• No results found

Ethyl [3 (2 pyrid­yl)pyrazol 1 yl]acetate monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "Ethyl [3 (2 pyrid­yl)pyrazol 1 yl]acetate monohydrate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1380

Coelhoet al. C

12H13N3O2H2O doi:10.1107/S1600536807007015 Acta Cryst.(2007). E63, o1380–o1382 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Ethyl [3-(2-pyridyl)pyrazol-1-yl]acetate monohydrate

Ana C. Coelho, Isabel S.

Gonc¸alves and Filipe A. Almeida Paz*

Department of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal

Correspondence e-mail: fpaz@dq.ua.pt

Key indicators

Single-crystal X-ray study T= 100 K

Mean(C–C) = 0.004 A˚ Disorder in solvent or counterion Rfactor = 0.061

wRfactor = 0.176

Data-to-parameter ratio = 12.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 11 January 2007 Accepted 10 February 2007

#2007 International Union of Crystallography

All rights reserved

The asymmetric unit of the title compound, C12H13N3O2H2O, comprises two crystallographically independent organic mol-ecules and two water molmol-ecules. There is an O—H N hydrogen bond between each water molecule and the 2-substituted pyridyl ring of an organic molecule. The water molecules are further engaged in disordered O—H O hydrogen bonds with each other, leading to the formation of a one-dimensional zigzag chain running parallel to thebaxis.

Comment

The synthesis of ethyl [3-(2-pyridyl)pyrazol-1-yl]acetate was first described by Thielet al.(1994), but a full crystallographic description has never been reported. Our research group has been particularly interested in its excellent N,N-chelating properties. For example, its coordination complexes with molybdenum and europium lead to chemical systems exhi-biting interesting catalytic (Coelhoet al., 2006; Bruno, Pereira

et al., 2007; Bruno, Fernandeset al., 2006; Gagoet al., 2006) and photophysical properties (Gago et al., 2005), respectively. Here, we report the crystal structure of the monohydrate of this organic compound, (I), determined at 100 (2) K.

The asymmetric unit of compound (I) comprises two essentially identical organic molecules and two water mol-ecules of crystallization, as depicted in Fig. 1. These two organic molecules are related by pseudo-translation symmetry, but the two terminal —CO2—CH2—CH3 groups, which are probably affected by some disorder (as explained in theExperimentalsection), break this potential symmetry.

The pyrazolyl and pyridyl rings associated with the two organic molecules exhibit similar geometries (Fig. 1), with the ‘free’ N atoms adopting atransconformation around C5—C6 and C17—C18 in order to minimize steric repulsion between the uncoordinated electron pairs. The resulting conformation is almost planar, the torsion angles between the two rings being 1.5 (4) for N1—C5—C6—C7 and 0.6 (4) for N4— C17—C18—C19.

(2)

of clarity, have been omitted from the Figures, but are listed in Table 1. The average distance between rings belonging to adjacent organic molecules is about 3.4 A˚ . This columnar arrangement of organic molecules has theN-donor atoms of

the 2-substituted pyridyl aromatic rings pointing towards a small channel running parallel to thebaxis and containing the water molecules of crystallization. Indeed, these N atoms act as acceptors in strong and highly directional O—H N hydrogen-bonding interactions (Table 1), which are best described by a discrete D graph-set motif (Bernstein et al., 1995). These water molecules of crystallization are further engaged in disordered O—H O hydrogen-bonding inter-actions with each other (Table 1), leading to the formation of a one-dimensional zigzag water chain which also runs along the [010] crystallographic direction, and is best described by the

C(2) graph-set motif (Fig. 2). This hydrogen-bonding network leads to the formation of Z-shaped molecular aggregates (as depicted in Figs. 2 and 3), which are close-packed in the solid state, again mediated by a number of weak C—H O hydrogen bonds, leading to the observed crystal structure of the title compound (Fig. 3).

Experimental

Ethyl [3-(2-pyridyl)pyrazol-1-yl]acetate was prepared following the synthetic procedure described by Thielet al.(1994). Suitable single crystals were isolated by the slow diffusion at 277 K of hexane into a solution of the compound in ethyl acetate.

organic papers

Acta Cryst.(2007). E63, o1380–o1382 Coelhoet al. C

[image:2.610.106.477.73.185.2]

12H13N3O2H2O

o1381

Figure 1

The asymmetric unit of the title compound, emphasizing the structural differences associated with the terminal —CH2—CH3groups. Displacement

[image:2.610.125.507.226.417.2] [image:2.610.46.295.460.631.2]

ellipsoids are drawn at the 50% probability level. Both disorder components are shown.

Figure 2

Interconnections (dashed lines) between the organic and water molecules of (I). Water H atoms have been omitted. [Symmetry codes: (i)x, 1 +y,z; (ii)

x, 1y, 1z.]

Figure 3

(3)

Crystal data

C12H13N3O2H2O Mr= 249.27 Monoclinic, P21=n a= 22.332 (2) A˚

b= 4.7356 (5) A˚

c= 24.651 (3) A˚

= 104.929 (6)

V= 2519.0 (5) A˚3

Z= 8

MoKradiation

= 0.10 mm1 T= 100 (2) K 0.400.160.08 mm

Data collection

Bruker X8 APEXII diffractometer Absorption correction: multi-scan

(SADABS; Sheldrick, 1998)

Tmin= 0.927,Tmax= 0.985

27588 measured reflections 4387 independent reflections 3182 reflections withI> 2(I)

Rint= 0.030

Refinement

R[F2> 2(F2)] = 0.061 wR(F2) = 0.176

S= 1.02 4387 reflections 345 parameters

H atoms treated by a mixture of independent and constrained refinement

max= 0.95 e A˚3 min=0.77 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1W—H1A N1i

1.00 (1) 1.91 (2) 2.900 (3) 168 (3) O1W—H1B O1Wii 1.00 (1) 1.98 (3) 2.762 (5) 133 (4) O1W—H1C O1Wiii

1.00 (1) 1.80 (2) 2.743 (5) 157 (4) O2W—H2A N4 1.00 (1) 1.95 (2) 2.926 (3) 166 (3) O2W—H2B O2Wiv

1.00 (1) 1.81 (3) 2.729 (5) 152 (4) O2W—H2C O2Wv

1.00 (1) 1.83 (2) 2.757 (5) 153 (5) C8—H8 O3v

0.95 2.44 3.219 (3) 140 C9—H9A O1i

0.99 2.54 3.252 (3) 129 C19—H19 O2W 0.95 2.49 3.351 (4) 151 C20—H20 O1vi

0.95 2.38 3.181 (3) 141

Symmetry codes: (i) x;yþ1;z; (ii) x;yþ1;z; (iii) x;yþ2;z; (iv) x;yþ2;zþ1; (v)x;yþ1;zþ1; (vi)x;y;zþ1.

The pseudo-translation symmetry of this structure was clear from an initial structure solution attempt in a unit cell of half the volume, requiring substantial disorder modelling, followed by examination of data from longer exposures, which indicated the doubling of theaaxis length to give the result reported here. Even with long exposures and a low-temperature data collection, the crystal diffracted quite weakly at high angle.

The two crystallographically independent terminal —CH2—CH3

groups are probably disordered, particularly for C23 and C24, but this could not be resolved. The C23—C24 distance was restrained to 1.47 (1) A˚ in the final refinement. The main difference map features lie close to these atoms.

H atoms bound to carbon were placed in idealized positions, with C—H = 0.95–0.99 A˚ , and refined using a riding model, withUiso(H) =

1.2 (aromatic and CH2) or 1.5 (CH3) timesUeq(C). Water H atoms

were visible in difference Fourier maps, including the twofold disorder of one H atom for each molecule (that involved in the O—

H O hydrogen bonds with symmetry-related water molecules). O—

H and H H distances were restrained to 1.00 (1) and 1.66 (1) A˚ , respectively, and the disordered H atoms were assigned an occupancy of 0.5.

Data collection:APEX2(Bruker, 2006); cell refinement:APEX2;

data reduction:SAINT-Plus(Bruker, 2005); program(s) used to solve

structure: SHELXTL (Bruker 2001); program(s) used to refine

structure: SHELXTL; molecular graphics: DIAMOND

(Branden-burg, 2006); software used to prepare material for publication:

SHELXTL.

The authors are grateful to Fundac¸a˜o para a Cieˆncia e Tecnologia (FCT, Portugal) for financial support (POCI/CTM/ 58863/2004) and also for funding towards the purchase of the diffractometer.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Brandenburg, K. (2006).DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). SAINT-Plus. Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2006).APEX2. Version 2.1-RC13. Bruker Nonius BV, Delft, The Netherlands.

Bruno, S. M., Fernandes, J. A., Martins, L. S., Gonc¸alves, I. S., Pillinger, M., Ribeiro-Claro, P., Rocha, J. & Valente, A. A. (2006).Catal. Today,114, 263– 271.

Bruno, S. M., Pereira, C. C. L., Balula, M. S., Nolasco, M., Valente, A. A., Hazell, A., Pillinger, M., Ribeiro-Claro, P. & Gonc¸alves, I. S. (2007).J. Mol. Catal. A Chem.261, 79–87.

Coelho, A. C., Almeida Paz, F. A., Klinowski, J., Pillinger, M. & Gonc¸alves, I. S. (2006).Molecules, 11, 940–952.

Gago, S., Fernandes, J. A., Abrantes, M., Ku¨hn, F. E., Ribeiro-Claro, P., Pillinger, M., Santos, T. M. & Gonc¸alves, I. S. (2006). Microporous Mesoporous Mater.89, 284–290.

Gago, S., Fernandes, J. A., Rainho, J. P., Sa´ Ferreira, R. A., Pillinger, M., Valente, A. A., Santos, T. M., Carlos, L. D., Ribeiro-Claro, P. & Gonc¸alves, I. S. (2005).Chem. Mater.17, 5077–5084.

Sheldrick, G. M. (1998).SADABS. Version 2.01. Bruker AXS Inc., Madison, Wisconsin, USA.

Thiel, W. R., Angstl, M. & Priermeier, T. (1994). Chem. Ber.127, 2373– 2379.

organic papers

o1382

Coelhoet al. C

(4)

supporting information

sup-1 Acta Cryst. (2007). E63, o1380–o1382

supporting information

Acta Cryst. (2007). E63, o1380–o1382 [https://doi.org/10.1107/S1600536807007015]

Ethyl [3-(2-pyridyl)pyrazol-1-yl]acetate monohydrate

Ana C. Coelho, Isabel S. Gon

ç

alves and Filipe A. Almeida Paz

Ethyl [3-(2-pyridyl)pyrazol-1-yl]acetate monohydrate

Crystal data

C12H13N3O2·H2O

Mr = 249.27 Monoclinic, P21/n Hall symbol: -P 2yn

a = 22.332 (2) Å

b = 4.7356 (5) Å

c = 24.651 (3) Å

β = 104.929 (6)°

V = 2519.0 (5) Å3

Z = 8

F(000) = 1056

Dx = 1.315 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 9034 reflections

θ = 2.9–30.1°

µ = 0.10 mm−1

T = 100 K Needle, colourless 0.40 × 0.16 × 0.08 mm

Data collection

Bruker X8 APEXII diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω and φ scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1998)

Tmin = 0.927, Tmax = 0.985

27588 measured reflections 4387 independent reflections 3182 reflections with I > 2σ(I)

Rint = 0.030

θmax = 25.4°, θmin = 3.7°

h = −26→26

k = −5→5

l = −28→27

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.061

wR(F2) = 0.176

S = 1.02 4387 reflections 345 parameters 13 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0711P)2 + 4.6214P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.003 Δρmax = 0.95 e Å−3 Δρmin = −0.77 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2007). E63, o1380–o1382

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

N1 0.14974 (10) −0.1946 (5) 0.09385 (10) 0.0260 (6) N2 0.14440 (9) 0.2986 (5) 0.20435 (9) 0.0202 (5) N3 0.09557 (10) 0.4700 (5) 0.20315 (9) 0.0216 (5) O1 0.05648 (9) 0.2543 (4) 0.29203 (8) 0.0305 (5) O2 0.10854 (8) 0.5945 (4) 0.34809 (8) 0.0261 (5) C1 0.18800 (13) −0.3854 (7) 0.08040 (13) 0.0323 (7)

H1 0.1741 −0.4824 0.0457 0.039*

C2 0.24594 (13) −0.4496 (6) 0.11357 (13) 0.0304 (7)

H2 0.2713 −0.5860 0.1020 0.037*

C3 0.26606 (12) −0.3103 (6) 0.16403 (12) 0.0256 (7)

H3 0.3057 −0.3498 0.1882 0.031*

C4 0.22787 (11) −0.1124 (6) 0.17904 (11) 0.0217 (6)

H4 0.2410 −0.0135 0.2136 0.026*

C5 0.17003 (11) −0.0597 (6) 0.14304 (11) 0.0192 (6) C6 0.12735 (11) 0.1496 (6) 0.15679 (11) 0.0198 (6) C7 0.06734 (12) 0.2240 (6) 0.12577 (12) 0.0267 (6)

H7 0.0447 0.1492 0.0907 0.032*

C8 0.04862 (12) 0.4279 (6) 0.15721 (12) 0.0272 (7)

H8 0.0097 0.5220 0.1483 0.033*

C9 0.09717 (12) 0.6474 (6) 0.25111 (11) 0.0226 (6)

H9A 0.0656 0.7982 0.2404 0.027*

H9B 0.1384 0.7379 0.2638 0.027*

C10 0.08445 (11) 0.4738 (6) 0.29833 (11) 0.0221 (6) C11 0.09967 (14) 0.4351 (7) 0.39598 (12) 0.0317 (7)

H11A 0.1185 0.2454 0.3969 0.038*

H11B 0.0549 0.4116 0.3930 0.038*

C12 0.1295 (2) 0.5929 (11) 0.44772 (15) 0.0821 (17)

H12A 0.1744 0.5990 0.4522 0.123*

H12B 0.1208 0.4984 0.4802 0.123*

H12C 0.1131 0.7858 0.4450 0.123*

N4 0.13995 (10) 0.7214 (5) 0.59836 (10) 0.0244 (5) N5 0.14357 (9) 0.2208 (5) 0.70981 (9) 0.0199 (5) N6 0.09557 (10) 0.0492 (4) 0.71125 (9) 0.0205 (5) O3 0.05836 (10) 0.2304 (5) 0.80469 (10) 0.0387 (6) O4 0.11124 (10) −0.1265 (6) 0.85499 (9) 0.0473 (7) C13 0.17597 (13) 0.9154 (6) 0.58258 (12) 0.0277 (7)

H13 0.1590 1.0183 0.5491 0.033*

C14 0.23591 (13) 0.9747 (6) 0.61188 (12) 0.0266 (6)

H14 0.2599 1.1112 0.5986 0.032*

(6)

supporting information

sup-3 Acta Cryst. (2007). E63, o1380–o1382

H15 0.3011 0.8659 0.6828 0.030*

C16 0.22401 (11) 0.6307 (6) 0.67883 (12) 0.0218 (6)

H16 0.2399 0.5289 0.7127 0.026*

C17 0.16401 (11) 0.5816 (5) 0.64625 (11) 0.0191 (6) C18 0.12330 (11) 0.3721 (5) 0.66278 (11) 0.0187 (6) C19 0.06234 (12) 0.2962 (6) 0.63481 (12) 0.0261 (6)

H19 0.0377 0.3711 0.6006 0.031*

C20 0.04619 (12) 0.0914 (6) 0.66742 (12) 0.0254 (6)

H20 0.0074 −0.0032 0.6605 0.031*

C21 0.10115 (13) −0.1367 (6) 0.75851 (11) 0.0242 (6)

H21A 0.1437 −0.2143 0.7698 0.029*

H21B 0.0720 −0.2967 0.7474 0.029*

C22 0.08733 (12) 0.0156 (6) 0.80798 (13) 0.0274 (7) C23 0.09520 (17) −0.0295 (14) 0.90468 (15) 0.103 (2)

H23A 0.0731 −0.1814 0.9192 0.123*

H23B 0.0670 0.1346 0.8952 0.123*

C24 0.1508 (2) 0.0518 (15) 0.94815 (18) 0.114 (3)

H24A 0.1852 −0.0729 0.9463 0.171*

H24B 0.1425 0.0352 0.9852 0.171*

H24C 0.1617 0.2475 0.9420 0.171*

O1W 0.03239 (11) 0.7511 (5) 0.01011 (10) 0.0507 (7) H1A 0.0699 (9) 0.761 (7) 0.0427 (8) 0.076*

H1B −0.0006 (11) 0.626 (8) 0.0178 (15) 0.076* 0.50 H1C 0.0162 (15) 0.942 (3) −0.0035 (17) 0.076* 0.50 O2W 0.01234 (11) 0.7517 (5) 0.52880 (10) 0.0514 (7)

H2A 0.0571 (4) 0.768 (7) 0.5492 (13) 0.077*

H2B −0.0065 (15) 0.939 (3) 0.515 (2) 0.077* 0.50 H2C 0.0049 (16) 0.607 (8) 0.4983 (15) 0.077* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4 Acta Cryst. (2007). E63, o1380–o1382

C12 0.124 (4) 0.094 (4) 0.028 (2) −0.069 (3) 0.020 (2) −0.006 (2) N4 0.0244 (12) 0.0214 (12) 0.0264 (13) −0.0028 (9) 0.0049 (10) −0.0017 (10) N5 0.0166 (11) 0.0182 (11) 0.0266 (13) −0.0004 (9) 0.0087 (10) −0.0016 (9) N6 0.0186 (11) 0.0170 (12) 0.0272 (13) 0.0004 (9) 0.0080 (10) −0.0007 (9) O3 0.0345 (12) 0.0357 (13) 0.0519 (14) 0.0062 (10) 0.0221 (11) −0.0107 (11) O4 0.0374 (13) 0.0805 (19) 0.0242 (12) 0.0218 (12) 0.0086 (10) −0.0043 (12) C13 0.0355 (16) 0.0238 (15) 0.0236 (15) −0.0034 (12) 0.0071 (13) −0.0008 (12) C14 0.0289 (15) 0.0217 (15) 0.0333 (17) −0.0066 (11) 0.0156 (13) −0.0043 (12) C15 0.0182 (13) 0.0219 (15) 0.0343 (17) −0.0017 (11) 0.0079 (12) −0.0070 (12) C16 0.0171 (13) 0.0216 (14) 0.0263 (16) 0.0028 (10) 0.0046 (12) −0.0031 (11) C17 0.0192 (13) 0.0166 (13) 0.0224 (15) 0.0010 (10) 0.0071 (12) −0.0050 (11) C18 0.0168 (13) 0.0158 (13) 0.0240 (15) 0.0014 (10) 0.0063 (11) −0.0030 (11) C19 0.0197 (14) 0.0254 (15) 0.0308 (16) −0.0021 (11) 0.0025 (12) 0.0016 (12) C20 0.0159 (13) 0.0259 (15) 0.0326 (17) −0.0031 (11) 0.0029 (13) −0.0012 (12) C21 0.0259 (14) 0.0193 (14) 0.0299 (16) 0.0003 (11) 0.0116 (13) −0.0001 (11) C22 0.0194 (14) 0.0311 (17) 0.0342 (17) −0.0028 (12) 0.0116 (13) −0.0065 (13) C23 0.071 (3) 0.207 (7) 0.029 (2) 0.065 (4) 0.010 (2) −0.026 (3) C24 0.104 (4) 0.189 (7) 0.069 (3) −0.085 (4) 0.058 (3) −0.075 (4) O1W 0.0407 (13) 0.0485 (15) 0.0482 (15) 0.0002 (11) −0.0149 (12) −0.0008 (12) O2W 0.0410 (14) 0.0463 (15) 0.0530 (16) −0.0080 (11) −0.0132 (12) 0.0070 (12)

Geometric parameters (Å, º)

N1—C5 1.342 (3) N5—N6 1.353 (3)

N1—C1 1.343 (3) N6—C20 1.345 (3)

N2—C6 1.337 (3) N6—C21 1.440 (3)

N2—N3 1.354 (3) O3—C22 1.197 (3)

N3—C8 1.345 (4) O4—C22 1.327 (4)

N3—C9 1.443 (3) O4—C23 1.437 (4)

O1—C10 1.202 (3) C13—C14 1.376 (4)

O2—C10 1.334 (3) C13—H13 0.950

O2—C11 1.457 (3) C14—C15 1.380 (4)

C1—C2 1.375 (4) C14—H14 0.950

C1—H1 0.950 C15—C16 1.379 (4)

C2—C3 1.377 (4) C15—H15 0.950

C2—H2 0.950 C16—C17 1.393 (4)

C3—C4 1.380 (4) C16—H16 0.950

C3—H3 0.950 C17—C18 1.472 (4)

C4—C5 1.388 (4) C18—C19 1.405 (4)

C4—H4 0.950 C19—C20 1.366 (4)

C5—C6 1.474 (3) C19—H19 0.950

C6—C7 1.406 (4) C20—H20 0.950

C7—C8 1.369 (4) C21—C22 1.515 (4)

C7—H7 0.950 C21—H21A 0.990

C8—H8 0.950 C21—H21B 0.990

C9—C10 1.511 (4) C23—C24 1.467 (6)

C9—H9A 0.990 C23—H23A 0.990

(8)

supporting information

sup-5 Acta Cryst. (2007). E63, o1380–o1382

C11—C12 1.481 (5) C24—H24A 0.980

C11—H11A 0.990 C24—H24B 0.980

C11—H11B 0.990 C24—H24C 0.980

C12—H12A 0.980 O1W—H1A 1.00 (1)

C12—H12B 0.980 O1W—H1B 1.00 (1)

C12—H12C 0.980 O1W—H1C 1.00 (1)

N4—C17 1.339 (3) O2W—H2A 1.00 (1)

N4—C13 1.343 (3) O2W—H2B 1.00 (1)

N5—C18 1.339 (3) O2W—H2C 1.00 (1)

C5—N1—C1 117.1 (2) C20—N6—C21 128.5 (2)

C6—N2—N3 104.6 (2) N5—N6—C21 119.0 (2)

C8—N3—N2 112.2 (2) C22—O4—C23 116.7 (3)

C8—N3—C9 128.7 (2) N4—C13—C14 124.2 (3)

N2—N3—C9 118.8 (2) N4—C13—H13 117.9

C10—O2—C11 114.6 (2) C14—C13—H13 117.9

N1—C1—C2 124.3 (3) C13—C14—C15 117.8 (3)

N1—C1—H1 117.9 C13—C14—H14 121.1

C2—C1—H1 117.9 C15—C14—H14 121.1

C1—C2—C3 118.0 (3) C16—C15—C14 119.4 (3)

C1—C2—H2 121.0 C16—C15—H15 120.3

C3—C2—H2 121.0 C14—C15—H15 120.3

C2—C3—C4 119.2 (3) C15—C16—C17 119.0 (3)

C2—C3—H3 120.4 C15—C16—H16 120.5

C4—C3—H3 120.4 C17—C16—H16 120.5

C3—C4—C5 119.2 (3) N4—C17—C16 122.2 (2)

C3—C4—H4 120.4 N4—C17—C18 116.2 (2)

C5—C4—H4 120.4 C16—C17—C18 121.6 (2)

N1—C5—C4 122.3 (2) N5—C18—C19 110.9 (2)

N1—C5—C6 116.1 (2) N5—C18—C17 120.3 (2)

C4—C5—C6 121.6 (2) C19—C18—C17 128.8 (2)

N2—C6—C7 111.2 (2) C20—C19—C18 105.2 (2)

N2—C6—C5 120.1 (2) C20—C19—H19 127.4

C7—C6—C5 128.7 (2) C18—C19—H19 127.4

C8—C7—C6 104.8 (2) N6—C20—C19 107.0 (2)

C8—C7—H7 127.6 N6—C20—H20 126.5

C6—C7—H7 127.6 C19—C20—H20 126.5

N3—C8—C7 107.2 (2) N6—C21—C22 111.5 (2)

N3—C8—H8 126.4 N6—C21—H21A 109.3

C7—C8—H8 126.4 C22—C21—H21A 109.3

N3—C9—C10 110.2 (2) N6—C21—H21B 109.3

N3—C9—H9A 109.6 C22—C21—H21B 109.3

C10—C9—H9A 109.6 H21A—C21—H21B 108.0

N3—C9—H9B 109.6 O3—C22—O4 125.4 (3)

C10—C9—H9B 109.6 O3—C22—C21 124.6 (3)

H9A—C9—H9B 108.1 O4—C22—C21 110.0 (2)

O1—C10—O2 124.2 (3) O4—C23—C24 110.9 (3)

(9)

supporting information

sup-6 Acta Cryst. (2007). E63, o1380–o1382

O2—C10—C9 111.3 (2) C24—C23—H23A 109.5

O2—C11—C12 108.1 (3) O4—C23—H23B 109.5

O2—C11—H11A 110.1 C24—C23—H23B 109.5

C12—C11—H11A 110.1 H23A—C23—H23B 108.0

O2—C11—H11B 110.1 C23—C24—H24A 109.5

C12—C11—H11B 110.1 C23—C24—H24B 109.5

H11A—C11—H11B 108.4 H24A—C24—H24B 109.5

C11—C12—H12A 109.5 C23—C24—H24C 109.5

C11—C12—H12B 109.5 H24A—C24—H24C 109.5

H12A—C12—H12B 109.5 H24B—C24—H24C 109.5

C11—C12—H12C 109.5 H1A—O1W—H1B 112.39 (17)

H12A—C12—H12C 109.5 H1A—O1W—H1C 112.40 (17) H12B—C12—H12C 109.5 H1B—O1W—H1C 112.39 (17) C17—N4—C13 117.3 (2) H2A—O2W—H2B 112.39 (17) C18—N5—N6 104.5 (2) H2A—O2W—H2C 112.38 (17) C20—N6—N5 112.4 (2) H2B—O2W—H2C 112.38 (17)

(10)

supporting information

sup-7 Acta Cryst. (2007). E63, o1380–o1382

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1W—H1A···N1i 1.00 (1) 1.91 (2) 2.900 (3) 168 (3) O1W—H1B···O1Wii 1.00 (1) 1.98 (3) 2.762 (5) 133 (4) O1W—H1C···O1Wiii 1.00 (1) 1.80 (2) 2.743 (5) 157 (4) O2W—H2A···N4 1.00 (1) 1.95 (2) 2.926 (3) 166 (3) O2W—H2B···O2Wiv 1.00 (1) 1.81 (3) 2.729 (5) 152 (4) O2W—H2C···O2Wv 1.00 (1) 1.83 (2) 2.757 (5) 153 (5)

C8—H8···O3v 0.95 2.44 3.219 (3) 140

C9—H9A···O1i 0.99 2.54 3.252 (3) 129

C19—H19···O2W 0.95 2.49 3.351 (4) 151

C20—H20···O1vi 0.95 2.38 3.181 (3) 141

Figure

Figure 2Interconnections (dashed lines) between the organic and water molecules of (I)

References

Related documents

In summary, using propensity score matching analyses, our present study showed that the prevalance of T2DM was significantly increased in the TC group compared with BTN group..

The Mediating Role of Employees’ Emotional Intelligence In 1990, Salovey, a psychologist at Yale university and Mayer, a psychologist at the university of New Hampshire firstly

The same trend can be seen for simazine at both pH 6 and 8, only in this case the adsorption on the surface of aluminum is better than NPS of iron (III) oxide and iron (III) oxide

The action of increasing concentrations of PEG-Au nanoparticles (2 to 25 µM) was studied on the Triple-Negative Basal-Like breast cancer cell line HCC1937, during seven days.

● Type IA: ASV-ICV junction was located at the venous angle, which lies adjacent to the posterior margin of the foramen of Monro.. In the other types, the ASV-ICV junction was

C shows the marked increase in blood flow through the left internal carotid artery in the patient compared with a healthy subject (3.3 times greater), as well as the relative

Group 4: a SonicFill TM System (Kerr/Kavo, 3691651, Bismarckring, Biberach) activated, bulk fill composite shade (A2) was used to restore the class V cavities of 10 specimens..