• No results found

Note on certain inequalities for Neuman means

N/A
N/A
Protected

Academic year: 2020

Share "Note on certain inequalities for Neuman means"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Note on certain inequalities for Neuman

means

Shu-Bo Chen

1

, Zai-Yin He

2

, Yu-Ming Chu

1*

, Ying-Qing Song

1

and Xiao-Jing Tao

3

*Correspondence:

chuyuming2005@126.com

1School of Mathematics and

Computation Science, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article

Abstract

In this paper, we give the explicit formulas for the Neuman meansNAH,NHA,NAC, and NCA, and present the best possible upper and lower bounds for these means in terms

of the combinations of harmonic meanH, arithmetic meanA, and contraharmonic meanC.

MSC: 26E60

Keywords: Schwab-Borchardt mean; Neuman mean; harmonic mean; arithmetic mean; contraharmonic mean

1 Introduction

Leta,b,c≥ withab+ac+bc= . Then the symmetric integralRF(a,b,c) [] of the first

kind is defined as

RF(a,b,c) =

 

(t+a)(t+b)(t+c)–/dt.

The degenerate case ofRF, denoted byRC, plays an important role in the theory of special

functions [, ], which is given by

RC(a,b) =RF(a,b,b).

Fora,b>  witha=b, the Schwab-Borchardt meanSB(a,b) [–] ofaandbis given by

SB(a,b) =

⎧ ⎨ ⎩

ba

cos–(a/b), a<b,

ab

cosh–(a/b), a>b,

wherecos–(x) andcosh–(x) =log(x+x– ) are the inverse cosine and inverse hyper-bolic cosine functions, respectively.

Carlson [] (see also [, (.)]) proved that

SB(a,b) =RC

a,b –.

Recently, the Schwab-Borchardt mean has been the subject of intensive research. In par-ticular, many remarkable inequalities for the Schwab-Borchardt mean and its generated means can be found in the literature [–, –].

(2)

Leta>b> ,v= (ab)/(a+b)∈(, ),p∈(,∞),q∈(,π/),r∈(,log( +√)), ands∈(,π/) be the parameters such that /cosh(p) =cos(q) =  –v,cosh(r) =sec(s) =  +v,H(a,b) = ab/(a+b),G(a,b) =ab, A(a,b) = (a+b)/, Q(a,b) =(a+b)/, and C(a,b) = (a+b)/(a+b) be, respectively, the harmonic, geometric, arithmetic, quadratic, and contraharmonic means of a and b, SAH(a,b) = SB[A(a,b),H(a,b)],

SHA(a,b) = SB[H(a,b),A(a,b)], SAC(a,b) =SB[A(a,b),C(a,b)], SCA(a,b) = SB[C(a,b),

A(a,b)]. Then Neuman [] gave the explicit formulas

SAH(a,b) =A(a,b) tanh(p)

p , SHA(a,b) =A(a,b)

sinq

q , (.)

SCA(a,b) =A(a,b) sinh(r)

r , SAC(a,b) =A(a,b)

tans

s . (.)

Very recently, Neuman [] found a new mean N(a,b) derived from the Schwab-Borchardt mean as follows:

N(a,b) =  

a+ b

SB(a,b)

. (.)

LetNAH(a,b) =N[A(a,b),H(a,b)],NHA(a,b) =N[H(a,b),A(a,b)],NAG(a,b) =N[A(a,b),

G(a,b)], NGA(a,b) = N[G(a,b),A(a,b)], NAC(a,b) = N[A(a,b),C(a,b)], NCA(a,b) =

N[C(a,b),A(a,b)],NAQ(a,b) =N[A(a,b),Q(a,b)], and NQA(a,b) =N[Q(a,b),A(a,b)] be

the Neuman means. Then Neuman [] proved that

G(a,b) <NAG(a,b) <NGA(a,b) <A(a,b) <NQA(a,b) <NAQ(a,b) <Q(a,b)

for alla,b>  witha=b, and the double inequalities

αA(a,b) + ( –α)G(a,b) <NGA(a,b) <βA(a,b) + ( –β)G(a,b),

αQ(a,b) + ( –α)A(a,b) <NAQ(a,b) <βQ(a,b) + ( –β)A(a,b),

αA(a,b) + ( –α)G(a,b) <NAG(a,b) <βA(a,b) + ( –β)G(a,b),

αQ(a,b) + ( –α)A(a,b) <NQA(a,b) <βQ(a,b) + ( –β)A(a,b)

hold for all a,b >  with a=b if and only if α ≤/, β ≥π/, α ≤/, β ≥ (π – )/[(√ – )] = . . . . , α ≤/,β ≥/,α≤/, andβ≥[log( +

√ ) + √

 – ]/[(√ – )] = . . . . .

Zhang et al. [] presented the best possible parameters α,α,β,β ∈[, /] and α,α,β,β∈[/, ] such that the double inequalities

a+ ( –α)b,αb+ ( –α)a <NAG(a,b) <G

βa+ ( –β)b,βb+ ( –β)a ,

a+ ( –α)b,αb+ ( –α)a <NGA(a,b) <G

βa+ ( –β)b,βb+ ( –β)a ,

a+ ( –α)b,αb+ ( –α)a <NQA(a,b) <Q

βa+ ( –β)b,βb+ ( –β)a ,

a+ ( –α)b,αb+ ( –α)a <NAQ(a,b) <Q

βa+ ( –β)b,βb+ ( –β)a

(3)

In [], the authors found the greatest valuesα,α,α,α,α,α,α,α, and the least valuesβ,β,β,β,β,β,β,βsuch that the double inequalities

(a,b)G–α(a,b) <N

GA(a,b) <(a,b)G–β(a,b), α

G(a,b)+  –α

A(a,b)< 

NGA(a,b)

< β

G(a,b)+  –β

A(a,b),

(a,b)G–α(a,b) <N

AG(a,b) <(a,b)G–β(a,b), α

G(a,b)+  –α

A(a,b)< 

NAG(a,b)

< β

G(a,b)+  –β

A(a,b),

(a,b)A–α(a,b) <N

AQ(a,b) <(a,b)A–β(a,b), α

A(a,b)+  –α

Q(a,b)< 

NAQ(a,b)

< β

A(a,b)+  –β

Q(a,b),

(a,b)A–α(a,b) <N

QA(a,b) <(a,b)A–β(a,b), α

A(a,b)+  –α

Q(a,b)< 

NQA(a,b)

< β

A(a,b)+  –β

Q(a,b)

hold for alla,b>  witha=b.

The main purpose of this paper is to give the explicit formulas for the Neuman means

NAH,NHA,NAC, andNCA, and to present the best possible upper and lower bounds for

these means in terms of the combinations of harmonic, arithmetic, and contraharmonic means. Our main results are Theorems .-..

Theorem . Let a>b > , v= (ab)/(a+b)∈ (, ), p∈(,∞), q∈ (,π/), r

(,log( +√)),and s∈(,π/)be the parameters such that/cosh(p) =cos(q) =  –v, cosh(r) =sec(s) =  +v.Then we have

NAH(a,b) =

 A(a,b)

 + p sinh(p)

, (.)

NHA(a,b) =

 A(a,b)

cos(q) + q sin(q)

, (.)

NCA(a,b) =

 A(a,b)

cosh(r) + r sinh(r)

, (.)

NAC(a,b) =

 A(a,b)

 + s sin(s)

, (.)

and

H(a,b) <NAH(a,b) <NHA(a,b) <A(a,b)

<NCA(a,b) <NAC(a,b) <C(a,b). (.)

Theorem . The double inequalities

αA(a,b) + ( –α)H(a,b) <NAH(a,b) <βA(a,b) + ( –β)H(a,b), (.)

(4)

αC(a,b) + ( –α)A(a,b) <NCA(a,b) <βC(a,b) + ( –β)A(a,b), (.)

αC(a,b) + ( –α)A(a,b) <NAC(a,b) <βC(a,b) + ( –β)A(a,b) (.)

hold for all a,b >  with a =b if and only if α ≤ /, β ≥ /, α ≤ /, β ≥ π/ = . . . . , α ≤ /, β ≥

log( +√)/ = . . . . , α ≤/, and β ≥ (√π– )/ = . . . . .

Theorem . The double inequalities

α

H(a,b)+  –α

A(a,b)< 

NAH(a,b)

< β

H(a,b)+  –β

A(a,b), (.)

α

H(a,b)+  –α

A(a,b)< 

NHA(a,b)

< β

H(a,b)+  –β

A(a,b), (.)

α

A(a,b)+  –α

C(a,b)< 

NCA(a,b)

< β

A(a,b)+  –β

C(a,b), (.)

α

A(a,b)+  –α

C(a,b)< 

NAC(a,b)

< β

A(a,b)+  –β

C(a,b), (.)

hold for all a,b> with a=b if and only ifα≤,β≥/,α≤,β≥/,α≤[ √

 – log( +√)]/[√ +log( +√)] = . . . . ,β≥/,α≤(

 – π)/(√ + π) = . . . . ,andβ≥/.

2 Lemmas

In order to prove our main results we need several lemmas, which we present in this sec-tion.

Lemma .(See [, Theorem .]) For–∞<a<b<∞,let f,g: [a,b]→Rbe continu-ous on[a,b],and be differentiable on(a,b),let g(x)= on(a,b).If f (x)/g(x)is increasing

(decreasing)on(a,b),then so are

f(x) –f(a)

g(x) –g(a) and

f(x) –f(b)

g(x) –g(b).

If f (x)/g(x)is strictly monotone,then the monotonicity in the conclusion is also strict.

Lemma .(See [, Lemma .]) Suppose that the power series f(x) =∞n=anxnand

g(x) =∞n=bnxnhave the radius of convergence r> and an,bn> for all n≥.If the

sequence{an/bn}is(strictly)increasing(decreasing)for all n≥,then the function f(x)/g(x)

is also(strictly)increasing(decreasing)on(,r).

Lemma .(See [, Theorem .]) If a>b,then

N(b,a) >N(a,b).

Lemma . The function

ϕ(t) =

sinh(t) – sinh(t) + t

sinh(t) – sinh(t)

(5)

Proof Making use of power series expansion we get

ϕ(t) =

n=

n+–

(n+)!tn+

n=

n+–

(n+)!tn+ =

n=

n+–

(n+)!tn

n=

n+–

(n+)!tn

. (.)

Let

an=

n+– 

(n+ )!, bn=

n+– 

(n+ )!. (.)

Then

an> , bn> , (.)

andan/bn=  – /(n+– ) is strictly increasing for alln≥.

Note that

ϕ

+ =a

b =

, ϕ(∞) =nlim→∞

an

bn

= . (.)

Therefore, Lemma . follows easily from Lemma . and (.)-(.) together with the

monotonicity of the sequence{an/bn}.

Lemma . The function

ϕ(t) =

t–sin(t) sint( –cost)

is strictly increasing from(,π/)onto(/,π).

Proof Letf(t) = t–sin(t) andg(t) =sint( –cost). Then simple computations lead to

ϕ(t) =

f(t) –f()

g(t) –g()

(.)

andf(t)/g(t) = [ – /( + /cost)] is strictly increasing on (,π/). Note that

ϕ+ = lim t→+

f(t)

g(t) =

, ϕ(π/) =π. (.)

Therefore, Lemma . follows from Lemma ., (.), (.), and the monotonicity of

f(t)/g(t).

Lemma . The function

ϕ(t) = sinh(t)cosh(t) –t [sinh(t)cosh(t) +t](cosh(t) – )

(6)

Proof Simple computations lead to

ϕ(t) =

sinh(t) – t

sinh(t) + tcosh(t) +sinh(t) – sinh(t) – t

=

n= 

n+

(n+)!tn

n=

n+–n++n+

(n+)! tn

. (.)

Let

an=

n+

(n+ )!, bn=

n+– n++ n+ 

(n+ )! . (.)

Then

an> , bn> , (.)

and

an+

bn+ –an

bn

= – 

n+(×n+– n– )

(n+– n++ n+ )(n+– n++ n+ )<  (.)

for alln≥. Note that

ϕ

+ =a

b =

, ϕ(∞) =nlim→∞

an

bn

= . (.)

Therefore, Lemma . follows easily from (.)-(.) and Lemma ..

Lemma . The function

f(t) = cost+ t sint

is strictly decreasing on the interval(,π/).

Proof Letf(t) = sintcost+tandg(t) =sint. Then simple computations lead to

f(t) = f(t) –f()

g(t) –g() ,

f(t)

g(t)=

cost– 

cost ,

(.)

and

f(t)

g(t)

= –sint(cos t+ )

cost <  (.)

fort∈(,π/).

Therefore, Lemma . follows easily from (.) and (.) together with Lemma ..

(7)

Lemma . The function

ϕ(t) =

sintcostt

(t+sintcost)( –cost)

is strictly decreasing from(,π/)onto(–, –/).

Proof Letf(t) =sintcosttandg(t) = (t+sintcost)( –cost). Then simple computa-tions lead to

ϕ(t) =

f(t)

g(t)

= f(t) –f()

g(t) –g()

, (.)

f(t)

g(t)=

f(t) –f()

g(t) –g(), (.)

and

f (t)

g (t)=

 – (cost+sintt). (.)

Note that

ϕ

+ = lim t→+

f (t)

g (t)= – 

, ϕ

π

= –. (.)

Therefore, Lemma . follows from Lemma . and Lemma . together with

(.)-(.).

3 Proofs of Theorems 1.1-1.3

Proof of Theorem. It follows from (.)-(.) as we clearly see that

NAH(a,b) =

 

A(a,b) + H(a,b)

SAH(a,b)

= A(a,b)

 + –v  p

tanh(p)

=  A(a,b)

 + p

tanh(p)cosh(p)

= A(a,b)

 + p sinh(p)

,

NHA(a,b) =

 

H(a,b) + A(a,b)

SHA(a,b)

= A(a,b)

 –v + q sinq

= A(a,b)

cosq+ q sinq

,

NCA(a,b) =

 

C(a,b) + A(a,b)

SCA(a,b)

= A(a,b)

 +v + r sinh(r)

= A(a,b)

cosh(r) + r sinh(r)

,

NAC(a,b) =

 

A(a,b) + C(a,b)

SAC(a,b)

= A(a,b)

 + +v  s

tan(s)

= A(a,b)

 + s

tan(s)coss

=  A(a,b)

 + s sin(s)

(8)

Inequalities (.) follow easily from H(a,b) <A(a,b) <C(a,b) and Lemma . to-gether with the fact thatNKL(a,b) is a mean of K(a,b) andL(a,b) forK(a,b),L(a,b)∈

{H(a,b),A(a,b),C(a,b)}.

Proof of Theorem. Without loss of generality, we assume thata>b. Letv= (ab)/ (a+b)∈(, ),p∈(,∞),q∈(,π/),r∈(,log( +√)), ands∈(,π/) be the param-eters such that /cosh(p) =cos(q) =  –v,cosh(r) =sec(s) =  +v. Then from (.)-(.) we have

NAH(a,b) –H(a,b)

A(a,b) –H(a,b) =

[ + p/sinh(p)]/ – ( –v)

v

=[ + p/sinh(p)]/ – /cosh(p)

 – /cosh(p) =ϕ(p), (.)

NHA(a,b) –H(a,b)

A(a,b) –H(a,b) =

[cosq+q/sinq]/ – ( –v)

v

=[cosq+q/sinq]/ –cosq

 –cosq =

ϕ(q), (.)

NCA(a,b) –A(a,b)

C(a,b) –A(a,b) =

[cosh(r) +r/sinh(r)]/ – 

v

=[cosh(r) +r/sinh(r)]/ –  cosh(r) –  =

ϕ(r), (.)

NAC(a,b) –A(a,b)

C(a,b) –A(a,b) =

[ + s/sin(s)]/ – 

v

=[ + s/sin(s)]/ –  sec(s) –  =

ϕ(s), (.)

where the functionsϕandϕare defined as in Lemmas . and ., respectively. Note that

ϕ

log( +√)=√log( +√)/ (.)

and

ϕ

π

= √

π– 

 . (.)

Therefore, inequality (.) holds for all a,b>  witha=bif and only ifα≤/ and β≥/ follows from (.) and Lemma ., inequality (.) holds for alla,b>  with

a=bif and only ifα≤/ andβ≥π/ follows from (.) and Lemma ., inequality (.) holds for alla,b>  witha=bif and only ifα≤/ andβ≥

log( +√)/ follows from (.) and (.) together with Lemma ., and inequality (.) holds for all

a,b>  witha=bif and only ifα≤/ andβ≥(√π– )/ follows from (.) and

(.) together with Lemma ..

(9)

we have

/NAH(a,b) – /A(a,b)

/H(a,b) – /A(a,b) =  +p/sinh(p)– 

 –v– 

=

sinh(p) p+sinh(p)– 

cosh(p) –  =ϕ(p), (.)

/NHA(a,b) – /A(a,b)

/H(a,b) – /A(a,b) = 

cos(q)+q/sin(q)–  

–v– 

=

sin(q)–sin(q)cos(q)–q sin(q)cos(q)+q

–cos(q) cos(q)

=  +ϕ(q), (.)

/NCA(a,b) – /C(a,b)

/A(a,b) – /C(a,b) =  cosh(r)+r/sinh(r)–

 +v

 –+v

=ϕ(r), (.)

and

/NAC(a,b) – /C(a,b)

/A(a,b) – /C(a,b) =  +ϕ(s), (.)

where the functionsϕandϕare defined as in Lemmas . and ., respectively. Note that

ϕ

log( +√)= √

 –log( +√)

√ +log( +√) (.)

and

ϕ

π

= –π–  √

π+ √. (.)

Therefore, Theorem . follows easily from (.)-(.) together with Lemmas .

and ..

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

1School of Mathematics and Computation Science, Hunan City University, Yiyang, 413000, China.2Department of

Mathematics, Huzhou Teachers College, Huzhou, 313000, China.3School of Mathematics and Econometrics, Hunan

University, Changsha, 410082, China.

Acknowledgements

This research was supported by the Natural Science Foundation of China under Grants 61374086, 11371125, and 11401192, the Natural Science Foundation of Hunan Province under Grant 12C0577, and the Research Foundation of Education Bureau of Hunan Province under Grant 14A026.

Received: 21 May 2014 Accepted: 3 September 2014 Published:25 Sep 2014

References

1. Carlson, BC: Special Functions of Applied Mathematics. Academic Press, New York (1977)

2. Carlson, BC, Gustafson, JL: Asymptotic approximations for symmetric elliptic integrals. SIAM J. Math. Anal.25(2), 288-303 (1994)

3. Neuman, E, Sándor, J: On the Schwab-Borchardt mean. Math. Pannon.14(2), 253-266 (2003) 4. Neuman, E, Sándor, J: On the Schwab-Borchardt mean II. Math. Pannon.17(1), 49-59 (2006)

5. Neuman, E: Inequalities for the Schwab-Borchardt mean and their applications. J. Math. Inequal.5(4), 601-609 (2011) 6. Carlson, BC: Algorithms involving arithmetic and geometric means. Am. Math. Mon.78, 496-505 (1971)

(10)

8. He, Z-Y, Chu, Y-M, Wang, M-K: Optimal bounds for Neuman means in terms of harmonic and contraharmonic means. J. Appl. Math.2013, Article ID 807623 (2013)

9. Chu, Y-M, Qian, W-Q: Refinements of bounds for Neuman means. Abstr. Appl. Anal.2014, Article ID 354132 (2014) 10. Neuman, E: On some means derived from the Schwab-Borchardt mean. J. Math. Inequal.8(1), 171-183 (2014) 11. Neuman, E: On some means derived from the Schwab-Borchardt mean II. J. Math. Inequal.8(2), 361-370 (2014) 12. Neuman, E: On a new bivariate mean. Aequ. Math. (2013). doi:10.1007/s00010-013-0224-8

13. Zhang, Y, Chu, Y-M, Jiang, Y-L: Sharp geometric mean bounds for Neuman means. Abstr. Appl. Anal.2014, Article ID 949815 (2014)

14. Guo, Z-J, Zhang, Y, Chu, Y-M, Song, Y-Q: Sharp bounds for Neuman means in terms of geometric, arithmetic and quadratic means. arXiv:1405.4384v1

15. Anderson, GD, Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Generalized elliptic integrals and modular equations. Pac. J. Math.192(1), 1-37 (2000)

16. Simi´c, S, Vuorinen, M: Landen inequalities for zero-balanced hypergeometric functions. Abstr. Appl. Anal.2012, Article ID 932061 (2012)

10.1186/1029-242X-2014-370

References

Related documents

It is, therefore, claimed that including legumes in a health- promoting diet is important in meeting the major dietary recommendations to improve the

Group 2 (Anaemic control): After four weeks, histopathological examination of the liver in Phenytoin treated anaemic control group showed severe to moderate

The present study has analyzed pedagogical perspectives of Virtual Learning Environment - AVA Moodle in mediation of scientific knowledge, fomenting the

A STUDY TO ASSESS THE IMPACT OF TECHNOLOGY BASDED APPROACH TO IMPROVE KNOWLEDGE ON HEALTH PROMOTING BEHAVIOUR TOWARDS MATERNAL HYPOTHYROIDISM AMONG ANTENATAL MOTHERS

(2013); the compressibility index was determined by comparing the apparent density with the compacted density of the powder; the Hausner factor was determined

Our study demonstrated that rats fed with a high cholesterol diet (control group) exhibited a higher level of total cholesterol in serum as compared to rats fed

Studies of some aspects of post natal developmental stages of a serious wild rodent species (Rattus sikkimensis) in the laboratory conditions... NS:

Trichosanthes dioica Roxb (family: Cucurbitaceae), commonly known as “Sespadula” in English and “Parwal” in Hindi and is widely grown throughout India. The leaves of