• No results found

CEA Charged Particle Irradiation Facilities for Nuclear Material Studies

N/A
N/A
Protected

Academic year: 2020

Share "CEA Charged Particle Irradiation Facilities for Nuclear Material Studies"

Copied!
26
0
0

Loading.... (view fulltext now)

Full text

(1)

 

Centre of Excellence for Nuclear Materials 

Workshop

Materials

 

Innovation

 

for

 

Nuclear Optimized

 

Systems

December 5-7, 2012, CEA – INSTN Saclay, France

Lucile BECK

CEA (France)

CEA Charged Particle Irradiation Facilities for Nuclear

Material studies

Workshop

 

organized

 

by:

 

Christophe

 

GALLÉ,

 

CEA/MINOS,

 

Saclay

 

 

christophe.galle@cea.fr

 

Constantin

 

MEIS,

 

CEA/INSTN,

 

Saclay

 

 

constantin.meis@cea.fr

(2)

Workshop

Materials Innovation for Nuclear Optimized Systems

December 5-7, 2012, CEA – INSTN Saclay, France

CEA Charged Particle Irradiation Facilities for Nuclear Material Studies

Lucile BECK

1

1

CEA-DEN-DMN, JANNUS Saclay laboratory (Saclay, FRANCE)

To study the effects of radiation on nuclear materials, the CEA uses various irradiation facilities

producing neutrons or charges particles. Neutron facilities have the great advantage to directly

produce neutron damages, but have also some drawbacks. The samples are activated and

consequently their characterizations need dedicated hot cells, the reactors have fixed experimental

parameters and the experiments are long and costly.

In order to better understand the mechanisms of radiation damage, experimental simulation can be

also conducted with charged particles. In this case, experimental irradiation conditions (temperature,

dose, flux, energy) are well controlled and the irradiated samples can be characterized with

conventional analytical methods. This presentation will describe the CEA facilities devoted to ion or

electron irradiations for material studies. Examples of irradiations performed at JANNUS (Joint

Accelerators for Nano-science and NUclear Simulation) will be detailed (Fig. 1).

Fig. 1: Schematic view of the JANNUS platform at Saclay.

EPJ Web of Conferences 51, 02002 (2013)

DOI: 10.1051/epjconf/20135102002

(3)

CEA charged particle irradiation

facilities for nuclear material

studies

MINOS Workshop, Materials Innovation for Nuclear Optimized Systems December 5-7, 2012, CEA – INSTN Saclay, France

Lucile Beck

CEA/DMN/SRMP/Jannus Laboratory - Saclay

with the contributions of

B. Boizot (LSI), S. Bouffard & M. Toulemonde (CIMAP)

J. Henry & A. Jankowiak (SRMA)

(4)

PART 1 : CEA charged particle irradiation facilities

Ions

Electrons

JANNUS

JANNUS – Saclay (CEA/DEN/DMN/SRMP)

[GIS with JANNUS

JANNUS – Orsay (CNRS, Orsay University)]

THT

THT – Saclay

(CEA/DEN/DMN/SRMA)

within

• Located near Paris and in Caen

• Two CEA divisions :

Materials Sciences Division (DSM)

(5)

CEA – DEN MINOS Workshop - December 5-7, 2012, CEA – INSTN Saclay, France 3

A call for proposal of experiment every year :

http://emir.in2p3.fr/EMIR-network

(6)

Large choice of particles and energies for different

interactions

/

electrons in matter

MeV electrons

mm

(© M. Toulemonde)

Inelastic

interactions with

electrons

st

o

p

p

in

g

Elastic

interactions

(7)

Access to the CEA charged particle irradiation facilities

+ TEM

CEA – DEN MINOS Workshop - December 5-7, 2012, CEA – INSTN Saclay, France 5

(8)

Cimap-Caen: medium to heavy ions – MeV energy range

C02

C01

CSS1

CSS2

SPIRAL

(9)

JANNUS-Saclay: 3 joint accelerators

Low to heavy ions – MeV energy range

(10)
(11)

SRMA-Saclay: MeV energy electrons

(12)

PART 2: examples

ENERGY

CO

UNT

(13)

Example 1: Mesoporous silica gels for applications in

the field of nuclear waste

CEA – DEN MINOS Workshop - December 5-7, 2012, CEA – INSTN Saclay, France 11

X. Deschanels, S. Dourdain and coll.

ICSM, Marcoule

(14)

Example 1: Mesoporous SiO

2

gel

X. Deschanels, S. Dourdain and coll.

ICSM, Marcoule

20 MeV Ar (S

e

=3,4 keV/nm)

(15)

Example 1: Mesoporous SiO

2

gel

@ GANIL

(16)

d

p

= 5 nm

e~100nm

d

empty

Example 1: Mesoporous SiO

2

gel

0.5 MeV He, 20 MeV Ar @ JANNUS

0.5MeV-He, 10

16

cm

-2

20MeV-Ar, 10

15

cm

-2

He irradiation

Shrinkage of the film

Slight organisation of the film

Ar irradiation

(17)

Example 2: In-situ mechanical test

Épiméthée E3 line JANNUS Saclay

IRRSUD line GANIL Caen

Damage effect for both electronic and nuclear slowing down regimes

CEA – DEN MINOS Workshop - December 5-7, 2012, CEA – INSTN Saclay, France 15

(18)

Development of a in-situ tensile test device

Tensile test on single SiC fiber up to 5N;

Usable for other type of materials;

Gauge length: 25 mm;

In-situ measurements of the fiber diameter possible;

Example 2: In-situ mechanical test

Operated in vacuum: 10

-6

to 10

-7

mbar;

Tensile tests (creep tests) from 25

°

C à 1800

°

C;

Graphite-grip method: cold grips and uniform temperature

(19)

In situ tensile tests

on SiC fibers

under ion beam

IRRSUD line GANIL Caen

Xe

23+

92 MeV

Épiméthée E3 line JANNUS Saclay

C

+

9 and 12 MeV

1E+09 1E+10 0,05 0,06 0,07 0,08 0,09 F lu x ( io n s /c m ²/ s ) S tr a in ( % )

Xe23+92MeV

Example 2: In-situ mechanical test

Fiber at 1000 °C and 300MPa

CEA – DEN MINOS Workshop - December 5-7, 2012, CEA – INSTN Saclay, France 17

1E+07 1E+08 0 0,01 0,02 0,03 0,04 0,05

0,0E+00 2,0E+04 4,0E+04 6,0E+04 8,0E+04

F lu x ( io n s /c m ²/ s ) S tr a in ( % ) Time (s)

Fiber at 1000 °C and 300MPa (irradiation-enhanced c reep study)

- Strain rate variation with flux intensity;

- Residual stain at 1000 °C < 0.1 % for 2.10

12

92 MeV Xe

23+

ions/cm

2

and 3.10

16

12 MeV C

4+

ions/cm

2

Previous works carried out at RT (irradiation-induced swelling study)

- Residual strain at RT ~ 0,50% % for 5.10

14

92 MeV Xe

23+

ions/cm

2

and ~0.45 % for 10

17

12 MeV C

4+

ions/cm

2

(20)

Example 3: STUDY OF RADIATION EFFECTS IN

CARBIDES (SiC, TiC, ZrC)

PhD thesis of S. Pellegrino (JANNUS): “Irradiation effects in carbides (SiC, TiC

and ZrC) and synergetic effects of electronic and nuclear energy losses.”

JANNUS

Au 1,2 MeV

Low Energy

(dE/dx)

nucl.

> (dE/dx)

elec.

GANIL-SME

Pb 900 MeV

High Energy

(dE/dx)

nucl.

<< (dE/dx)

elec.

0 5 10 15 20 25 30 35

0 5000 10000 15000 20000 25000 30000 35000

Pb+ 900MeV dans SiC

d E /d x ( k e V /µ m ) Range (µm) dE/dx élec. dE/dx nuc.

0 50 100 150 200

(21)

30 40

SiC Au - 1.2 MeV

virgin 1e13 2e13 3e13 4e13 5e13 1.7e14 2.5e14 4e14 3.5e15

DAMAGE CHARACTERIZATION WITH RBS in

CHANNELING conditions (CSNSM-Orsay)

60

TiC

Au-1.2 MeV

8.4x1015

virgin 1.7e14 3.5e15 8.4e15 3.2e15 1.6e15 100 120 140 160 ZrC Au-1.2 MeV virgin 1,7.1014 4.1015

1,6.103,2.1015 15

8,4.1015

8.4x1015

ENERGY

CO

UN

T

S

single crystal (oriented)

single crystal with damage

Amorphization

(single crystal in random orientation)

Damage

CEA – DEN MINOS Workshop - December 5-7, 2012, CEA – INSTN Saclay, France 19

ENERGY (keV)

300 400 500 600 700 800

Y IE L D 0 10 20 30 40

SiC 2e13 Pb - 900 MeV (SME)

ENERGY (keV)

300 400 500 600 700 800

Y IE L D 0 10 20 3.5e15

Au 1.2 MeV

ENERGY (keV)

400 600 800 1000

Y IE L D 0 20 40

1.7x1014

1.6x1015

3.2x1015

3.5x1015

ENERGY (keV)

600 800 1000 1200

Y IE L D 0 20 40 60 80 100

1.7x1014

1.6x1015

3.2x1015

4x1015

virgen

ENERGY (keV)

400 600 800 1000

Y IE L D 0 10 20 30 40 50 60 TiC virgin 2e13 SME ENERGY (keV)

600 700 800 900 1000 1100 1200

Y IE L D 0 20 40 60 80 100 120

140 ZrC 2e13 Pb SME

Pb 900 MeV

SiC

ZrC

TiC

Weak effect of

electronic energy loss in SiC

Almost

no effect

in ZrC and TiC

until 1.7*10

14

(22)

M. J. Fluss, S. Tumey, L. Hsiung (LLNL) and A. Kimura (Kyoto University)

ODS (K3 and MA957) Fe

ODS (K3 and MA957) Fe--Cr 14%

Cr 14%

56

56

Fe

Fe

8+

8+

24 MeV

24 MeV

4

4

He

He

+

+

1.7 MeV (

1.7 MeV (

degraded with carbon foils

degraded with carbon foils

))

Dose

Dose ~

~ 30 dpa

30 dpa

[He] ~ 25 appm/dpa

[He] ~ 25 appm/dpa

Dual beam

irradiation

EXAMPLE 4: ODS (

OXIDE DISPERSED STRENGTHENED

) STEELS

A comparison of a steel with nano-particles (right) and a steel without the nano-particles (left).

The specimen with particles exhibits small bubbles all below the critical size.

(23)

EXAMPLE 4: ODS (

OXIDE DISPERSED STRENGTHENED

) STEELS

M. J. Fluss, S. Tumey, L. Hsiung (LLNL) and A. Kimura (Kyoto University)

Dual beam irradiation, details

CEA – DEN MINOS Workshop - December 5-7, 2012, CEA – INSTN Saclay, France 21

Oxides nano-particles (labeled A thru F)

By varying the focusing condition on the right we see the small He bubbles (red arrows)

trapped at the interface between the particles and the steel matrix.

(24)

Triple beam

irradiation

56

56

Fe

Fe

8+

8+

4

4

He

He

+

+

H

H

+

+

24 MeV

24 MeV

((

degraded with carbon

degraded with carbon

1.7 MeV

1.7 MeV

foils

foils

))

562 keV

((

degraded with carbon

degraded with carbon

foils

foils

))

Dose

Dose ~

~ 30

30

dpa

dpa

[He] ~ 25 appm/dpa

[He] ~ 25 appm/dpa

[H] ~ 70 appm/dpa

[H] ~ 70 appm/dpa

T = 425

T = 425 °

°C

C

ODS (K3 and MA957), Fe and Fe

ODS (K3 and MA957), Fe and Fe--Cr 14%

Cr 14%

Fe-14Cr

Fresnel fringes

EXAMPLE 4: ODS (

OXIDE DISPERSED STRENGTHENED

)STEELS

M. J. Fluss, S. Tumey, L. Hsiung (LLNL) and A. Kimura (Kyoto University)

K3-ODS (3-beam)

Defocus: -150

nm

Fresnel fringes

The cavities exhibit a

double shell structure

(25)

Summary

Electron and ion irradiation experiments

Electron: 0.15 – 2.5 MeV

Ions: H to U, 0.3 – 1000 MeV

Combined with in situ or ex situ instrumentations:

• Low to high temperature: 8 K – 1200 K

CEA – DEN MINOS Workshop - December 5-7, 2012, CEA – INSTN Saclay, France 23

• Low to high temperature: 8 K – 1200 K

• X-ray diffractometer

• IR spectrometer

• Gas analyser

• IBA

• UV-visible

• Electrical measurements

• Raman spectrometer

• TEM

Next call: October 2013

for the period of April 2014 to March 2015

http://emir.in2p3.fr/EMIR-network

Next EMIR User days in 2013

Visit of JANNUS-Saclay on Friday

(26)

0.0002-0.0013

37.13 µm

956

Pb

53+

GANIL-SME

Single crystal

6H-SiC

28.2 µm

956

Pb

53+

Single crystal

TiC

0.066-55.4

219 nm

1.2

Au

+

JANNUS

Single crystal

TiC

0.1-83.5

0.05-40.25

dpa

GANIL-SME

JANNUS

JANNUS

Facility

217 nm

1.2

Au

+

Single crystal

ZrC

26.5 µm

194 nm

Projected Range: R

p

956

1.2

Energy (MeV)

Pb

53+

Au

+

Ion

Single crystal

ZrC

Single crystal

6H-SiC

Samples

GANIL-SME

0.0002-0.0012

0.0003-0.0025

102

81.62

61.03

3736

3636

4051

(dE/dx)

n

(keV/µm)

33080

0.0002-0.0013

43580

2147

0.066-55.4

0.1-83.5

0.05-40.25

dpa

1689

47160

2728

(dE/dx)

e

(keV/µm)

10

12

-10

13

10

13

-10

16

10

13

-10

16

10

13

-10

16

Fluences(ions/cm²)

10

12

-10

13

10

12

-10

13

Figure

Fig. 1: Schematic view of the JANNUS platform at Saclay.

References

Related documents

In all cases the staggering starts out of phase to what is expected from the signature splitting of the [h ll/2] p band in the N = 90 isotones... The Routhians of the

In either case, those on chronic medication therapy will eventually need to refill their medications and it is then that the inmate will encounter an important community health

Other inclusion criteria included the following: subjects had to be adults with hearing loss, subjects could not be cochlear implant users, training paradigms had to be the

in several references, they were combined into one clear misconception statement as determined by at least 2 authors of this paper. Occasionally an original misconception was

Another combination of resistivity and NP data from the east side of the study area, where the McNeil High School is located, is shown in Figure 12. The resistivity data shows a

On the other hand, high ability (income) workers prefer urban areas because they value non-food consumption more and it is cheaper in cities. The ability sorting mechanism is

The preliminary primary energy spectrum in the range 200 TeV – 20 PeV by the data of the first season of 9 HiSCORE stations operation is presented3. Tunka-HiSCORE stations are

The increased burn rate in Denmark (high smoking setting) compared with Sweden (low smoking setting) could translate into an even markedly higher risk in relation to smoking, as