—H26C 0.96

N2—H51 0.86 C27—C28 1.415 (4)

N3—C19 1.332 (4) C28—H28 0.93

N3—C23 1.339 (4) C29—C30 1.490 (4)

N5—H52 0.86 C30—C31 1.398 (4)

N6—C44 1.336 (3) C30—C35 1.390 (4)

N6—C48 1.330 (4) C31—C32 1.374 (4)

O3—C15 1.369 (4) C31—H31 0.93

O3—C18 1.424 (4) C32—C33 1.367 (4)

O4—C25 1.259 (3) C32—H32 0.93

O5—C25 1.229 (3) C33—C34 1.385 (4)

O8—C40 1.375 (4) C33—H33 0.93

O8—C43 1.426 (4) C34—C35 1.372 (4)

O9—C50 1.265 (3) C34—H34 0.93

O10—C50 1.226 (3) C35—H35 0.93

C1—C2 1.502 (4) C36—C37 1.471 (4)

C1—H1A 0.96 C37—C38 1.390 (4)

C1—H1B 0.96 C37—C42 1.388 (4)

C1—H1C 0.96 C38—C39 1.376 (4)

C2—C3 1.403 (4) C38—H38 0.93

C3—H3 0.93 C39—C40 1.391 (4)

C4—C5 1.496 (4) C39—H39 0.93

(10)

C5—C10 1.381 (4) C41—C42 1.375 (4)

C6—C7 1.377 (4) C41—H41 0.93

C6—H6 0.93 C42—H42 0.93

C7—C8 1.373 (5) C43—H43A 0.96

C7—H7 0.93 C43—H43B 0.96

C8—C9 1.378 (4) C43—H43C 0.96

C8—H8 0.93 C44—C45 1.376 (4)

C9—C10 1.377 (4) C44—H44 0.9300

C9—H9 0.93 C45—C46 1.364 (4)

C10—H10 0.93 C45—H45 0.93

C11—C12 1.481 (4) C46—C47 1.361 (4)

C12—C13 1.388 (4) C46—H46 0.93

C12—C17 1.388 (4) C47—C48 1.374 (4)

C13—C14 1.385 (4) C47—H47 0.93

C13—H13 0.93 C48—H48 0.93

C14—C15 1.373 (5) C49—C50 1.498 (4)

C14—H14 0.93 C49—H49A 0.96

C15—C16 1.373 (4) C49—H49B 0.96

C16—C17 1.376 (5) C49—H49C 0.96

(11)

supporting information

sup-8 Acta Cryst. (2004). E60, m1281–m1283

N3—C23—H23 118.2 C28—C29—C30 120.5 (2) N4—N5—H52 121.8 C29—O6—Zn2 128.3 (2) N4—C27—C28 121.5 (2) C29—C28—C27 128.3 (3) N4—C27—C26 121.4 (3) C29—C28—H28 115.8 N5—N4—Zn2 112.8 (2) C30—C31—H31 119.2 N5—C36—C37 120.1 (2) C30—C35—H35 119.3 N6—C44—C45 122.8 (3) C31—C30—C29 123.4 (3) N6—C44—H44 118.6 C31—C32—H32 119.8 N6—C48—C47 122.6 (3) C32—C31—C30 121.7 (3) N6—C48—H48 118.7 C32—C31—H31 119.2 O1—C4—C3 124.6 (3) C32—C33—C34 119.2 (3) O1—C4—C5 114.8 (3) C32—C33—H33 120.4 O2—C11—N2 121.2 (3) C33—C32—C31 120.4 (3) O2—C11—C12 121.2 (3) C33—C32—H32 119.8 O3—C15—C14 116.1 (3) C33—C34—H34 119.7 O3—C15—C16 124.7 (3) C34—C35—C30 121.3 (3) O3—C18—H18A 109.5 C34—C33—H33 120.4 O3—C18—H18B 109.5 C34—C35—H35 119.3 O3—C18—H18C 109.5 C35—C30—C31 116.9 (3) O4—C25—C24 118.7 (3) C35—C30—C29 119.7 (3) O5—C25—O4 119.9 (3) C35—C34—C33 120.6 (3) O5—C25—C24 121.3 (3) C35—C34—H34 119.7 O6—C29—C28 124.6 (3) C36—N5—N4 116.4 (2) O6—C29—C30 114.9 (2) C36—N5—H52 121.8 O7—C36—N5 119.8 (3) C36—O7—Zn2 112.0 (2) O7—C36—C37 120.1 (2) C37—C38—H38 119.3 O8—C40—C39 115.6 (3) C37—C42—H42 119.4 O8—C43—H43A 109.5 C38—C37—C36 118.6 (2) O8—C43—H43B 109.5 C38—C39—C40 119.7 (3) O8—C43—H43C 109.5 C38—C39—H39 120.1 O9—C50—C49 117.1 (3) C39—C38—C37 121.5 (3) O10—C50—O9 122.3 (3) C39—C38—H38 119.3 O10—C50—C49 120.5 (3) C40—O8—C43 117.9 (3) C2—N1—N2 118.1 (2) C40—C39—H39 120.1 C2—N1—Zn1 128.9 (2) C40—C41—H41 119.7 C2—C1—H1A 109.5 C41—C40—O8 125.0 (3) C2—C1—H1B 109.5 C41—C40—C39 119.4 (3) C2—C1—H1C 109.5 C41—C42—C37 121.2 (3)

C2—C3—H3 116.2 C41—C42—H42 119.4

C3—C2—C1 118.5 (3) C42—C37—C36 123.6 (3) C3—C4—C5 120.5 (3) C42—C37—C38 117.7 (3) C4—O1—Zn1 128.1 (2) C42—C41—C40 120.5 (3) C4—C3—C2 127.6 (3) C42—C41—H41 119.7 C4—C3—H3 116.2 C44—N6—Zn2 118.2 (2)

C5—C6—H6 119.3 C44—C45—H45 120.7

(12)

C7—C6—C5 121.5 (3) C46—C45—H45 120.7 C7—C6—H6 119.3 C46—C47—C48 119.1 (3) C7—C8—C9 118.9 (3) C46—C47—H47 120.4 C7—C8—H8 120.5 C47—C46—C45 119.3 (3) C8—C7—C6 120.4 (3) C47—C46—H46 120.4

C8—C7—H7 119.8 C47—C48—H48 118.7

C8—C9—H9 119.7 C48—N6—C44 117.6 (2) C9—C8—H8 120.5 C48—N6—Zn2 124.3 (2) C9—C10—C5 121.6 (3) C48—C47—H47 120.4 C9—C10—H10 119.2 C50—O9—Zn2 116.9 (2) C10—C5—C4 119.1 (3) C50—C49—H49A 109.5 C10—C5—C6 117.0 (3) C50—C49—H49B 109.5 C10—C9—C8 120.6 (3) C50—C49—H49C 109.5

C10—C9—H9 119.7 H1A—C1—H1B 109.5

C11—N2—N1 115.8 (2) H1A—C1—H1C 109.5

C11—N2—H51 122.1 H1B—C1—H1C 109.5

C11—O2—Zn1 111.5 (2) H18A—C18—H18B 109.5 C12—C13—H13 119.8 H18A—C18—H18C 109.5 C12—C17—H17 119.0 H18B—C18—H18C 109.5 C13—C12—C17 117.5 (3) H24A—C24—H24B 109.5 C13—C12—C11 123.2 (3) H24A—C24—H24C 109.5 C13—C14—H14 119.5 H24B—C24—H24C 109.5 C14—C13—C12 120.3 (3) H26A—C26—H26B 109.5 C14—C13—H13 119.8 H26A—C26—H26C 109.5 C14—C15—C16 119.2 (3) H26B—C26—H26C 109.5 C15—O3—C18 118.0 (3) H43A—C43—H43B 109.5 C15—C14—C13 121.1 (3) H43A—C43—H43C 109.5 C15—C14—H14 119.5 H43B—C43—H43C 109.5 C15—C16—C17 119.8 (3) H49A—C49—H49B 109.5 C15—C16—H16 120.1 H49A—C49—H49C 109.5 C16—C17—C12 122.0 (3) H49B—C49—H49C 109.5

(13)

supporting information

sup-10 Acta Cryst. (2004). E60, m1281–m1283

(14)

O1—C4—C5—C6 −162.5 (3) C33—C34—C35—C30 0.3 (5) O1—C4—C5—C10 14.0 (4) C35—C30—C31—C32 0.1 (5) O2—Zn1—N1—N2 12.91 (17) C36—C37—C38—C39 −179.6 (3) O2—Zn1—N1—C2 −163.7 (3) C36—C37—C42—C41 178.4 (3) O2—Zn1—N3—C19 24.7 (3) C37—C38—C39—C40 1.7 (5) O2—Zn1—N3—C23 −150.2 (2) C38—C37—C42—C41 0.2 (4) O2—Zn1—O1—C4 3.3 (5) C38—C39—C40—C41 −1.0 (5) O2—Zn1—O4—C25 −78.5 (2) C38—C39—C40—O8 179.2 (3) O2—C11—C12—C13 −145.5 (3) C39—C40—C41—C42 0.0 (5) O2—C11—C12—C17 31.6 (5) C40—C41—C42—C37 0.5 (5) O3—C15—C16—C17 178.6 (3) C42—C37—C38—C39 −1.3 (4) O4—Zn1—N1—N2 −74.2 (2) C43—O8—C40—C41 8.5 (5) O4—Zn1—N1—C2 109.2 (3) C43—O8—C40—C39 −171.8 (3) O4—Zn1—N3—C19 124.4 (2) C44—N6—C48—C47 0.1 (4) O4—Zn1—N3—C23 −50.6 (2) C44—C45—C46—C47 0.1 (5) O4—Zn1—O1—C4 −157.9 (2) C45—C46—C47—C48 1.1 (5) O4—Zn1—O2—C11 129.3 (2) C46—C47—C48—N6 −1.3 (5) O6—Zn2—N4—N5 −174.6 (2) C48—N6—C44—C45 1.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

References

Related documents

In the present study, using a rabbit model, we exam- ined reactions of HEL in the diaphysis of proximal femur, which is the site most susceptible to the development of

~ur business trend over the next six months, excluding purely seasonal variations, will The consumer confidence indicator is the arithmetic average of the answers

To investigate the influence of the gas jet on particle motion, a numerical simulation of the uniform flow around a spherical particle with a nonuniform outflow or high

In this research, correlation is used to determine the data correlation between the dependent variables (ROA) and independent variables (CGI, Current Ratio, Credit Risk,

More precisely, the paper develops a positive model of government behavior in order to define the intertemporal fiscal policies that are optimal for a country,

We demon- strate a speed-up of several orders of magni- tude when predicting word similarity by vector operations on our embeddings as opposed to directly computing the

L’inchiesta avviata dal governo genovese negli anni quaranta del Settecento fornisce interessanti elementi sul sistema assistenziale della Repubblica di Genova, che

In Proceedings of Conference on Empirical Methods in Natural Language Processing Conference on Computational Natural Language Learning Joint Meeting following ACL (EMNLP- CONLL ,