• No results found

Harmonic starlike functions with respect to symmetric points

N/A
N/A
Protected

Academic year: 2022

Share "Harmonic starlike functions with respect to symmetric points"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

Harmonic starlike functions with respect to symmetric points

1Adnan G. Al Amoush and2Maslina Darus

1,2School of Mathematical Sciences, Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor DE

e-mail: 1adnan omoush@yahoo.com,2maslina@ukm.edu.my (corresponding author)

Abstract Here a new class of complex-valued harmonic functions with respect to symmetric points is introduced. Coefficient bounds, distortion and various properties are obtained.

Keywords Harmonic univalent; starlike functions; Hadamard product; symmetric points.

2010 Mathematics Subject Classification 02.03.Fn; 02.03.Gp; 02.03.Px.

1 Introduction

A continuous complex-valued function f = u + iv defined in a simply complex domain D is said to be harmonic in D. We call h the analytic part and g the co-analytic part of f if both u and v are real harmonic in D. In any simply connected domain, we can write f = h + g where h and g are analytic in D. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that |h0(z)| > |g0(z)|, z ∈ D(see Clunie [1]).

Denote by SH the class of functions f = h + g that are harmonic univalent and sense preserving in the unit disc U = {z : |z| < 1} for which f(0) = fz(0) − 1 = 0. Then for f = h + g ∈ SH we may express the analytic functions h and g as

h(z) = z +

X

n=2

anzn, g(z) =

X

n=1

bnzn, |b1| < 1. (1.1)

Observe that SH reduces to S, the class of normalized univalent analytic functions, if the co-analytic part of f is zero.

Hence

f(z) = z +

X

n=2

anzn+

X

n=1

bnzn,|b1| < 1. (1.2) We denote H the subclass of H consists of harmonic functions f = h + g of the form

f(z) = z −

X

n=2

anzn+

X

n=1

bnzn, |b1| < 1. (1.3)

A function f = h + g with h and g given by (1.1) is said to beharmonic starlike of order χ(0 ≤ χ < 1) for |z| = r < 1, if

∂θ arg f(re) = Im (

∂θarg f(re) arg f(re)

)

= Re

(zh0(z) − zg0(z) h(z) + g(z)

)

≥ χ. (1.4)

(2)

The class of all harmonic starlike functions of order χ is denoted by SH(χ) and extensively studied by Jahangiri [2]. The cases χ = 0 and b1= 1 were studied by Silverman and Silvia [3] and Silverman [4]. Other related works of the class H also appeared in [5, 6].

Lastly, let SSdenote the class of starlike functions with respect to symmetric points.

This class was introduced by Sakaguchi [7] where f satisfying Re

 zf0(z) f(z) − f(−z)



>0, z∈ U. (1.5)

Then, Ahuja and Jahangiri [8] studied the class of harmonic starlike functions of order χ(0 ≤ χ < 1) with respect to symmetric points, SHS (χ) and satisfying the condition

Im

( 2∂θ f(re) f(re) − f(−re)

)

= Re

 2h

zh0(z) − zg0(z)i h(z) + g(z)

≥ χ. (1.6)

Let the Hadamard product (or convolution) of two power series

Φ(z) = z +

X

n=2

φnzn

and

ϕ(z) = z +

X

n=2

ψnzn be defined by

(Φ ∗ ϕ)(z) = (ϕ ∗ Φ)(z) = z +

X

n=2

φnψnzn. Recently, Al Alamoush and Darus [9] derived a new operator as

Dα,β,δ,λk f(z) = z +

X

n=2

[λ(α + β − 1)(n − 1) + 1]kC(δ, n) anzn (1.7)

where

0 < α ≤ 1, 0 < β ≤ 1, λ ≥ 0, δ, k ∈ N0, z∈ U, C(δ, n) =

 n+ δ − 1 δ



= Γ(n + δ) Γ(n)Γ(n + 1) and Dkδf(z) is the Hadamard product (or convolution) between Salagean operator and Ruscheweyh operator (see Salagean [10], Ruscheweyh [11]).

The operator Dkα,β,δ,λf(z) for harmonic functions f = h + g given by (1.1) is defined as Dα,β,δ,λk f(z) = Dkα,β,δ,λh(z) + Dkα,β,δ,λg(z),

where

Dα,β,δ,λk h(z) = z +

X

n=2

Γkα,β,δ,λanzn,

(3)

and

Dkα,β,δ,λg(z) =

X

n=1

Γkα,β,δ,λbnzn, where

Γkα,β,δ,λ= [λ(α + β − 1)(n − 1) + 1]kC(δ, n). (1.8) Now,by using the operator Dα,β,δ,λk and for χ(0 ≤ χ < 1), SHS(α, β, δ, λ; χ) denote the class of harmonic univalent functions starlike of order with respect to symmetric points. The function f ∈ SHS (α, β, δ, λ; χ) is satisfying

Re





2z

Dkα,β,δ,λf(z)0 Dkα,β,δ,λf(z) − Dkα,β,δ,λf(−z)





= Re









2

 z

Dα,β,δ,λk h(z)0

− z

Dα,β,δ,λk g(z)0 hDkα,β,δ,λh(z) − Dkα,β,δ,λh(−z)i

+h

Dkα,β,δ,λg(z) − Dkα,β,δ,λg(−z)i









≥ χ (1.9)

where

Dkα,β,δ,λf(z)0

= ∂

∂θ Dkα,β,δ,λf(re) .

In this paper, we have obtained the coefficient conditions for the classes SHS(α, β, δ, λ; χ) and SHS(α, β, δ, λ; χ). A representation theorem, inclusion properties and distortion bounds for the class SHS (α, β, δ, λ; χ) are also established.

2 Coefficient characterization

The sufficient coefficient bound for the harmonic functions in the subclass SHS(α, β, δ, λ; χ) is deduced and presented.

Theorem 1Let a function f = h + g be given in (1.2) and Γkα,β,δ,λ≥ 1. If

X

n=2

 2n − χ(1 − (−1)n)

2(1 − χ) |an| + 2n + χ(1 − (−1)n) 2(1 − χ) |bn|



Γkα,β,δ,λ

≤ 1 −1 + χ

1 − χ|b1| (2.1) where |b1| < 1+χ1−χ, χ(0 ≤ χ < 1), Γkα,β,δ,λ be defined by (1.7) and z ∈ U , then f is sense-preserving harmonic univalent in U and f ∈ SHS(α, β, δ, λ; χ).

Proof To verify that f is orientation preserving, we show|h0(z)| ≥ |g0(z)|,

|h0(z)| =

1 +

P

n=2

nanzn−1

≥ 1 −

P

n=2

n|an| |z|n−1

≥ 1 −

P

n=2

n|an|.

(4)

By the hypothesis of the theorem, Γ

kα,β,δ,λ

≥ 1 and by (2.1) give

≥ 1 −

P

n=2

2n−χ(1−(−1)n)

2(1−χ) Γkα,β,δ,λ|an|

P

n=1

2n+χ(1−(−1)n)

2(1−χ) Γkα,β,δ,λ|bn|

P

n=1

n |bn|

P

n=1

n |bn| |z|n−1

= |g0(z)|.

Thus, f is orientation preserving in U.

Next, we prove f ∈ SHS (α, β, δ, λ; χ). It suffices to show that the condition (1.8) is satisfied. Then, let

w=

2

 z

Dα,β,δ,λk h(z)0

− z

Dα,β,δ,λk g(z)0 hDkα,β,δ,λh(z) − Dkα,β,δ,λh(−z)i

+h

Dkα,β,δ,λg(z) − Dα,β,δ,λk g(−z)i = A(z) B(z) where

A(z) = 2

 z

Dα,β,δ,λk h(z)0

− z

Dkα,β,δ,λg(z)0

= 2

 z+

P

n=2

kα,β,δ,λanzn

P

n=1

kα,β,δ,λbnzn

 , and

B(z) =h

Dα,β,δ,λk h(z) − Dkα,β,δ,λh(−z)i +h

Dkα,β,δ,λg(z) − Dkα,β,δ,λg(−z)i 2z +

P

n=2

[1 − (−1)n] Γkα,β,δ,λanzn+

P

n=1

[1 − (−1)n] Γkα,β,δ,λbnzn.

Using the fact that Re {w(z)} > χ if and only if |1 − χ + w| ≥ |1 + χ − w|, it suffices to show that

|A(z) + (1 − χ)B(z)| − |A(z) − (1 + χ)B(z)| ≥ 0. (2.2) Substituting for A(z) and B(z) we get

|[2 + 2(1 − χ)]z +

P

n=2

[2n + (1 − χ)(1 − (−1)n)] Γkα,β,δ,λanzn

P

n=1

[2n − (1 − χ)[1 − (−1)n] Γkα,β,δ,λbnzn|

−|[2 − 2(1 + χ)]z +

P

n=2

[2n − (1 + χ)(1 − (−1)n)] Γkα,β,δ,λanzn

P

n=1

[2n + (1 + χ)[1 − (−1)n] Γkα,β,δ,λbnzn|

= |[2(2 − χ)]z +

P

n=2

[2n + (1 − χ)(1 − (−1)n)] Γkα,β,δ,λanzn

P

n=1

[2n − (1 − χ)[1 − (−1)n] Γkα,β,δ,λbnzn|

(5)

−| − 2χz +

P

n=2

[2n − (1 + χ)(1 − (−1)n)] Γkα,β,δ,λanzn

P

n=1

[2n + (1 + χ)[1 − (−1)n] Γkα,β,δ,λbnzn|

≥ 4(1 − χ)|z| −

P

n=2

[4n − 2χ(1 − (−1)n)] Γkα,β,δ,λ|an| |z|n

P

n=1

[4n + 2χ[1 − (−1)n] Γkα,β,δ,λ|bn| |z|n

= 4(1 − χ)|z|{1 −

P

n=2

2n−χ(1−(−1)n) 2(1−χ)

kα,β,δ,λ|an| |z|n−1

P

n=1

[2n+χ(1−(−1)n) 2(1−χ)

 Γkα,β,δ,λ|bn| |z|n−1}

≥ 4(1 − χ)|z|{1 −

P

n=2

2n−χ(1−(−1)n) 2(1−χ)

kα,β,δ,λ|an|

P

n=1

[2n+χ(1−(−1)n) 2(1−χ)

 Γkα,β,δ,λ|bn| |}

= 4(1 − χ)|z|



1 −1−χ1+χ|b1| −



P

n=2

h 2n−χ(1−(−1)n) 2(1−χ)

 |an| −2n+χ(1−(−1)n) 2(1−χ)

 |bn| i Γ

k α,β,δ,λ

 

This last expression is nonnegative by (2.1), and thus f ∈ SHS (α, β, δ, λ; χ).

For

X

n=2

|xn| +

X

n=1

|yn| = 1,

the harmonic univalent functions

f(z) = z +

X

n=2

2(1 − χ)

2n − χ(1 − (−1)nkα,β,δ,λ

! xnzn

+

X

n=1

2(1 − χ)

2n + χ(1 − (−1)nkα,β,δ,λ

! ynzn,

(2.3)

shows the equality in the coefficient bound given by (2.1) is sharp. 2 The following result proves the hypothesis in Theorem 1 is a necessary and sufficient condition for f to be in the classSHS(α, β, δ, λ; χ).

Theorem 2 Let a functionf = h + g be given in (1.3). Then f ∈ SHS (α, β, δ, λ; χ) if and only if

X

n=2

 2n − χ(1 − (−1)n)

2(1 − χ) |an| + 2n + χ(1 − (−1)n) 2(1 − χ) |bn|



Γkα,β,δ,λ

≤ 1 −1 + χ

1 − χ|b1| (2.4)

where |b1| < 1+χ1−χ, χ(0 ≤ χ < 1), Γkα,β,δ,λbe defined by (1.7) and z ∈ U.

ProofSince SHS(α, β, δ, λ; χ) ⊂ SHS(α, β, δ, λ; χ)., sufficiency part follows from Theorem 1.

To prove the necessity part, assume that f ∈ SHS(α, β, δ, λ; χ). For functions f of the form

(6)

(1.3), the condition (1.8) is equivalent to

Re









2

 z

Dkα,β,δ,λh(z)0

− z

Dkα,β,δ,λg(z)0 hDα,β,δ,λk h(z) − Dα,β,δ,λk h(−z)i

+h

Dα,β,δ,λk g(z) − Dkα,β,δ,λg(−z)i − χ









= Re





2z −

P

n=2

2nΓkα,β,δ,λanzn

P

n=1

2nΓkα,β,δ,λbnzn 2z −

P

n=2

(1 − (−1)nkα,β,δ,λanzn+

P

n=1

(1 − (−1)nkα,β,δ,λbnzn

− χ





≥ 0.

The condition should hold for all values of z, |z| = r < 1. Choosing the values of z on the real positive axis, 0 ≤ z = r < 1, and Γkα,β,δ,λis real, we have

= Re 8

>>

<

>>

:

2(1 − χ) −

P

n=2

[2n − χ(1 − (−1)nkα,β,δ,λanrn−1

P

n=1

[2n + χ(1 − (−1)nkα,β,δ,λbnrn−1

2 −

P

n=2

(1 − (−1)nkα,β,δ,λanrn−1+

P

n=1

(1 − (−1)nkα,β,δ,λbnrn−1

9

>>

=

>>

;

0.

(2.5)

Letting r → 1and if the condition (2.4) does not hold, then the numerator in (2.5) is negative. Thus the coefficient bound inequality (2.5) holds true when f ∈ SHS (α, β, δ, λ; χ).

This completes the proof of Theorem 2. 2

3 Distortion theorem and extreme points

In the theorem below we give distortion bounds for f in the class SHS (α, β, δ, λ; χ).

Theorem 3 Let the functions f(z) defined by (1.3) be in the class f ∈ SHS (α, β, δ, λ; χ), then for |z| = r < 1, we have

|f(z)| ≤ (1 + |b1|)r + 1

[λ(α + β − 1) + 1]kC(δ, 2)

 1 − χ

2 −1 + χ 2 |b1|

 r2,

and

|f(z)| ≥ (1 − |b1|)r − 1

[λ(α + β − 1) + 1]kC(δ, 2)

 1 − χ

2 −1 + χ 2 |b1|

 r2. The result is sharp.

Proof We prove only the left hand inequality, let f ∈ SHS(α, β, δ, λ; χ). Taking the absolute value of f(z), we have

|f(z)| ≥ (1 − |b1|)r −

P

n=2

{|an| + |bn|} rn≥ (1 − |b1|)r − r2

P

n=2

{|an| + |bn|}

= (1 − |b1|)r − [λ(α+β−1)+1]1−χ kC(δ,2)

P

n=2

[λ(α+β−1)(n−1)+1]kC(δ,n)

1−χ {|an| + |bn|} r2

≥ (1 − |b1|)r − [λ(α+β−1)+1](1−χ)r2kC(δ,2)

P

n=2

{ [2n−χ(1−(−1)n)]

4(1−χ) |an| +[2n+χ(1−(−1)n)]

4(1−χ) |bn|} Γkα,β,δ,λ

(7)

= (1 − |b1|)r −2[λ(α+β−1)+1](1−χ)r2kC(δ,2)

P

n=2

{ [2n−χ(1−(−1)n)]

2(1−χ) |an| +[2n+χ(1−(−1)n)]

2(1−χ) |bn|} Γkα,β,δ,λ

≥ (1 − |b1|)r −2[λ(α+β−1)+1](1−χ)r2kC(δ,2)

1 − 1+χ1−χ|b1|

= (1 − |b1|)r −[λ(α+β−1)+1]r2 kC(δ,2) 1−χ

21+χ2 |b1| .

The proof of the right hand inequality follows on lines similar to that of the left hand

inequality which completes the proof of Theorem 3. 2

Denote clcoSHS (α, β, δ, λ; χ) as the closed convex hull of SHS (α, β, δ, λ; χ). The following result gives extreme points of clcoSHS(α, β, δ, λ; χ).

Theorem 4 A function f = h + g ∈ clcoSHS(α, β, δ, λ; χ) if and only if f(z), can be expressed in the form

fn(z) =

X

n=1

(Xnhn(z) + Yngn(z)) (3.1) where

h1(z) = z, hn(z) = z − 2(1 − χ) [2n − χ(1 − (−1)n]

Γ

k α,β,δ,λ

zn (n = 2, 3, ...),

gn(z) = z + 2(1 − χ) [2n + χ(1 − (−1)n]

Γ

k α,β,δ,λ

zn (n = 1, 2, 3, ...),

Γkα,β,δ,λ is given by (1.7) and

P

n=1

(Xn+ Yn) = 1, with Xn ≥ 0, Yn ≥ 0. In particular the extreme points of SHS (α, β, δ, λ; χ) are hn and gn.

Proof. Let f be of the form (3.1). Then we have fn(z) =

X

n=1

(Xn+ Yn)z −

X

n=2

2(1 − χ) [2n − χ(1 − (−1)n]

Γ

k α,β,δ,λ

Xnzn

+

X

n=1

2(1 − χ) [2n + χ(1 − (−1)n]

Γ

k α,β,δ,λ

Ynzn

= z −

X

n=2

2(1 − χ) [2n − χ(1 − (−1)n]

Γ

k α,β,δ,λ

Xnzn

+

X

n=1

2(1 − χ) [2n + χ(1 − (−1)n]

Γ

k α,β,δ,λ

Ynzn.

Furthermore, let

|an| = 2(1 − χ) [2n − χ(1 − (−1)n]

Γ

kα,β,δ,λ

Xnzn

and

|bn| = 2(1 − χ) [2n + χ(1 − (−1)n]

Γ

k α,β,δ,λ

Ynzn.

(8)

Applying Theorem 2, gives

X

n=2

[2n − χ(1 − (−1)n] Γ

k α,β,δ,λ

2(1 − χ) |an| +

X

n=1

[2n + χ(1 − (−1)n] Γ

k α,β,δ,λ

2(1 − χ) |bn|

=

X

n=2

[2n − χ(1 − (−1)n]

Γkα,β,δ,λ 2(1 − χ)

2(1 − χ) [2n − χ(1 − (−1)n]

Γ

kα,β,δ,λ

Xn

+

X

n=1

[2n + χ(1 − (−1)n] Γ

k α,β,δ,λ

2(1 − χ)

2(1 − χ) [2n + χ(1 − (−1)n]

Γ

kα,β,δ,λ

Xn

=

X

n=2

Xn+

X

n=1

Yn = 1 − X1≤ 1, and so fn∈ clcoSHS (α, β, δ, λ; χ).

Conversely, suppose that fn ∈ clcoSHS(α, β, δ, λ; χ). Setting

Xn=

[2n − χ(1 − (−1)n] Γ

k α,β,δ,λ

|an|

2(1 − χ) (n = 2, 3, ...), Yn =[2n + χ(1 − (−1)n]

Γ

k α,β,δ,λ

|an|

2(1 − χ) (n = 1, 2, 3, ...) and define X1= 1 −

P

n=2

Xn+

P

n=1

Yn. Therefore,

f(z) = z −

X

n=2

|an|zn+

X

n=1

|bn|zn

= z −

X

n=2

2(1 − χ)Xn

[2n − χ(1 − (−1)n] Γ

k α,β,δ,λ

zn +

X

n=1

2(1 − χ)Yn

[2n + χ(1 − (−1)n] Γ

k α,β,δ,λ

zn

= z −

X

n=2

[Xn(hn(z) − z)] +

X

n=1

[Yn(gn(z) − z)]

=

X

n=1

[Xnhn(z) + Yngn(z)] .

as required. 2

4 Convolution and convex combination

For our next theorem, we need to define the convolution of two harmonic functions. For harmonic functions of the form

f(z) = z −

X

n=2

anzn+

X

n=1

bnzn, |b1| < 1, (4.1)

(9)

and

G(z) = z −

X

n=2

Anzn+

X

n=1

Bnzn, (An≥ 0, Bn≥ 0), (4.2) we define the convolution of two harmonic functions f and G as

(f ∗ G)(z) = f(z) ∗ G(z) = z −

X

n=2

anAnzn+

X

n=1

bnBnzn. (4.3)

Using this definition, we show that the class SHS (α, β, δ, λ; χ). is closed under convolution.

Theorem 5For 0 ≤ ψ ≤ χ < 1, let f ∈ SHS (α, β, δ, λ; χ) and G ∈ SHS (α, β, δ, λ; ψ). Then f ∗ G ∈ SHS (α, β, δ, λ; χ) ⊂ SHS (α, β, δ, λ; ψ).

Proof. Let the function f(z) defined by (4.1) be in the class SHS (α, β, δ, λ; χ) and let the function G(z) defined by (4.2) be in the class SHS(α, β, δ, λ; ψ). Then the convolution f ∗ G is given by (4.3). We wish to show that the coefficients of f ∗G satisfy the required condition given in Theorem 1.

For G ∈ SHS(α, β, δ, λ; ψ) we note that 0 ≤ An ≤ 1 and 0 ≤ Bn ≤ 1. Now, for the convolution function f ∗ G we obtain

X

n=2

[2n − χ(1 − (−1)n]

Γkα,β,δ,λ

|an|An+

X

n=1

[2n + χ(1 − (−1)n]

Γkα,β,δ,λ |bn|Bn

X

n=2

[2n − χ(1 − (−1)n]

Γkα,β,δ,λ |an| +

X

n=1

[2n + χ(1 − (−1)n]

Γkα,β,δ,λ |bn|

≤ 2(1 − χ),

since 0 ≤ ψ ≤ χ < 1 and f ∈ SHS(α, β, δ, λ; χ). Therefore f ∗ G ∈ SHS(α, β, δ, λ; χ) ⊂ SHS (α, β, δ, λ; ψ), since the above inequality bounded by 2(1−χ) while 2(1 −χ) ≤ 2(1 −ψ).

This completes the proof of Theorem 5. 2

Now, we show that the class SHS(α, β, δ, λ; χ) is closed under convex combinations of its members.

Theorem 6The class SHS (α, β, δ, λ; χ) is closed under convex combination.

Proof. For i = 1, 2, ..., let fi∈ SHS(α, β, δ, λ; χ), where fi is given by fi(z) = z −

X

n=2

|ani|zn+

X

n=1

|bni|zn, (ani ≥ 0; bni≥ 0; z ∈ U ).

Then by using Theorem 1, we have

X

n=2

[2n − χ(1 − (−1)n] Γ

k α,β,δ,λ

2(1 − χ) |ani| +

X

n=1

[2n + χ(1 − (−1)n] Γ

k α,β,δ,λ

2(1 − χ) |bni| ≤ 1. (4.4) For

P

i=1

ti= 1, 0 ≤ ti≤ 1, the convex combination of fi may be written as

X

i=1

tifi(z) = z −

X

n=2

X

i=1

ti|ani|

! zn+

X

n=1

X

i=1

ti|bni|

! zn.

(10)

Then, by using (4.4), we have

X

n=2

[2n − χ(1 − (−1)n]

Γkα,β,δ,λ 2(1 − χ)

X

i=1

ti|ani|

!

+

X

n=1

[2n + χ(1 − (−1)n] Γ

kα,β,δ,λ

2(1 − χ)

X

i=1

ti|bni|

!

=

X

i=1

ti

X

n=2

[2n − χ(1 − (−1)n] Γ

kα,β,δ,λ

2(1 − χ) |ani| +

X

n=1

[2n + χ(1 − (−1)n] Γ

kα,β,δ,λ

2(1 − χ) |bni|

X

i=1

ti= 1,

and this is the necessary and sufficient condition given by (2.4) and so

X

i=1

tifi(z) ∈ SHS (α, β, δ, λ; χ).

This completes the proof of Theorem 6. 2

Acknowledgments

The authors would like to acknowledge and appreciate the financial support received from Universiti Kebangsaan Malaysia under the grant: AP-2013-009 and FRGS/1/2016/STG06 /UKM/01/1.

References

[1] Clunie, J. and Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Aci. Fenn.

Ser. A.I. Math. 1984. 9: 3-25.

[2] Jahangiri, J. M.Harmonic functions starlike in the unit disc. Jour. Math. Analysis and Appl. 1999. 235: 470–477.

[3] Silverman, H. and Silvia, E. M. Subclasses of harmonic univalent functions. The New Zealand Jour. Math. 1999. 28: 275–284.

[4] Silverman, H. Harmonic univalent functions with negative coefficients. Jour. Math.

Analysis and Appl. 1998. 220: 283–289.

[5] Jahangiri, J. M. Murugusundaramoorthy, G. and Vijaya, K. Starlikeness of harmonic functions defined by Ruscheweyh derivatives. Indian Academy of Math. 2004. 26: 191–

200.

[6] Ahuja, O. P. and Jahangiri, J. M. A subclass of harmonic univalent functions. Jour. of Natural Geometry. 2001. 20: 45–56.

(11)

[7] Sakaguchi, K.J. On a certain univalent mapping. Math. Soc. Japan. 1959. 11: 72-75.

[8] Ahuja, O. P. and Jahangiri, J. M. Sakaguchi-type harmonic univalent functions. Sci.

Math. Japonica. 2004. 59: 163-168.

[9] Alamoush, A. and Darus, M. New criteria for certain classes containing differential operator. JQMA. 2013. 9(2): 59-71.

[10] Salagean, G. S. Subclasses of univalent functions. Lecture Notes in Math.Springer Ver- lag1013. 1983. 362-372.

[11] Ruscheweyh, S. New criteria for univelant function. Proc. Amer. Math. Soc. 1975.

49:109–115.

References

Related documents

Recombinant inbred lines in cluster VI had medium number of panicle plant-1, longest panicle length, largest number of total grains plant -1 , medium 1000 seed

The fraction of parasites with positive Mitotracker staining was determined using 143B/260 host cells after HDQ treatment with and without the addition of oligomycin.. Oligomy-

Mainly, inflation, exchange rate, loan interest rate, stock-exchange rate, export and sector- specific expectations are investigated.. Response to the expectation questions is

Abstract: We write the mutual information between an input speech utterance and its reconstruction by a Code-Excited Linear Prediction (CELP) codec in terms of the mutual

Microsoft Word thesis 18 3 3 doc Planning of Mega Projects Influence of Execution Planning on Project Performance Author T Slootman Planning of Mega Projects Influence of Execution

Results revealed that the for the low anxiety group, distractor-valence did not affect task performance in any congruency condition, whereas for the high anxiety group,

Twelve studies were selected, in which they were divided into the following categories: Inclusion of autism in the teacher's perception; The autistic student in the

Taken together, (1) the gene expression pattern of Hoxb8 in the yolk sac, AGM and fetal liver, (2) the lack of expression of Hoxb8 in the developing and mature brain, (3)