The
hygiene
hypothesis:
immunological
mechanisms
of
airway
tolerance
Eline
Haspeslagh
1,2,3,
Ines
Heyndrickx
1,3,
Hamida
Hammad
1,3and
Bart
N
Lambrecht
1,3,4Thehygienehypothesiswasinitiallyproposedasan
explanationforthealarmingriseinallergyprevalenceinthelast century.Theimmunologicalideabehindthishypothesiswasa lackofinfectionsassociatedwithaWesternlifestyleanda consequentialreductionintype1immuneresponses.Itisnow understoodthatthedevelopmentoftolerancetoallergens dependsonmicrobialcolonizationandimmunostimulatory environmentalsignalsduringearly-lifeorpassedonbythe mother.Theseenvironmentalcuesaresensedandintegrated bybarrierepithelialcellsofthelungsandpossiblyskin,whichin turninstructdendriticcellstoregulateorimpedeadaptiveTcell responses.Recentreportsalsoimplicateimmunoregulatory macrophagesaspowerfulsuppressorsofallergybythe microbiome.Weproposethatlossofadequatemicrobial stimulationduetoaWesternlifestylemayresultin hypersensitivebarriertissuesandtheobservedriseintype 2allergicdisease.
Addresses
1
LaboratoryofImmunoregulationandMucosalImmunology,VIBCenter forInflammationResearch,Technologiepark927,B-9052Ghent (Zwijnaarde),Belgium
2DepartmentofBiomedicalMolecularBiology,GhentUniversity,
Technologiepark927,B-9052Ghent(Zwijnaarde),Belgium
3
DepartmentofInternalMedicine,GhentUniversity,DePintelaan 185K12,B-9000Ghent,Belgium
4DepartmentofPulmonaryMedicine,ErasmusMC,’s-Gravendijkwal
230,3015CERotterdam,TheNetherlands
Correspondingauthors:Hammad,Hamida(Hamida.Hammad@UGent. be),Lambrecht,BartN([email protected])
CurrentOpinioninImmunology2018,54:102–108 ThisreviewcomesfromathemedissueonAllergyand hypersensitivity
EditedbyOnurBoyman,AlexanderEggelandMarioNoti
https://doi.org/10.1016/j.coi.2018.06.007
0952-7915/ã2018TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBY-NC-NDlicense( http://creative-commons.org/licenses/by-nc-nd/4.0/).
Introduction
Allergicsensitizationischaracterizedbythepresenceof
allergen-specific immunoglobulin E (IgE) in serum.
Exposuretoallergensviainhalation,ingestionorcontact
with the skin can lead to diseases such as asthma, hay
fever,eczemaand,insomecases,tosystemicanaphylaxis.
Duringthelast150years,allergieshaveemergedinavery
rapidwayandtheirprevalenceisstillontherise.
Nowa-days,morethan30%ofchildrenareallergic,upto10%of
childrensufferfromasthmaandallergicrhinitis,and5–
7%ofchildrenhavedevelopedfoodallergy.Itisstillnot
entirelyclearwhy asthmaprevalenceissohigh,butthe
rapidtimeframeofitsoriginationandexpansionsuggests
that environmental or behavioral changes in Western
lifestyleare involved.
A
modern
lifestyle
is
associated
with
dysbiosis
Animportantevolutionofthelast150yearsisasuccessful
decreaseofinfectiousdiseaseburden,duetothemassive
introduction of hygiene measures, antibiotics, and
vac-cines.In1989,Strachanobservedthatgrowingupinlarge
familieswithmoreoldersiblingsdecreasedthechancesof
developinghayfever or eczema [1].Hepostulated that
therecent increase in allergy incidencewas a result of
‘decliningfamilysize,improvementsinhousehold
ame-nities, and higher standards of personal cleanliness’,
which had reduced ‘the opportunity for crossinfection
inyoungfamilies’.Theoriginal‘hygienehypothesis’was
thus introduced. Since then, this hypothesis has been
supported by numerous studies, especially in murine
models,showing thatexposure to bacteria,viruses,
hel-minthsor microbe-derivedproducts couldprotect from
allergy(reviewedin[2],[3]).However,itshouldbekept
inmindthatnotallpathogensareprotective;forinstance,
respiratorysyncytialvirus(RSV)orrhinovirusare
associ-atedwithahigherrisktodevelopwheezeandasthmaup
toadulthood[4].
Changesin lifestylecanalsoheavilyinfluencethe
com-positionanddiversityofthemicrobiomeatseveral
muco-sal surfaces. These microbial communities have
co-evolved with and within the human body for millions
ofyears,and,consequently,thehumanimmunesystem
has been calibrated and fine-tuned so to maintain and
shape symbiotic relationships with them (reviewed in
[5]).Twotheories,the‘Oldfriends’andthe‘Biodiversity’
hypotheses,havebeenproposedbyRookandby
Haah-telaasamoreaccurate,oratleastcomplementary,
expla-nationfortherecentallergypandemic[6,7].They
stipu-latethatthereasonfortheincreasedincidenceinallergic
disordersisareducedexposuretosuchbeneficial
reported thatalterationsinthecomposition of theskin,
the nose or the gut microbiome are associated with
eczema, asthmaandfoodallergy[8–10].Thesechanges
do not affect a single commensal, but rather reflect a
reduced total microbial diversity[11],and they maybe
caused byseveral factors,including sibling orderin the
family[12],exposuretoanimals[13],andotherearly-life
events[14].Theimportanceofahealthymicrobiomein
controlling allergies was further substantiated in mice,
with germ-free micebeing especiallyprone to develop
overt allergic (airway)disease, aphenotypereverted by
microbial recolonization[15,16].However,otherstudies
showed that germ-free mice are not universally more
susceptible to house dustmite driven asthma,and that
onlyselectedstrainsoflungmicrobiotaseemtosuppress
asthma[17].Duringthelast30years,thebodyof
correla-tiveepidemiologicalstudieshasexpandedvastly, andis
the subject of many excellent reviews. Here, we will
zoominonrecentadvancesinthesearchforthe
under-lying immunological mechanisms explaining the
observed effects.
Microbes
induce
protective
regulatory
DCs
and
T
cells
Allergies are generally aberrant immune reactions to
innocuous antigens, orchestrated by T helper 2 (Th2)
cellsandtype2innatelymphoidcells(ILC2s).Inthecase
ofasthma,thistype2cellactivityleadstomucus
hyper-secretion, goblet cell hyperplasia, smooth muscle cell
hyperreactivity, and the infiltration and/or activationof
eosinophils, mast cells and basophils,ultimately
culmi-nating in breathing difficulties and airway remodeling
[18].Dendriticcells(DCs)arealwaysfoundatthebody’s
barriers,andbecausetheyexpressawiderangeofpattern
recognition receptors (PRRs), they can sense the
envi-ronment for the presence of danger signals [19]. Our
group hasshownthatTh2responsesto housedustmite
(HDM) allergens were induced by IRF4-dependent
cDC2s in thelungsand in theskin [20,21] (Figure 1).
ThesecDC2scapturetheHDMallergensintheairways
andmigratetothedraininglymphnodes,requiring
ILC2-derivedIL-13,wheretheypresenttheallergenstonaı¨ve
T cells [22]. It is easy to imagine that environmental
changessensedatthelevelofthelungs,theskinbutalso
ofthegutwillmodifythecontextofallergenrecognition
by DCs, and either protect against or enhance allergic
responses.
Chronic Helicobacter pylori infection has been inversely
linkedto asthma inhumansand caneffectivelyprotect
mice from OVA-induced asthma [23,24]. In mice, H.
pylori infection induced the accumulation of CD103+
cDCsin thelungs,which wererequiredfor the
protec-tion,aswastheirIL-10production[24].Inarecentstudy,
semi-therapeuticH.pyloriextracttreatmentalsoreduced
airwayallergy,shiftedtheCD11b+/CD103+DCratioin
thelungs,andreducedtheantigenprocessingbylungand
lymphnode DCs[25].Other studiesdemonstrated
pro-tective modulation ofinvitro bone-marrowderivedDC
cultures (BMDCs). A synthetic TLR1/TLR2-agonist
inducedLPS-toleranceandIL-10productioninBMDCs,
whereas thecowshedLactococcuslactisinstigated a
Th1-polarizingprogram,bothrenderingtheBMDCsunableto
sensitize mice to OVA-allergen upon adoptive transfer
[26,27].
Trompetteetal.recentlyfoundthatfeedingmicea
fiber-rich diet changed the composition of the lung and gut
microbiome, thelattermetabolizing thefiberinto
circu-lating short-chain fatty acids (SCFA’s) [28]. The
increasedSCFA levelsprotectedthemicefrom allergic
lung inflammation.Mechanistically,theSCFA’s altered
DC precursor generation in the bone marrow, and the
DCssubsequentlyseedingthelungshadahigher
phago-cyticcapacityandwereimpairedinpolarizingTh2cells.
Additionalstudieshavesupportedtheprotectiveeffectof
dietary fiber supplementationon allergicasthma
devel-opment in mice [29], and onwheeze in humaninfants
whenthefiberwasgiventothepregnantmother[30].
One mechanismbywhichtheDCsin microbe-exposed
animalscanconferprotection,isbyinducingthe
genera-tionofregulatoryTcells(Tregs).Microbialcolonization
in 2-week old mice was shown to be necessaryfor the
transientupregulationofPD-L1onlungCD11b+DCs,
and the expansionof a specific pulmonary Tregsubset
[31].PD-L1blockadeinneonatesresultedinexaggerated
responsivenesstoHDMthroughadulthood,suggestinga
crucialroleforthismicrobial-inducedDC–Tregaxisfor
immunologicaltolerance.Inanothermouse modelofH.
pylori-mediatedasthmaprotection,theHelicobacter
infec-tion inhibited TLR-inducedDC maturation and
repro-grammed the DCs towards a FoxP3+ Treg-polarizing
phenotype [32]. The bacterial component flagellin B,
givensemi-therapeuticallytogetherwithallergen, could
alsoinhibit murineallergicasthmasymptomsinaDC
andCD25+Treg-dependent manner[33].
Although helminths are prototypical inducers of type
2 immunity, they have been correlated with reduced
allergen skin prick test reactivity, and to some degree
with asthma protection (reviewed in [34]). A general
explanationfor thisnon-intuitiveassociationisthat
hel-minthsinduceaso-called‘modifiedTh20response,with
immunoregulatory cells such as Tregs complementing
theTh2-armofimmunity,andregulatingtheresponseto
bystanderantigenssuchasaeroallergens.Therefore,
sev-eralgroupshavetriedtofindhelminth-derivedproducts
withimmunomodulatorypropertiesthatcouldbeusedto
suppressTh2immunity.Forinstance,an
anti-inflamma-toryprotein(-2;AIP-2)fromtheparasitichookwormwas
identified to suppress murine airway allergy in a
DC-dependentandTreg-dependentmanner[35].Inanother
AvCystatin was demonstrated to induce regulatory
macrophagesthatprotectedagainstexperimentalasthma
upon adoptivetransfer [36].Regulatory alveolar
macro-phagesfrombonemarroworiginwererecentlyalso
impli-cated in long-lasting protection conferred by a latent
murinegammaherpesvirusinfection,amodelfor
Epstein-–Barrvirusinfectioninmice[37].Theregulatory
macro-phagesinducedbytheinfection replacedthelong-lived
andself-replenishingalveolarmacrophagesthatare
gen-eratedshortlyafterbirth,andbecamelong-livedaswell.
Figure1 Treg Th2 TLR4 IL-25 IL-33 GM-CSF CCL20 IL-1α Th0 IRF4+ CD11b+ OX40L Notch L IL-12 Allergens (HDM) Endotoxin Farming environment Microbial colonization RSV
Second hand smoke Neonatal lungs H. polygyrus HES Microbial colonization H. pylori L. lactis SCFAs Flagellin B AIP-2 Th1 Th0 IL-1R IL-33 TLR4 TLR4 rM AvCystatin Herpes
Current Opinion in Immunology
Proposedmodelofairwaytolerance.Intheabsenceofimmunoregulatorypathways,epithelialbarriercellsreadilyrespondtoallergenbindingon theirpatternrecognitionreceptors,amongwhichTLR4,bythesecretionofinflammatorymediators(IL-1a,IL-25,IL-33,GM-CSF,CCL20,and others).Thesemediatorslicenseantigen-bearingIRF4+CD11b+conventionaldendriticcells(cDC2s)topolarizenaı¨ve TcellstoThelper2(Th2) cellsinthelung-draininglymphnodes.Neonatalandgerm-freemiceareespeciallypronetodevelopsuchTh2responses.Respiratorysyncytial virus(RSV)infectionandsecondhandcigarettesmoke,twoknownasthmariskfactors,increaseIL-33secretionandmaytherebystimulatethis pathway.Exposuretoendotoxin,farmdustormicrobialcolonizationbluntstheepithelialresponsebyincreasingtheexpressionofnegative regulators.EpithelialIL-33releaseisalsoinhibitedbyhelminth-derivedexcretedandsecretedproducts(HES).DCsdevoidofepithelialactivation signalsdonotinduceTcellactivation(Th0).OtherprotectivefactorsimpedeTcellactivitybyinfluencingthematuration,antigenpresentation,or phagocyticcapacityofDCs.SomeprotectivefactorsinduceDCsthatprovokeregulatoryTcell(Treg)activityorThelper1(Th1)activity.
Regulatorymacrophages(rM)canalsoinduceTregs,orblockDC-mediatedTh2-polarization.Abbreviations:HDM,housedustmite;TLR4,Tolllike receptor4;IL-1R,IL-1receptor;H.pylori,Helicobacterpylori;L.lactis,Lactococcuslactis;SCFA,shortchainfattyacids;AIP-2,anti-inflammatory protein2.
This potentially explains the long-lasting effects of
microbial stimuliinthelungsonallergysuppression.
Allergic
asthma
is
initiated
by
aberrant
immune
responses
at
barrier
tissues
To initiate an allergen-specific Th2 response, cDC2s
need to be instructed by barrier epithelial cells (ECs)
liningtheairways.BarrierECsarepermanentlyexposed
to environmental insults or innocuous signals and, like
DCs,theyarewell-equippedtointegratethesesignalsvia
arangeofPRRs(reviewedin[38]).ActivationofPRRson
ECs by allergens induces NF-kB activation and ROS
production,resultinginthesecretionofawiderangeof
inflammatorymediators,amongwhichthecytokines
IL-33, IL-25 and TSLP. DCs react to these cytokines by
OX40LandNotchligandupregulation,and
downregula-tion of IL-12 production,an activationstate thatfavors
Th2polarizationinthelung-draininglymphnode[39,40].
Interestingly,thebarriertissueoftheskinalsoconstitutes
a possible entry route for aeroallergens [21]. Thus,
barrier cellsact very upstream in theinflammatory
cas-cadeofeventsleadingtoallergicsensitization(Figure1).
OurgrouphaspreviouslyreportedthatthePRRtoll-like
receptor4(TLR4)onairwayECswascriticallynecessary
to mount aTh2-mediated asthmaticresponseto HDM
[41].Strikingly,severalHDMallergenshavetheintrinsic
capacitytofacilitateoramplifyTLR4signalingby
bind-ingdirectlytoproteinsoftheTLR4signalingcomplexor
to itsligands[42,43].However,TLR4is bestknownas
thereceptorforLPS,alsotermedendotoxin,acomponent
ofgram-negativebacteria.Itisdifficulttoreconcilehowa
receptorspecializedinbacterialsensingcancontributeto
Th2immunityandallergy,especiallygiventhefactthat
highendotoxinlevelsinchildren’smattressesare
protec-tive against atopic sensitization and asthma in humans
and mice [44–46]. Another study also associated house
dustendotoxinlevelswithasignificantlyreducedriskof
allergic sensitization or eczema, specifically in children
with apolymorphism in the CD14gene [47].Infact, a
bodyofepidemiologicalstudieshaveconvincingly
corre-latedatraditionalfarmingenvironment,whereendotoxin
levelsarehigh,withprotectionagainsthayfever,allergic
sensitization,andasthma(reviewedin[48]).Inahallmark
study,childrengrowinguponagriculturalHutteriteand
Amish farms in the US were compared, and the latter
werefound to havesixtimes lesschanceof developing
atopyandasthma[49].Thesetwofarmingpopulations
share a similar genetic ancestry and lifestyle. Farming
practices, however, differ, and the Amish house dust
containedalmost7timesmoreendotoxinthanthehouse
dustfromHutteritefarms.OnlythetransferoftheAmish
dust intranasally to mice inhibited subsequent
experi-mentalasthmadevelopment.Wehaverecentlyconfirmed
that farm dust collectedfrom Bavarian farms(in which
farmingpracticesresembletheAmish’sones),andLPS,
conferred protectionagainst experimental asthma.This
protection was mediated by an increased epithelial
expression ofTNFAIP3(betterknownasA20),a
nega-tiveregulatoroftheNF-kBpathway,whichbluntedthe
epithelial cell response to HDM and downstream DC
activity[50].AsimilartolerancetoLPSmediatedbyA20
inductionwasdemonstratedinintestinalECs[51].
Inter-estingly, A20 expression was very low in neonatal rats,
spontaneously increased shortly after birth coinciding
withmicrobialcolonization,andcouldbedownregulated
by treatment with antibiotics. It remains to be
investi-gatedifthegutorlungmicrobiotacansimilarlyinfluence
expressionofA20andothernegativeregulatorsinairway
ECs.ECmodulationhasrecentlybeendemonstratedfor
Heligmosomoidespolygyrus,ahelminthoftenconfirmedto
protectagainstmurineallergy[52].Secretedandexcreted
products(HES)ofthisparasiteinhibitedIL-33releaseby
ECs and thereby suppressed Alternaria-induced airway
allergy [3]). Mechanistically, the H. polygyrus alarmin
release inhibitor (HpARI), a 26kDa protein, binds to
activated IL-33 and at the same time tethers IL-33 to
theDNAofnecroticcells,thusinhibitingIL-33actionin
adualmanner andinhibitinginnateeosinophilic airway
inflammation [53]. Other molecules secreted by the
parasite are more related to TGFb and can induce a
Foxp3+Tregpopulationwithimmunoregulatory
poten-tial[54].
A dysregulated immune responseattheskin can cause
atopic dermatitis(AD),which initselfisariskfactorto
accumulate more allergies later in life, among which
asthma, aprocess known as ‘the atopic march’. In fact,
ADandasthmashareseveralriskfactors.ADisstrongly
correlatedwithchangesintheskinmicrobiome,themost
well-knownbeingpertinentStaphylococcusaureus
coloni-zation of allergic skin. In a recent study, IL-17Ra/
micespontaneouslydevelopedADwithnaturally
occur-ringskin dysbiosisand acompromisedskin barrier,and
antibiotictreatmentamelioratedskininflammation[55].
Asimilardysbiosis–ADaxishasalsobeendemonstrated
inADAM17/mice[56].Topicaltreatmentwith
non-pathogenic bacteria, on the other hand, can alleviate
cutaneous inflammation in murine AD [57]. It has
become clear in recent years that tonic sensing of skin
commensalsheavilyshapeshostDCandTcellfunctions
[58–60].Itremains to beinvestigated whattherelative
importance isof passivebarrierintegrityandactive
sig-nalingthroughkeratinocytePRRs,alsopoisedtorapidly
respond to innate immune ligands, in this
microbe-immunecellcross-talk[61].Itwillalsobeofgreatinterest
tostudyhowenvironmentalexposuresinfluencetheskin
microbiome and/or the immune threshold of skin
epithelium.
One intriguing observation is that allergies tend to
developearlyinlife.Inthesametimewindow,andeven
in utero,protective effects of environmental factorsand
recently demonstrated that the lung environment in
neonatalmiceisstronglytype2-skewed,with agradual
increase in IL-33 release by lung ECs, and with the
spontaneous recruitment of several Th2-associated
innate immune cells, peaking 2 weeks after birth
[64].Thisspontaneouswaveofearlytype2immunity
islikelytobecausedbythemechanicalstressinducedby
the breathing patterns [65], but also by the constant
remodeling necessary to build up new lung structures.
Interestingly,this periodisproneto favorstronger Th2
sensitizationtoinhaledallergens[64],butalsotofavor
lower immunity to bacteria [65]. Many environmental
factors, likesecond handsmokingor RSV infectionare
knowntofacilitateTh2sensitizationinchildren.These
triggershavein commonthattheyinducehighlevelsof
IL-33[66,67].Itistemptingto speculatethattheserisk
factors act by prolonging or amplifying the epithelial
cytokineresponsetoallergensduringearly-life,andthat
combined early-life exposures thus define the final
thresholdforECactivation.
Conclusion
EffectsofmicrobesoninducingTregcells,Th1cellsand
allergen cross-reactive antibody responses, are
well-observed. In addition, we propose a model in which
environmentalandmicrobialstimuliaresensedand
inte-gratedbybarriertissuesofthelung,theskinandthegut,
resultinginatonicDCactivationstatuspromotingeither
inflammatory or tolerogenic immunity. Together with
directeffectsonDCsandTcells,mostprotectivestimuli
thus seem to converge in the same central tolerogenic
immunepathways.Fullyunderstandingthefundamental
immunological pathways underlying these protective
triggers,theirrelativecontribution,andhowtheyinteract,
should hopefullyallow usto pinpoint,modify or newly
develop prophylactic or therapeutic therapies to cure
asthma.
Conflict
of
interest
statement
Nothingdeclared.
Acknowledgements
ResearchintheLambrechtandHammadlabissupportedbyanAdvanced EuropeanResearchCouncil(ERC)grant,anFWOFlandersExcellenceof Sciencegrant,andtheWorldWithoutAsthma(AWWA)programofthe DutchLungFoundation.Figure1includesderivativematerialfromServier MedicalArt(https://smart.servier.com/)byServier,availableundera CreativeCommonsAttribution3.0UnportedLicense(https:// creativecommons.org/licenses/by/3.0/).
References
and
recommended
reading
Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:
ofspecialinterest ofoutstandinginterest
1. StrachanDP:Hayfever,hygiene,andhouseholdsize.BMJ 1989,299:1259-1260.
2. SmitsHH,HiemstraPS,PrazeresdaCostaC,EgeM,EdwardsM, GarnHetal.:Microbesandasthma:opportunitiesfor intervention.JAllergyClinImmunol2016,137:690-697. 3.
McSorleyBlockadeHJ,ofIL-33BlairNF,releaseSmithandKA,suppressionMcKenzieAN,ofMaizelstype2innateRM: lymphoidcellresponsesbyhelminthsecretedproductsin airwayallergy.MucosalImmunol2014,7:1068-1078.
Evidenceofveryearlyimmunomodulationbyasolubleparasiteproduct. H.polygyrusexcretory/secretory(HES)productswereshowntoblock earlyAlternaria-inducedIL-33releasebyepithelialcells,andtostrongly suppresstheinnateeosinophiliaandILC2response.InanOVAasthma modelusingAlternariaasanadjuvant,HESalsoinhibitedadaptivetype 2responses.Theobservationthatparasitesreleaseproductsthatblock earlyepithelialIL-33release,probablytoinhibitthehost’santi-parasite immuneresponses,affirmstheimportanceofthisprocessinthe devel-opmentoftype2immunity.
4. FeldmanAS,HeY,MooreML,HershensonMB,HartertTV: Towardprimarypreventionofasthma.Reviewingthe evidenceforearly-liferespiratoryviralinfectionsasmodifiable riskfactorstopreventchildhoodasthma.AmJRespirCritCare Med2015,191:34-44.
5. BelkaidY,HarrisonOJ:HomeostaticImmunityandtheMicrobiota. 2017:562-576.
6. RookGA:Hygienehypothesisandautoimmunediseases.Clin RevAllergyImmunol2012,42:5-15.
7. HanskiI,vonHertzenL,FyhrquistN,KoskinenK,TorppaK, LaatikainenTetal.:Environmentalbiodiversity,human microbiota,andallergyareinterrelated.ProcNatlAcadSciUS A2012,109:8334-8339.
8. AbrahamssonTR,JakobssonHE,AnderssonAF,BjorkstenB, EngstrandL,JenmalmMC:Lowgutmicrobiotadiversityinearly infancyprecedesasthmaatschoolage.ClinExpAllergy2014, 44:842-850.
9. ClausenML,AgnerT,LiljeB,EdslevSM,JohannesenTB, AndersenPS:Associationofdiseaseseveritywithskin microbiomeandfilaggringenemutationsinadultatopic dermatitis.JAMADermatol2018,154:293-300.
10. SavageJH,Lee-SarwarKA,SordilloJ,BunyavanichS,ZhouY, O’ConnorGetal.:Aprospectivemicrobiome-wideassociation studyoffoodsensitizationandfoodallergyinearlychildhood. Allergy:EurJAllergyClinImmunol2018,73:145-152.
11. DepnerM,EgeMJ,CoxMJ,DwyerS,WalkerAW,BirzeleLTetal.: Bacterialmicrobiotaoftheupperrespiratorytractand childhoodasthma.JAllergyClinImmunol2017,139826–834. e13.
12. HasegawaK,LinnemannRW,MansbachJM,AjamiNJ, EspinolaJA,FiechtnerLGetal.:Householdsiblingsandnasal andfecalmicrobiotaininfants.PediatrInt2017,59:473-481. 13. TunHM,KonyaT,TakaroTK,BrookJR,ChariR,FieldCJetal.:
Exposuretohouseholdfurrypetsinfluencesthegut microbiotaofinfantat3–4monthsfollowingvariousbirth scenarios.Microbiome2017,5:40.
14. MartinR,MakinoH,CetinyurekYavuzA,Ben-AmorK,RoelofsM, IshikawaEetal.:Early-lifeevents,includingmodeofdelivery andtypeoffeeding,siblingsandgender,shapethedeveloping gutmicrobiota.PLoSONE2016,11:e0158498.
15. HerbstT,SichelstielA,ScharC,YadavaK,BurkiK,CahenzliJ etal.:Dysregulationofallergicairwayinflammationinthe absenceofmicrobialcolonization.AmJRespirCritCareMed 2011,184:198-205.
16. AtarashiK,TanoueT,OshimaK,SudaW,NaganoY,NishikawaH etal.:Treginductionbyarationallyselectedmixtureof Clostridiastrainsfromthehumanmicrobiota.Nature2013, 500:232-236.
17. RemotA,DescampsD,NoordineML,BoukadiriA,MathieuE, RobertVetal.:Bacteriaisolatedfromlungmodulateasthma susceptibilityinmice.ISMEJ2017,11:1061-1074.
18. LambrechtBN,HammadH:Theimmunologyofasthma.Nat Immunol2015,16:45-56.
19. LambrechtBN:Dendriticcellsandtheregulationoftheallergic immuneresponse.Allergy2005,60:271-282.
20. PlantingaM,GuilliamsM,VanheerswynghelsM,DeswarteK, Branco-MadeiraF,ToussaintWetal.:Conventionaland monocyte-derivedCD11b(+)dendriticcellsinitiateand maintainThelper2cell-mediatedimmunitytohousedustmite allergen.Immunity2013,38:322-335.
21.
DeckersVanheerswynghelsJ,SichienM,D,HostePlantingaEetM,al.:VanEpicutaneousMoorleghemsensitizationJ, tohousedustmiteallergenrequiresinterferonregulatory factor4-dependentdermaldendriticcells.JAllergyClin Immunol2017http://dx.doi.org/10.1016/j.jaci.2016.12.970. Thisstudyrevealsthatunmanipulatedskinisapossibleentryroutefor HDMallergens,withIRF4-dependentskincDC2sprimingsensitizationto subsequentairwayallergenchallenges.Thisimplicatesthatperturbations orexposuresattheleveloftheskinmayberelevantforthe‘hygiene effect’forasthma.
22. HalimTY,SteerCA,MathaL,GoldMJ,Martinez-GonzalezI, McNagnyKMetal.:Group2innatelymphoidcellsarecritical fortheinitiationofadaptiveThelper2cell-mediatedallergic lunginflammation.Immunity2014,40:425-435.
23. AmberbirA,MedhinG,ErkuW,AlemA,SimmsR,RobinsonK etal.:EffectsofHelicobacterpylori,geohelminthinfectionand selectedcommensalbacteriaontheriskofallergicdisease andsensitizationin3-year-oldEthiopianchildren.ClinExp Allergy2011,41:1422-1430.
24. EnglerDB,ReuterS,vanWijckY,UrbanS,KyburzA,MaxeinerJ etal.:Effectivetreatmentofallergicairwayinflammationwith Helicobacterpyloriimmunomodulatorsrequires BATF3-dependentdendriticcellsandIL-10.ProcNatlAcadSciUSA 2014,111:11810-11815.
25. VanWijckY,DeKleijnS,John-SchusterG,MertensTCJ, HiemstraPS,Mu¨llerAetal.:Therapeuticapplicationofan extractoftherapeuticapplicationofanextractofHelicobacter pyloriamelioratesthedevelopmentofallergicairwaydisease. JImmunol2018,200:1570-1579.
26. StiehmM,PetersK,WiesmullerKH,BufeA,PetersM:Anovel syntheticlipopeptideisallergy-protectivebytheinductionof LPS-tolerance.ClinExpAllergy2013,43:785-797.
27.
etSteinal.:K,EndosomalBrandS,JenckelrecognitionA,SigmundofLactococcusA,ChenZJ,lactisKirschningG121andCJ itsRNAbydendriticcellsiskeytoitsallergy-protective effects.JAllergyClinImmunol2017,139667–678.e5.
StudyondirectprotectiveDCmodulationbythecowshedLactococcus lactis. Upon bacterial uptake, endosomal acidification, and TLR-mediatedrecognitionofthereleasedRNA,humanmoDCsorBMDCs secretedTh1polarizingcytokines.Incoculture,Lactococcus-pulsedDCs inducedTh1cells,andinvivo,theyconferredprotectionagainst OVA-inducedallergicasthma.
28. TrompetteA,GollwitzerES,YadavaK,SichelstielAK,SprengerN, Ngom-BruCetal.:Gutmicrobiotametabolismofdietaryfiber influencesallergicairwaydiseaseandhematopoiesis.Nat Med2014,20:159-166.
29. VerheijdenKA,WillemsenLE,BraberS,Leusink-MuisT, JeurinkPV,GarssenJetal.:Thedevelopmentofallergic inflammationinamurinehousedustmiteasthmamodelis suppressedbysynbioticmixturesofnon-digestible oligosaccharidesandBifidobacteriumbreveM-16V.EurJNutr 2016,55:1141-1151.
30. ThorburnAN,McKenzieCI,ShenS,StanleyD,MaciaL,MasonLJ etal.:Evidencethatasthmaisadevelopmentalorigindisease influencedbymaternaldietandbacterialmetabolites.Nat Commun2015,6:7320.
31. GollwitzerES,SaglaniS,TrompetteA,YadavaK,SherburnR, McCoyKDetal.:Lungmicrobiotapromotestoleranceto allergensinneonatesviaPD-L1.NatMed2014,20:642-647. 32. OertliM,SundquistM,HitzlerI,EnglerDB,ArnoldIC,ReuterS etal.:DC-derivedIL-18drivesTregdifferentiation,murine Helicobacterpylori-specificimmunetolerance,andasthma protection.JClinInvest2012,122:1082-1096.
33.
FlagellinShimJU,suppressesLeeSE,HwangexperimentalW,LeeC,ParkasthmaJW,bySohngeneratingJHetal.:
regulatorydendriticcellsandTcells.JAllergyClinImmunol 2016,137:426-435.
Useofmicrobe-derivedflagellinBtosuppressOVA-allergicor HDM-allergicasthmainasemi-therapeuticsetting.Theprotectionwas depen-dent onTLR5andonthegenerationofregulatoryDCs,which could activelysuppressasthmadevelopmentuponadoptivetransfer.Flagellin BtreatmentofPBMCsfromHDM-allergicasthmapatientsrenderedthe DCsmorepronetoinduceTregsinanIL-10dependentmanner,making thismicrobe-derivedproductapossiblecandidateforcell-basedasthma therapy.
34. CruzAA,CooperPJ,FigueiredoCA,Alcantara-NevesNM, RodriguesLC,BarretoML:Globalissuesinallergyand immunology:parasiticinfectionsandallergy.JAllergyClin Immunol2017,140:1217-1228.
35. NavarroS,PickeringDA,FerreiraIB,JonesL,RyanS,TroySetal.: HookwormrecombinantproteinpromotesregulatoryTcell responsesthatsuppressexperimentalasthma.SciTranslMed 2016,8362ra.
36. ZieglerT,RauschS,SteinfelderS,KlotzC,HepworthMR, Ku¨hlAaetal.:Anovelregulatorymacrophageinducedbya helminthmoleculeinstructsIL-10inCD4+Tcellsand
protectsagainstmucosalinflammation.JImmunol2015, 194:1555-1564.
37.
AMachielsgammaherpesvirusB,DourcyM,XiaoprovidesX,JavauxprotectionJ,MesnilagainstC,SabatelallergicCetal.: asthmabyinducingthereplacementofresidentalveolar macrophageswithregulatorymonocytes.NatImmunol2017, 18:1310-1320.
Thismousestudydemonstratesthatinfectionwiththemuridherpesvirus MuHV-4 induces the replacement of resident alveolar macrophages (AMs)withmonocytesfrombonemarroworigin,whichpersistlongterm inthelungsand aresufficienttoblockHDM-induced airway allergy. PreincubationofHDM-pulsedBMDCswithAMsfrominfectedanimals renderedtheBMDCslessefficientinsensitizingacceptormiceto HDM-mediatedasthma.
38. HammadH,LambrechtBN:Barrierepithelialcellsandthe controloftype2immunity.Immunity2015,43:29-40. 39. KuipersH,HeirmanC,HijdraD,MuskensF,WillartM,van
MeirvenneSetal.:Dendriticcellsretrovirallyoverexpressing IL-12inducestrongTh1responsestoinhaledantigeninthe lungbutfailtorevertestablishedTh2sensitization.JLeukoc Biol2004,76:1028-1038.
40. KuipersH,LambrechtBN:Theinterplayofdendriticcells,Th2 cellsandregulatoryTcellsinasthma.CurrOpinImmunol2004, 16:702-708.
41. HammadH,ChieppaM,PerrosF,WillartMA,GermainRN, LambrechtBN:Housedustmiteallergeninducesasthmavia Toll-likereceptor4triggeringofairwaystructuralcells.Nat Med2009,15:410-416.
42. TrompetteA,DivanovicS,VisintinA,BlanchardC,HegdeRS, MadanRetal.:Allergenicityresultingfromfunctionalmimicry ofaToll-likereceptorcomplexprotein.Nature2009, 457:585-588.
43. ChoiHJ,ParkSY,ChoJH,ParkJW,SohnJH,KimYJetal.:The TLR4-associatedphospholipaseD1activationiscrucialfor derf2-inducedIL-13production.AllergyEurJAllergyClin Immunol2015,70:1569-1579.
44. WeberJ,IlliS,NowakD,SchierlR,HolstO,vonMutiusEetal.: Asthmaandthehygienehypothesis.Doescleanlinessmatter? AmJRespirCritCareMed2015,191:522-529.
45. Braun-FahrlanderC,RiedlerJ,HerzU,EderW,WaserM,GrizeL etal.:Environmentalexposuretoendotoxinanditsrelationto asthmainschool-agechildren.NEnglJMed2002, 347:869-877.
46. KuipersH,HijdraD,DeVriesVC,HammadH,PrinsJB,CoyleAJ etal.:Lipopolysaccharide-inducedsuppressionofairwayTh2 responsesdoesnotrequireIL-12productionbydendritic cells.JImmunol2003,171:3645-3654.
47. SimpsonA,JohnSL,JuryF,NivenR,WoodcockA,OllierWEetal.: Endotoxinexposure,CD14,andallergicdisease:an interactionbetweengenesandtheenvironment.AmJRespir CritCareMed2006,174:386-392.
48. vonMutiusE,VercelliD:Farmliving:effectsonchildhood asthmaandallergy.NatRevImmunol2010,10:861-868. 49.
Steinetal.:MM,InnateHruschimmunityCL,GozdzandasthmaJ,IgartuariskC,inPivnioukamishandV,MurrayhutteriteSE farmchildren.NEnglJMed2016,375:411-421.
ThishallmarkstudycomparedAmishandHutteritechildren,whichshare asimilargeneticancestryandlifestyle,buthavedifferentfarming prac-tices.Inthetwogroupsofchildren,significantdifferenceswerefoundin theproportions,markerexpressionlevels,andgene-expressionprofiles of peripheral-blood leukocytes. Importantly, Amish children had a decreasedchanceforallergydevelopment,whereasmedianendotoxin contentintheirhomedustsampleswasmuchhigher.Onlytransferofthe AmishdustcouldinhibitHDM-inducedasthmainamousemodel,and thiswasonlythecaseinMyd88-sufficientandTrif-sufficient animals, consolidatingthehypothesisthatenvironmentalinnateimmunesignals shapeasthmasusceptibility.
50. SchuijsMJ,WillartMA,VergoteK,GrasD,DeswarteK,EgeMJ etal.:Farmdustandendotoxinprotectagainstallergythrough A20inductioninlungepithelialcells.Science2015, 349:1106-1110.
51. WangJ,OuyangY,GunerY,FordHR,GrishinAV: Ubiquitin-editingenzymeA20promotestolerancetolipopolysaccharide inenterocytes.JImmunol2009,183:1384-1392.
52. KitagakiK,BusingaTR,RacilaD,ElliottDE,WeinstockJV, KlineJN:Intestinalhelminthsprotectinamurinemodelof asthma.JImmunol2006,177:1628-1635.
53.
Osbournetal.:HpARIM,SoaresProteinDC,secretedVaccaF,byCohenahelminthES,ScottparasiteIC,GregoryWF suppressesinterleukin-33.Immunity2017,47739–751.e5. ThispaperprovidesamolecularmechanismofhowH.polygyrusalarmin releaseinhibitorprotein(HpARI)inhibitsthebiologicalactivityofIL-33. HpARIbindstoIL-33andblocksitsaccesstotheIL-33R,whileatthe sametimebindingtoDNAandinhibitingIL-33releasefromnecroticcells asanalarmin.
54. JohnstonCJC,SmythDJ,KodaliRB,WhiteMPJ,HarcusY, FilbeyKJetal.:AstructurallydistinctTGF-betamimicfroman intestinalhelminthparasitepotentlyinducesregulatoryT cells.NatCommun2017,8:1741.
55. FloudasA,SaundersSP,MoranT,SchwartzC,HamsE, FitzgeraldDCetal.:IL-17receptorAmaintainsandprotectsthe skinbarriertopreventallergicskininflammation.JImmunol 2017,199:707-717.
56. KobayashiT,GlatzM,HoriuchiK,KawasakiH,AkiyamaH, KaplanDHetal.:DysbiosisandStaphyloccusaureus colonizationdrivesinflammationinatopicdermatitis.Immunity 2015,42:756-766.
57. VolzT,SkabytskaY,GuenovaE,ChenKM,FrickJS,KirschningCJ etal.:Nonpathogenicbacteriaalleviatingatopicdermatitis inflammationinduceIL-10-producingdendriticcellsand regulatoryTr1cells.JInvestigDermatol2014,134:96-104. 58. NaikS:Compartmentalizedcontrolofskin.Science2012,
1115:1115-1120.
59. NaikS,BouladouxN,LinehanJL,HanSJ,HarrisonOJ,WilhelmC etal.:Commensal–dendritic–cellinteractionspecifiesaunique protectiveskinimmunesignature.Nature2015,520:104-108. 60. ScharschmidtTC,VasquezKS,TruongHA,GeartySV,PauliML,
NosbaumAetal.:AwaveofregulatoryTcellsintoneonatalskin mediatestolerancetocommensalmicrobes.Immunity2015, 43:1011-1021.
61. TakaiT,ChenX,XieY,VuAT,LeTA,KinoshitaHetal.:TSLP expressioninducedviaToll-likereceptorpathwaysinhuman keratinocytes.MethodsEnzymol2014,535:371-387.
62. ArrietaMC,StiemsmaLT,DimitriuPA,ThorsonL,RussellS, Yurist-DoutschSetal.:Earlyinfancymicrobialandmetabolic alterationsaffectriskofchildhoodasthma.SciTranslMed 2015,7:307ra.
63. LambrechtBN,HammadH:Theimmunologyoftheallergy epidemicandthehygienehypothesis.NatImmunol2017, 18:1076-1083.
64.
deSchuijsKleerMJIM,etKoolal.:PerinatalM,deBruijnactivationMJ,WillartofM,thevaninterleukin-33MoorleghemJ, pathwaypromotestype2Immunityinthedevelopinglung. Immunity2016,45:1285-1298.
Evidencefor type2 pronelung environmentin neonatalmice anda decreased threshold in this period for innate immune responses to allergens.Developinglungsinthealveolarizationphasespontaneously produced IL-33 andaccumulated type 2 innate immune cells. Lung CD11b+cDCsinthisperiodwerescarceyetveryefficientinpresenting HDMallergentoTcellsindraininglymphnodesandtopromoteTh2 polarization.
65. SaluzzoS,GorkiAD,RanaBM,MartinsR,ScanlonS,StarklP etal.:First-breath-inducedtype2pathwaysshapethelung immuneenvironment.CellRep2017,18:1893-1905.
66. LewisBW,SultanaR,SharmaR,Noe¨lA,LangohrI,PatialSetal.: Earlypostnatalsecondhandsmokeexposuredisrupts bacterialclearanceandabolishesimmuneresponsesin muco-obstructivelungdisease.JImmunol2017, 199:1170-1183.
67. SaraviaJ,YouD,ShresthaB,JaligamaS,SiefkerD,LeeGIetal.: Respiratorysyncytialvirusdiseaseismediatedby age-variableIL-33.PLoSPathog2015,11:e1005217.