• No results found

On the Set of Fixed Points and Periodic Points of Continuously Differentiable Functions

N/A
N/A
Protected

Academic year: 2020

Share "On the Set of Fixed Points and Periodic Points of Continuously Differentiable Functions"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Volume 2013, Article ID 929475,5pages http://dx.doi.org/10.1155/2013/929475

Research Article

On the Set of Fixed Points and Periodic Points of

Continuously Differentiable Functions

Aliasghar Alikhani-Koopaei

Department of Mathematics, Berks College, Pennsylvania State University, Tulpehocken Road, P.O. Box 7009, Reading, PA 19610-6009, USA

Correspondence should be addressed to Aliasghar Alikhani-Koopaei; axa12@psu.edu

Received 6 December 2012; Accepted 16 February 2013

Academic Editor: Paolo Ricci

Copyright Β© 2013 Aliasghar Alikhani-Koopaei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, researchers have studied the size of different sets related to the dynamics of self-maps of an interval. In this note we investigate the sets of fixed points and periodic points of continuously differentiable functions and show that typically such functions have a finite set of fixed points and a countable set of periodic points.

1. Introduction and Notation

The set of periodic points of self-maps of intervals has been studied for different reasons. The functions with smaller sets of periodic points are more likely not to share a periodic point. Of course, one has to decide what β€œbig” or β€œsmall” means and how to describe this notion. In this direction one would be interested in studying the size of the sets of periodic points of self-maps of an interval, in particular, and other

sets arising in dynamical systems in general (see [1–5]). For

example, typically continuous functions have a first category

set of periodic points (see [1,5]). This result was generalized

in [2] for the set of chain recurrent points. At times, even

the smallness of these sets in some sense could be useful. For

example, in [6] we showed that two commuting continuous

self-maps of an interval share a periodic point if one has a

countable set of periodic points. Schwartz (see [7]) was able to

show that if one of the two commuting continuous functions is also continuously differentiable, then it would necessarily follow that the functions share a periodic point. Schwartz’s

result along with the results given in [6] may suggest that

continuously differentiable functions have a countable set of periodic points. This is not true in general. However, in this note we show that typically such functions have a finite set of fixed points and a countable set of periodic points. Here

𝐹1(𝑓) = {π‘₯ : 𝑓(π‘₯) = π‘₯}denotes the set of fixed points of𝑓.

For𝑓and𝑛 ∈Nwe define𝑓𝑛(π‘₯)by induction:

𝑓𝑛(π‘₯) = 𝑓 (π‘“π‘›βˆ’1(π‘₯))

with𝑓0(π‘₯) = π‘₯, 𝑓1(π‘₯) = 𝑓 (π‘₯) .

(1)

The orbit ofπ‘₯under𝑓is given by the sequence orb(π‘₯, 𝑓) =

{𝑓𝑖(π‘₯)}∞

𝑖=0. For𝑛 ∈N, let𝐹𝑛(𝑓) = {π‘₯ : 𝑓𝑛(π‘₯) = π‘₯}and𝑃𝑓𝑛be

the set of periodic points of order𝑛; that is,

𝑃𝑓𝑛= 𝐹𝑛(𝑓) \ βˆͺπ‘˜<π‘›πΉπ‘˜(𝑓) . (2)

Two functions on a given interval are said to be of the same monotone type if both are either strictly increasing or strictly

decreasing on that interval. Here, for a partition 𝑇of the

interval[π‘Ž, 𝑏],‖𝑇‖is the length of the largest subinterval of

𝑇,𝐡(𝑓, πœ–)is the open ball about𝑓with radiusπœ–,𝐴∘denotes

the set of interior points of𝐴, andπœ†(𝐼)is the length of the

interval𝐼.

2. Continuously Differentiable Functions

(2)

from𝐼into itself, respectively. Recall that the usual metrics𝜌0 and𝜌1on𝐢(𝐼, 𝐼)and𝐢1(𝐼, 𝐼), respectively, are given by

𝜌0(𝑓, 𝑔) =sup

π‘₯βˆˆπΌσ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘“(π‘₯) βˆ’ 𝑔(π‘₯)󡄨󡄨󡄨󡄨 for𝑓, 𝑔 ∈ 𝐢 (𝐼, 𝐼) ,

𝜌1(𝑓, 𝑔) = 𝜌0(𝑓, 𝑔) + 𝜌0(𝑓󸀠, 𝑔󸀠) for𝑓, 𝑔 ∈ 𝐢1(𝐼, 𝐼) . (3)

It is well known that the metric spaces (𝐢(𝐼, 𝐼); 𝜌0)and

(𝐢1(𝐼, 𝐼); 𝜌

1)are complete and hence Baire’s category theorem

holds in these spaces. We say that a typical function in𝐢(𝐼, 𝐼)

or𝐢1(𝐼, 𝐼)has a certain property if the set of those functions

which does not have this property is of first category in𝐢(𝐼, 𝐼)

or in𝐢1(𝐼, 𝐼). (Some authors prefer using the term generic

instead of typical.) It is known that typically continuous

self-maps of an interval have 𝜎-perfect, measure zero sets

of periodic points (see [2]). Here we show that typically

members of(𝐢1(𝐼, 𝐼), 𝜌1)have a finite set of fixed points and

a countable set of periodic points.

Lemma 1. Let𝑛 β‰₯ 1and𝑓 ∈ 𝐢1(𝐼, 𝐼)so that𝐹𝑛(𝑓)is not

finite. Then there exists π‘₯0 ∈ 𝐼 so that𝑓𝑛(π‘₯0) = π‘₯0 and

(𝑓𝑛)σΈ€ (π‘₯ 0) = 1.

Proof. Suppose𝐹𝑛(𝑓)is not finite, and then we can choose

a strictly monotone sequence in 𝐹𝑛(𝑓). Without loss of

generality, assume {π‘₯𝑖}βˆžπ‘–=1 βŠ‚ 𝐹𝑛(𝑓)so that π‘₯𝑖 < π‘₯𝑖+1 for

each 𝑖 β‰₯ 1. Let β„Ž(π‘₯) = 𝑓𝑛(π‘₯) βˆ’ π‘₯, and then, for each 𝑖,

β„Ž(π‘₯𝑖) = β„Ž(π‘₯𝑖+1) = 0. Thus by Rolle’s Theorem we have𝑦𝑖,

π‘₯𝑖 < 𝑦𝑖 < π‘₯𝑖+1so thatβ„ŽσΈ€ (𝑦𝑖) = 0. Letπ‘₯0 = lim𝑖 β†’ ∞π‘₯𝑖, then

π‘₯0 ∈ 𝐼, and lim𝑖 β†’ βˆžπ‘¦π‘– = π‘₯0, and from the continuity of𝑓𝑛

and(𝑓𝑛)σΈ€ it follows that𝑓𝑛(π‘₯0) = π‘₯0and(𝑓𝑛)σΈ€ (π‘₯0) = 1.

Lemma 2. For each𝑓 ∈ 𝐢1(𝐼, 𝐼)and0 < πœ– < 1there is a

polynomial𝑝 : 𝐼 β†’ πΌπ‘œwith𝜌1(𝑓, 𝑝) < πœ–.

Proof. Let𝑀 = supπ‘₯∈𝐼{|𝑓󸀠(π‘₯)|, |π‘Ž|, |𝑏|, 1}where𝐼 = [π‘Ž, 𝑏].

Take𝛽 = πœ–/8𝑀,𝛼 = 𝛽(π‘Ž + 𝑏)/2, and𝑔(π‘₯) = 𝛼 + (1 βˆ’ 𝛽)𝑓(π‘₯).

It is easy to see that0 < 𝛽 < 1,𝑔(𝐼) βŠ‚ πΌπ‘œ, and𝜌1(𝑓, 𝑔) < πœ–/4.

Let

πœ–1= 12π‘₯∈[π‘Ž,𝑏]inf {𝑔 (π‘₯) βˆ’ π‘Ž, 𝑏 βˆ’ 𝑔 (π‘₯) ,8 (𝑏 βˆ’ π‘Ž)πœ– ,8πœ–} (4)

and𝑠(𝑑)be a polynomial with𝜌0(𝑔󸀠, 𝑠) < πœ–1/(𝑏 βˆ’ π‘Ž + 1). Then

𝑝(π‘₯) = 𝑔(π‘Ž) + βˆ«π‘Žπ‘₯𝑠(𝑑)𝑑𝑑is a polynomial and𝑔(π‘₯) βˆ’ 𝑝(π‘₯) =

βˆ«π‘Žπ‘₯(𝑔󸀠(𝑑) βˆ’ 𝑠(𝑑))𝑑𝑑. Thus we have

𝜌1(𝑔, 𝑝) = 𝜌0(𝑔󸀠, 𝑠) + 𝜌0(𝑔, 𝑝) ≀ πœ–1

(𝑏 βˆ’ π‘Ž) + 1+

πœ–1(𝑏 βˆ’ π‘Ž) (𝑏 βˆ’ π‘Ž) + 1

= πœ–1< πœ–4,

(5)

hence𝜌1(𝑓, 𝑝) ≀ 𝜌1(𝑓, 𝑔) + 𝜌1(𝑔, 𝑝) < πœ–/2. From𝑔(𝐼) βŠ‚ [π‘Ž +

2πœ–1, 𝑏 βˆ’ 2πœ–1]and𝜌1(𝑔, 𝑝) ≀ πœ–1it follows that𝑝(𝐼) βŠ‚ πΌπ‘œ.

Lemma 3. Let𝑛 > 2be a positive integer and𝑓 ∈ 𝐢1(𝐼, 𝐼).

Ifπ‘₯0is a periodic point of order 𝑛with(𝑓𝑛)σΈ€ (π‘₯0) = 1, then

orb(π‘₯0, 𝑓) ∩ {π‘Ž, 𝑏} = 0.

Proof. We show thatπ‘Ž βˆ‰orb(π‘₯0, 𝑓). The case𝑏 βˆ‰ orb(π‘₯0, 𝑓)

follows similarly. Let orb(π‘₯0, 𝑓) = {π‘Ž = π‘₯0, π‘₯1, . . . , π‘₯𝑛 = π‘₯0}

withπ‘₯𝑖 = 𝑓(π‘₯π‘–βˆ’1)for1 ≀ 𝑖 ≀ 𝑛. Since𝑛 > 2, there exist

π‘₯𝑖 ∈ orb(π‘₯0, 𝑓) ∩ (π‘Ž, 𝑏)and1 ≀ 𝑠 ≀ 𝑛 βˆ’ 1so that𝑓𝑠(π‘₯𝑖) =

π‘Ž. Since𝑓𝑠 ∈ 𝐢1(𝐼, 𝐼)and(𝑓𝑠)σΈ€ (π‘₯0) ΜΈ= 0, there exists𝛿1 > 0

so thatπ‘Ž < π‘₯π‘–βˆ’ 𝛿1 < π‘₯𝑖 < π‘₯𝑖+ 𝛿1 < 𝑏and 𝑓𝑠 is strictly

increasing or strictly decreasing on𝐽 = [π‘₯π‘–βˆ’ 𝛿1, π‘₯𝑖+ 𝛿1]. Let

𝑓𝑠be strictly increasing on𝐽, and then forπ‘₯

π‘–βˆ’π›Ώ1≀ π‘₯ ≀ π‘₯𝑖we

have𝑓𝑠(π‘₯) ≀ 𝑓𝑠(π‘₯𝑖) = π‘Ž; hence,𝑓𝑠|[π‘₯π‘–βˆ’π›Ώ1,π‘₯𝑖]= π‘Ž, implying that

(𝑓𝑠)σΈ€ (π‘₯

𝑖) = 0, a contradiction to(𝑓𝑛)σΈ€ (π‘₯0) = 1. On the other

hand when𝑓𝑠is strictly decreasing on𝐽, forπ‘₯𝑖≀ π‘₯ ≀ π‘₯𝑖+ 𝛿1

we have𝑓𝑠(π‘₯) ≀ 𝑓𝑠(π‘₯𝑖) = π‘Ž; hence,𝑓𝑠|[π‘₯𝑖,π‘₯𝑖+𝛿1]= π‘Žimplying

that(𝑓𝑠)σΈ€ (π‘₯𝑖) = 0, a contradiction to(𝑓𝑛)σΈ€ (π‘₯0) = 1.

Lemma 4. Forπ‘˜ β‰₯ 1, the set

Eπ‘˜= {𝑓 ∈ 𝐢1(𝐼, 𝐼) : πΉπ‘˜(𝑓) ∩ {π‘₯ : (π‘“π‘˜)σΈ€ (π‘₯) = 1} ΜΈ= 0}

(6)

is closed in𝐢1(𝐼, 𝐼).

Proof. Let𝑔𝑛 ∈ Eπ‘˜ and 𝜌1(𝑔𝑛, 𝑔) β†’ 0. Then there exists

{𝑑𝑛}βˆžπ‘›=1 βŠ‚ 𝐼such thatπ‘”π‘˜π‘›(𝑑𝑛) = 𝑑𝑛and(π‘”π‘›π‘˜)σΈ€ (𝑑𝑛) = 1. Without

loss of generality, we may assume that lim𝑛 β†’ βˆžπ‘‘π‘› = 𝑑0, then

𝑑0∈ 𝐼. Letπœ– > 0be arbitrary. Due to the uniform continuity of

π‘”π‘˜on𝐼there exists a positive integer𝑛

1such that, for𝑛 β‰₯ 𝑛1,

|π‘”π‘˜(𝑑𝑛) βˆ’ π‘”π‘˜(𝑑0)| < πœ–. Since 𝜌0(𝑔𝑛, 𝑔) β†’ 0, there exists a

positive integer𝑛2 such that, for 𝑛 β‰₯ 𝑛2,𝜌0(π‘”π‘›π‘˜, π‘”π‘˜) < πœ–.

Choose the positive integer𝑛3so that|π‘‘π‘›βˆ’ 𝑑0| < πœ–for𝑛 β‰₯ 𝑛3,

and letπ‘š1=max(𝑛1, 𝑛2, 𝑛3). Then forπ‘š β‰₯ π‘š1we have

󡄨󡄨󡄨󡄨

σ΅„¨π‘”π‘˜(𝑑0) βˆ’ 𝑑0󡄨󡄨󡄨󡄨󡄨

≀ σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘”π‘˜(𝑑0) βˆ’ π‘”π‘˜(π‘‘π‘š)󡄨󡄨󡄨󡄨󡄨 +󡄨𝑔󡄨󡄨󡄨󡄨 π‘˜(π‘‘π‘š) βˆ’ π‘”π‘šπ‘˜ (π‘‘π‘š)󡄨󡄨󡄨󡄨󡄨 + σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘”π‘˜π‘š(π‘‘π‘š) βˆ’ 𝑑0󡄨󡄨󡄨󡄨󡄨

≀ πœ– + 𝜌0(π‘”π‘˜, π‘”π‘˜π‘š) + σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘‘π‘šβˆ’ 𝑑0󡄨󡄨󡄨󡄨 ≀ 3πœ–,

(7)

Implying thatπ‘”π‘˜(𝑑0) = 𝑑0. We also have

󡄨󡄨󡄨󡄨 󡄨󡄨(π‘”π‘˜π‘›)

σΈ€ 

(𝑑𝑛) βˆ’ (π‘”π‘˜)σΈ€ (𝑑𝑛)󡄨󡄨󡄨󡄨󡄨󡄨 ≀𝑛 β†’ ∞lim𝜌1(π‘”π‘›π‘˜, π‘”π‘˜) = 0. (8)

Thus we have lim𝑛 β†’ ∞|1 βˆ’ (π‘”π‘˜)σΈ€ (𝑑𝑛)| = |1 βˆ’ (π‘”π‘˜)σΈ€ (𝑑0)| = 0and

𝑔 ∈Eπ‘˜.

Theorem 5. There exists a residual subset𝑀1of𝐢1(𝐼, 𝐼)such

that, for every𝑓 ∈ 𝑀1,𝐹1(𝑓)is finite.

Proof. If 𝐹1(𝑓) has infinitely many elements, then from

Lemma1it follows that there exists a pointπ‘₯0 ∈ 𝐹1(𝑓)so

that𝑓󸀠(π‘₯0) = 1. Let

E1= {𝑓 ∈ 𝐢1(𝐼, 𝐼) : βˆƒπ‘₯0∈ 𝐼 ∩ 𝐹1(𝑓) , 𝑓󸀠(π‘₯0) = 1} . (9)

From Lemma4the setE1is closed in𝐢1(𝐼, 𝐼). To show that

(3)

Lemma2, there exists a polynomial𝑝such that𝜌1(𝑓, 𝑝) < πœ–/2 and𝑝(𝐼) βŠ‚ [π‘Ž + πœ–1, 𝑏 βˆ’ πœ–1]for some0 < πœ–1< πœ–/2. Let

𝑀 (𝑝 ) = {π‘₯ : 𝑝󸀠(π‘₯) = 1} = {𝑑1, 𝑑2, . . . , π‘‘π‘š} . (10)

Choose0 < πœ–2< πœ–1so that𝑝(π‘₯) βˆ’ π‘₯ ΜΈ= πœ–2for allπ‘₯ ∈ 𝑀(𝑝 )and

takeβ„Ž = 𝑝 βˆ’ πœ–2. Thenβ„Ž ∈ 𝐢1(𝐼, 𝐼),𝜌1(β„Ž, 𝑓) < πœ–,𝑀(β„Ž) = {π‘₯ :

β„ŽσΈ€ (π‘₯) = 1} = 𝑀(𝑝), andβ„Ž(π‘₯) ΜΈ= π‘₯on𝑀(β„Ž), implying thatE 1

is of first category and𝑀1= 𝐢1(𝐼, 𝐼) \E1is residual.

Theorem 6. The set of functions𝑓 ∈ 𝐢1(𝐼, 𝐼)with 𝑓(π‘Ž) =

𝑏, 𝑓(𝑏) = π‘Ž, and(𝑓2)σΈ€ (π‘Ž) = 1is a nowhere dense subset of

𝐢1(𝐼, 𝐼).

Proof. Let 𝐴 = {𝑓 ∈ 𝐢1(𝐼, 𝐼) : 𝑓(π‘Ž) = 𝑏, 𝑓(𝑏) =

π‘Ž, and (𝑓2)σΈ€ (π‘Ž) = 1}. It is easy to see that𝐴is a closed subset of𝐢1(𝐼, 𝐼). To show that𝐴is nowhere dense, let𝑓 ∈ 𝐢1(𝐼, 𝐼) andπœ– > 0. Choose0 < 𝛾 < min{πœ–/(4(𝑏 βˆ’ π‘Ž) + 4), 1}and

π‘Ž < 𝑐 < 𝑏such that|𝑓(𝑑) βˆ’ 𝑓(π‘Ž)| < (𝑏 βˆ’ π‘Ž)[1 βˆ’ πœ–/4] for

𝑑 ∈ [π‘Ž, 𝑐]. Letβ„Ž(π‘₯) = 𝑓(π‘₯) + βˆ«π‘Žπ‘₯π‘˜(𝑑)𝑑𝑑, where

π‘˜ (𝑑) = { { { { { { { { { { { { { { { { { { { { { { {

βˆ’π›Ύ, 𝑑 = π‘Ž,

0, 𝑑 = π‘Ž +𝑐 βˆ’ π‘Ž 4 , 𝛾

3, 𝑑 = π‘Ž + (𝑐 βˆ’ π‘Ž)2 , 0, 𝑑 = 𝑐, 𝑑 = 𝑏,

linear, otherwise.

(11)

It is clear thatβ„Ž(π‘Ž) = 𝑓(π‘Ž) = 𝑏,β„Ž(𝑏) = 𝑓(𝑏) = π‘Ž,β„ŽσΈ€ (π‘Ž) =

𝑓󸀠(π‘Ž) βˆ’ 𝛾, andβ„ŽσΈ€ (𝑏) = 𝑓󸀠(𝑏). It is easy to see thatβ„Ž ∈ 𝐢1(𝐼, 𝐼),

(β„Ž2)σΈ€ (π‘Ž) = (β„Ž2)σΈ€ (𝑏) ΜΈ= 1, and𝜌

1(𝑓, β„Ž) < πœ–/2.

Theorem 7. Letπœ– > 0,𝑓 ∈ 𝐢1(𝐼, 𝐼), and𝐴𝑛 = {π‘₯ : (𝑓𝑛)σΈ€ (π‘₯) =

1} ∩ 𝐹𝑛(𝑓)be a finite set, andπ‘œπ‘Ÿπ‘(π‘₯, 𝑓) βŠ‚ (π‘Ž, 𝑏)forπ‘₯ ∈ 𝐴𝑛.

Then there exists a function𝑔 ∈ 𝐢1(𝐼, 𝐼)with𝜌1(𝑓, 𝑔) < πœ–/4

such that{π‘₯ : (𝑔𝑛)σΈ€ (π‘₯) = 1} ∩ 𝐹𝑛(𝑔) = 0.

Proof. Let𝐴𝑛 = {π‘₯ : (𝑓𝑛)σΈ€ (π‘₯) = 1} ∩ 𝐹𝑛(𝑓) = {𝑧𝑗}𝑙𝑗=1. Let

𝐡 = {𝑑𝑗}π‘˜π‘—=1be the elements of𝐴𝑛with distinct orbits, that is,

orb(𝑑𝑖, 𝑓) ∩orb(𝑑𝑗, 𝑓) = 0for𝑖 ΜΈ= 𝑗andβˆͺπ‘˜π‘—=1orb(𝑑𝑗, 𝑓) βŠ‡ 𝐴𝑛.

It is clear that each𝑑𝑗 ∈ 𝐡is a periodic point of𝑓with some

periodπ‘šwhereπ‘šis a factor of𝑛. This suggests that if one

can construct a function𝑔that is sufficiently close to𝑓, and

eitherπ‘‘π‘—βˆ‰ π‘ƒπ‘“π‘šor(π‘“π‘š)σΈ€ (𝑑𝑗) ΜΈ= 1, then

{π‘₯ : (𝑔𝑛)σΈ€ (π‘₯) = 1} ∩ 𝐹𝑛(𝑔) βŠ† 𝐴𝑛\orb(𝑑𝑗, 𝑓) . (12)

By repeating this process for each𝑑𝑗 ∈ 𝐡in a finite number

of steps we can construct the desired function𝑔. Thus for

convenience, we assume that, for1 ≀ 𝑗 ≀ π‘˜,𝑧𝑗 ∈ 𝑃𝑓𝑛.

Consider the partition𝑇of [π‘Ž, 𝑏]obtained by {𝑓𝑖(𝑑𝑗), 1 ≀

𝑖 ≀ 𝑛, 1 ≀ 𝑗 ≀ π‘˜},πœ–1 = (1/4)min{πœ–, β€– 𝑇 β€–}, and choose a

positive𝛿less thanπœ–1such that, for each𝑖, 1 ≀ 𝑖 ≀ 𝑛and each

𝑗, 1 ≀ 𝑗 ≀ π‘˜, and if|π‘‘βˆ’π‘‘π‘—| < 𝛿, then|𝑓𝑖(𝑑)βˆ’π‘“π‘–(𝑑𝑗)| < πœ–1. Given

that, forπ‘₯ ∈ 𝐴𝑛, orb(π‘₯, 𝑓) βŠ‚ (π‘Ž, 𝑏),(𝑓𝑛)σΈ€ is continuous, and

(𝑓𝑛)σΈ€ (π‘₯) = 1on𝐡, we may choose the nondegenerate closed

intervals𝐻𝑗, 1 ≀ 𝑗 ≀ π‘˜of length less than𝛿and the positive

numbers𝛾𝑗such that

(i)𝑑𝑗 ∈ (𝐻𝑗)∘ is the midpoint of 𝐻𝑗 and 𝑓𝑖(𝐻𝑗) ∩

orb(𝑑𝑗, 𝑓) = {𝑓𝑖(𝑑𝑗)}for0 ≀ 𝑖 ≀ 𝑛,

(ii)𝑓is strictly monotone on each𝐻𝑗,𝑖 = 𝑓𝑖(𝐻𝑗)for0 ≀

𝑖 ≀ 𝑛 βˆ’ 1,1 ≀ 𝑗 ≀ π‘˜, where𝐻𝑗,0= 𝐻𝑗,

(iii) the intervals𝐻𝑗,𝑖 = 𝑓𝑖(𝐻𝑗)are mutually disjoint for

1 ≀ 𝑖 ≀ 𝑛,1 ≀ 𝑗 ≀ π‘˜,

(iv)π‘Ž <min(𝐻𝑗,𝑖) βˆ’ π›Ύπ‘—πœ†(𝐻𝑗,𝑖) <max(𝐻𝑗,𝑖) + π›Ύπ‘—πœ†(𝐻𝑗,𝑖) < 𝑏, for0 ≀ 𝑖 ≀ 𝑛 βˆ’ 1,

(v) max1β‰€π‘—β‰€π‘˜{𝛾𝑗, (𝑏 βˆ’ π‘Ž)𝛾𝑗} < (1/8)[min0≀𝑖≀𝑛, 1β‰€π‘—β‰€π‘˜{πœ–/π‘˜,

πœ†(𝑓𝑖(𝐻𝑗)), 𝛽𝑗,𝑖}], where 𝛽𝑗,𝑖 = inf{|𝑓󸀠(π‘₯)| : π‘₯ ∈

𝑓𝑖(𝐻𝑗)}.

Letπ‘₯0 = 𝑑𝑖for some𝑖,𝛾, and𝐽 = [𝑐, 𝑑]be the associated

𝛾𝑖and𝐻𝑖, respectively. Define

𝑔𝐽,π‘₯0,𝛾(π‘₯) = { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { { βˆ’π›Ύ

3, ifπ‘₯ = 𝑐 + π‘₯0βˆ’ 𝑐

2 ,

0, ifπ‘₯ = 𝑐 +3 (π‘₯0βˆ’ 𝑐)

4 , 𝛾, ifπ‘₯ = π‘₯0,

0, ifπ‘₯ = π‘₯0+𝑑 βˆ’ π‘₯0

4 ,

βˆ’π›Ύ3, ifπ‘₯ = π‘₯0+𝑑 βˆ’ π‘₯0

2 , 0, ifπ‘₯ ∈ [π‘Ž, 𝑏] \ (𝑐, 𝑑) ,

linear, otherwise,

π‘Ÿπ½,π‘₯0,𝛾(π‘₯) = { { { { { { { { { { { { { { { { { { { { { { {

𝛾, if π‘₯ = 𝑐 +π‘₯0βˆ’ 𝑐

4 , 0, if π‘₯ = π‘₯0,

βˆ’π›Ύ (π‘₯0βˆ’ 𝑐)

𝑑 βˆ’ π‘₯0 if π‘₯ = π‘₯0+3 (𝑑 βˆ’ π‘₯4 0),

0 if π‘₯ ∈ [π‘Ž, 𝑏] \ (𝑐, 𝑑) ,

linear, otherwise,

β„Ž1(π‘₯) = ∫ π‘₯

π‘Ž 𝑔𝐽,π‘₯0,𝛾(𝑑) 𝑑𝑑,

β„Ž2(π‘₯) = ∫ π‘₯

π‘Ž π‘Ÿπ½,π‘₯0,𝛾(𝑑) 𝑑𝑑.

(13)

We haveβ„Žπ‘š(𝑐) = β„Žπ‘š(𝑑) = β„ŽσΈ€ π‘š(𝑐) = β„ŽσΈ€ π‘š(𝑑) = 0forπ‘š = 1, 2,

β„Ž1(π‘₯0) = 0,β„ŽσΈ€ 1(π‘₯0) = 𝛾,β„Ž2(π‘₯0) = (π‘₯0βˆ’ 𝑐)𝛾/2, andβ„ŽσΈ€ 2(π‘₯0) = 0. By considering four different cases, we construct a function

β„Ž ∈ 𝐢1(𝐼, 𝐼) ∩ 𝐡(𝑓, πœ–)so that, for Cases A and B,𝐹𝑛(β„Ž) ∩ {π‘₯ :

(β„Žπ‘›)σΈ€ (π‘₯) = 1} ∩ 𝐽 = 0and𝐹

𝑛(β„Ž) ∩ {π‘₯ : (β„Žπ‘›)σΈ€ (π‘₯) = 1} ∩ 𝐽 =

{π‘₯0}for Cases C and D. From conditions (iv) and (v) we have

β„Ž(𝐼) βŠ‚ 𝐼, and from condition (v) it follows thatβ„Žis of the

same monotone type as𝑓on each𝑓𝑠(𝐽), 0 ≀ 𝑠 < 𝑛.

Case A. Let𝑓𝑛(π‘₯) < π‘₯for𝐽 \ {π‘₯0}and𝑓𝑛(π‘₯0) = π‘₯0.

(i) If 𝑓 is strictly increasing on 𝐽, then by taking

(4)

andβ„Ž(π‘₯) = 𝑓(π‘₯)on𝐼 \ π½π‘œ and the function β„Žπ‘›βˆ’1 is

also strictly increasing on𝑓(𝐽), and as a resultβ„Žπ‘›(π‘₯) <

𝑓𝑛(π‘₯) ≀ π‘₯onπ½π‘œ. Thus𝐹

𝑛(β„Ž) ∩ 𝐽 = 0.

(ii) If𝑓is strictly decreasing on𝐽, then by takingβ„Ž(π‘₯) =

𝑓(π‘₯) + β„Ž2(π‘₯)we haveβ„Ž(π‘₯) > 𝑓(π‘₯)onπ½π‘œandβ„Ž(π‘₯) =

𝑓(π‘₯)on𝐼 \ π½π‘œ and the functionβ„Žπ‘›βˆ’1 is also strictly

decreasing on𝑓(𝐽)and as a result,β„Žπ‘›(π‘₯) < 𝑓𝑛(π‘₯) ≀ π‘₯

onπ½π‘œ. Thus𝐹𝑛(β„Ž) ∩ 𝐽 = 0.

Case B. Let𝑓𝑛(π‘₯) > π‘₯for𝐽 \ {π‘₯0}and𝑓𝑛(π‘₯0) = π‘₯0.

If𝑓is strictly increasing on𝐽, takeβ„Ž(π‘₯) = 𝑓(π‘₯) + β„Ž2(π‘₯),

and if𝑓is strictly decreasing on𝐽, takeβ„Ž(π‘₯) = 𝑓(π‘₯) βˆ’ β„Ž2(π‘₯).

Then similar to Case A, we may show thatβ„Žπ‘›(π‘₯) > 𝑓𝑛(π‘₯) β‰₯ π‘₯

forπ‘₯ ∈ π½π‘œ; hence,𝐹𝑛(β„Ž) ∩ 𝐽 = 0.

Case C. Let𝑓𝑛(π‘₯) < π‘₯for𝑐 < π‘₯ < π‘₯0,𝑓𝑛(π‘₯) > π‘₯forπ‘₯0< π‘₯ <

𝑑, and𝑓𝑛(π‘₯0) = π‘₯0.

(i) If𝑓is strictly increasing on𝐽, then by takingβ„Ž(π‘₯) =

𝑓(π‘₯) + β„Ž1(π‘₯)we haveβ„Ž(π‘₯) < 𝑓(π‘₯)for𝑐 < π‘₯ < π‘₯0 andβ„Ž(π‘₯) > 𝑓(π‘₯)forπ‘₯0 < π‘₯ < 𝑑, and the function

β„Žπ‘›βˆ’1is also strictly increasing on𝑓(𝐽). Thusβ„Žπ‘›(π‘₯) <

𝑓𝑛(π‘₯) < π‘₯for𝑐 < π‘₯ < π‘₯

0andβ„Žπ‘›(π‘₯) > 𝑓𝑛(π‘₯) > π‘₯for

π‘₯0< π‘₯ < 𝑑; hence,𝐹𝑛(β„Ž) ∩ 𝐽 = {π‘₯0}.

(ii) If𝑓is strictly decreasing on𝐽, then by takingβ„Ž(π‘₯) =

𝑓(π‘₯) βˆ’ β„Ž1(π‘₯)we haveβ„Ž(π‘₯) > 𝑓(π‘₯)for𝑐 < π‘₯ < π‘₯0 andβ„Ž(π‘₯) < 𝑓(π‘₯)forπ‘₯0 < π‘₯ < 𝑑, and the function

β„Žπ‘›βˆ’1is also decreasing on𝑓(𝐽). Thusβ„Žπ‘›(π‘₯) < 𝑓𝑛(π‘₯) <

π‘₯for𝑐 < π‘₯ < π‘₯0andβ„Žπ‘›(π‘₯) > 𝑓𝑛(π‘₯) > π‘₯forπ‘₯0< π‘₯ <

𝑑; hence,𝐹𝑛(β„Ž) ∩ 𝐽 = {π‘₯0}.

Case D. Let𝑓𝑛(π‘₯) > π‘₯for𝑐 < π‘₯ < π‘₯0,𝑓𝑛(π‘₯) < π‘₯forπ‘₯0< π‘₯ <

𝑑, and𝑓𝑛(π‘₯0) = π‘₯0.

If𝑓is strictly increasing on𝐽, takeβ„Ž(π‘₯) = 𝑓(π‘₯) βˆ’ β„Ž1(π‘₯),

and if𝑓is strictly decreasing on𝐽, takeβ„Ž(π‘₯) = 𝑓(π‘₯) + β„Ž1(π‘₯).

Then similar to Case C, we may show thatβ„Žπ‘›(π‘₯) > 𝑓𝑛(π‘₯) > π‘₯

for𝑐 < π‘₯ < π‘₯0andβ„Žπ‘›(π‘₯) < 𝑓𝑛(π‘₯) < π‘₯forπ‘₯0 < π‘₯ < 𝑑. Thus

𝐹𝑛(β„Ž) ∩ 𝐽 = {π‘₯0}.

Note thatβ„Žπ‘›is strictly increasing on𝐽 βˆͺ 𝑓𝑛(𝐽), so we have

𝐹𝑛(β„Ž) ∩ [(𝐽 \ 𝑓𝑛(𝐽)) βˆͺ (𝑓𝑛(𝐽) \ 𝐽)] = 0. (14)

Thus forπ‘₯ ∈ 𝐼either orb(π‘₯, β„Ž) = orb(π‘₯, 𝑓)or orb(π‘₯, β„Ž) ∩

𝐽 ΜΈ= 0, of which in such case𝐹𝑛(β„Ž)∩𝐽 = {π‘₯0},β„ŽσΈ€ (π‘₯0) = 𝑓󸀠(π‘₯0)Β±

𝛾, andβ„ŽσΈ€ (β„Žπ‘–(π‘₯0)) = 𝑓󸀠(𝑓𝑖(π‘₯0))for1 ≀ 𝑖 ≀ 𝑛 βˆ’ 1. Thus

(β„Žπ‘›)σΈ€ (π‘₯0)

= β„ŽσΈ€ (β„Žπ‘›βˆ’1(π‘₯0)) β„ŽσΈ€ (β„Žπ‘›βˆ’2(π‘₯0)) β‹… β‹… β‹… β„ŽσΈ€ (β„Ž (π‘₯0)) β„ŽσΈ€ (π‘₯0)

= 𝑓󸀠(π‘“π‘›βˆ’1(π‘₯0)) 𝑓󸀠(π‘“π‘›βˆ’2(π‘₯0))

Γ— 𝑓󸀠(π‘“π‘›βˆ’3(π‘₯0)) β‹… β‹… β‹… 𝑓󸀠(𝑓 (π‘₯0)) β„ŽσΈ€ (π‘₯0)

= (𝑓𝑛)

σΈ€ (π‘₯

0) β„ŽσΈ€ (π‘₯0)

𝑓󸀠(π‘₯

0) =

𝑓󸀠(π‘₯ 0) Β± 𝛾

𝑓󸀠(π‘₯ 0)

= [1 Β± 𝛾 𝑓󸀠(π‘₯

0)] ΜΈ= 1.

(15)

We have

𝐹𝑛(β„Ž) ∩ {π‘₯ : (β„Žπ‘›)σΈ€ (π‘₯) = 1}

= [𝐹𝑛(𝑓) ∩ {π‘₯ : (𝑓𝑛)σΈ€ (π‘₯) = 1}] \ {π‘₯0} . (16)

Also

𝜌0(𝑓󸀠, β„ŽσΈ€ ) ≀sup

π‘₯∈𝐽{󡄨󡄨󡄨󡄨𝑔 (π‘₯)󡄨󡄨󡄨󡄨,|π‘Ÿ(π‘₯)|} ≀ πœ–8π‘˜,

𝜌0(𝑓, β„Ž) ≀sup

π‘₯∈𝐽{σ΅„¨σ΅„¨σ΅„¨σ΅„¨β„Ž1(π‘₯)󡄨󡄨󡄨󡄨 ,σ΅„¨σ΅„¨σ΅„¨σ΅„¨β„Ž2(π‘₯)󡄨󡄨󡄨󡄨} ≀

πœ– 8π‘˜.

(17)

Hence𝜌1(𝑓, β„Ž) ≀ 𝜌0(𝑓, β„Ž) + 𝜌0(𝑓󸀠, β„ŽσΈ€ ) ≀ πœ–/4π‘˜.

Doing this recursively for each𝑑𝑗,1 ≀ 𝑗 ≀ π‘˜, we get a

function𝑔 ∈ 𝐡(𝑓, πœ–/4)such that𝐹𝑛(𝑔) ∩ {π‘₯ : (𝑔𝑛)σΈ€ (π‘₯) = 1} =

0.

Theorem 8. Typically continuously differentiable self-maps of intervals have a countable set of periodic points.

Proof. Take

𝐻𝑛= {𝑓 ∈ 𝐢1(𝐼, 𝐼) : 𝐹𝑛(𝑓) is not finite} ,

𝐡1= {𝑓 ∈ 𝐢1(𝐼, 𝐼) : π‘Ž ∈ 𝑃𝑓2∩ {π‘₯ : (𝑓2) σΈ€ 

(π‘₯) = 1}

with𝑓 (π‘Ž) = 𝑏} ,

𝐹1= {𝑓 ∈ 𝐢1(𝐼, 𝐼) : βˆƒπ‘₯0∈ 𝐼 such that

π‘₯0∈ 𝐹1(𝑓) and𝑓󸀠(π‘₯0) = 1} ,

E𝑛= {𝑓 ∈ 𝐢1(𝐼, 𝐼) : 𝐹

𝑛(𝑓) ∩ {π‘₯ : (𝑓𝑛)σΈ€ (π‘₯) = 1} ΜΈ= 0} .

(18)

The sets𝐹1and𝐡1are first category sets (see Theorems

5and6). For𝑛 β‰₯ 1from Lemmas4and1we have thatE𝑛

is closed and𝐻𝑛 βŠ† E𝑛. Without loss of generality we may

assume that𝑓 ∈ 𝐢1(𝐼, 𝐼)is neither a constant function nor

a polynomial of first degree, and then by Lemma2we may

choose a polynomial 𝑔 ∈ 𝐢1(𝐼, 𝐼) of degree𝑛 β‰₯ 2 such

that𝑔(𝐼) βŠ‚ πΌπ‘œand𝜌1(𝑓, 𝑔) < πœ–/4. Using Theorem7we can

construct β„Ž ∈ 𝐢1(𝐼, 𝐼)so that 𝜌1(𝑔, β„Ž) < πœ–/4and the set

𝐴𝑛 = 𝐹𝑛(β„Ž) ∩ {π‘₯ : (β„Žπ‘›)σΈ€ (π‘₯) = 1} = 0, thus𝜌1(𝑓, β„Ž) < πœ–

andβ„Ž βˆ‰ E𝑛, henceEπ‘œπ‘› = 0. This implies that for eachπ‘˜ β‰₯ 2

the setEπ‘˜is nowhere dense. Thus𝐹 = (βˆͺβˆžπ‘˜=2Eπ‘˜) βˆͺ 𝐹1βˆͺ 𝐡1is

a first category set, so𝑀 = 𝐢1(𝐼, 𝐼) \ 𝐹is a residual set, and,

for𝑓 ∈ 𝑀,𝑃(𝑓) = βˆͺβˆžπ‘›=1𝐹𝑛(𝑓)is countable.

Acknowledgments

(5)

References

[1] S. J. Agronsky, A. M. Bruckner, and M. Laczkovich, β€œDynamics

of typical continuous functions,”Journal of the London

Mathe-matical Society, vol. 40, no. 2, pp. 227–243, 1989.

[2] A. A. Alikhani-Koopaei, β€œOn the size of the sets of chain recurrent points, periodic points, and fixed points of functions,”

Global Journal of Pure and Applied Mathematics, vol. 4, no. 2, pp. 113–121, 2008.

[3] A. A. Alikhani-Koopaei, β€œOn periodic and recurrent points

of continuous functions,” inProceedings of the 28th Summer

Symposium Conference, Real Analysis Exchange, pp. 37–40, 2004.

[4] A. Alikhani-Koopaei, β€œOn common fixed points, periodic

points, and recurrent points of continuous functions,”

Interna-tional Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 39, pp. 2465–2473, 2003.

[5] T. H. Steele, β€œA note on periodic points and commuting

functions,”Real Analysis Exchange, vol. 24, no. 2, pp. 781–789,

1998-1999.

[6] A. Alikhani-Koopaei, β€œOn common fixed and periodic points

of commuting functions,”International Journal of Mathematics

and Mathematical Sciences, vol. 21, no. 2, pp. 269–276, 1998. [7] A. J. Schwartz, β€œCommon periodic points of commuting

func-tions,”The Michigan Mathematical Journal, vol. 12, pp. 353–355,

(6)

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Differential Equations

International Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex Analysis

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Optimization

Journal of Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Combinatorics

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied Analysis Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporation http://www.hindawi.com Volume 2014

The Scientific

World Journal

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

References

Related documents

Bearing in mind the particular historical and national, social and political circumstances prevailing in Israeli society, it could be claimed that more than any

structures, not only does the valence band shift down- wards but the conduction band also shifts downwards with respect to the energy levels of the pure ZnO nano- materials but

Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19( ARF )) and is amplified in a subset of human breast cancers. Nkx2-5 mutation causes anatomic hypoplasia of

In the present study the visual estimation of tannin contents, total phenolics and the antioxidant activity of some vegetables Bitter gourd, Tomato and Spinach

To understand the contributions of suicide to life expectancy in Korea, this study examines how much the rise in suicide rate has reduced life expectancy in Korea and why, using

Brain-reactive antibodies are detectable in the serum of patients experiencing an acute clinical relapse of MS and displaying a positive B cell ELISPOT response directly ex vivo..

The objective of the presented study was to determine the effects of various concentrations of the water extracts prepared from the fresh mat- ter (FM) and dry matter (DM) of