(μ Perfluoro­sebacato κ2O:O′)bis­­[aqua­bis­(1,10 phenanthroline κ2N,N′)zinc(II)] perfluoro­sebacate bis­­[tri­aqua­(perfluoro­sebacato κO)(1,10 phenanthroline κ2N,N′)zinc(II)] 3 32 hydrate

19 

(1)metal-organic papers Acta Crystallographica Section E. Structure Reports Online ISSN 1600-5368. : Kani Ibrahim,a Onur S¸ahin,b Yilmaz Filiza and Orhan Bu ¨ r b* ¨yu ¨ kgu ¨ ngo a. Department of Chemistry, Anadolu University, TR-26470 Eskis ¸ehir, Turkey, and bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey Correspondence e-mail: onurs@omu.edu.tr. (l-Perfluorosebacato-j2O:O0 )bis[aquabis(1,10phenanthroline-j2N,N0 )zinc(II)] perfluorosebacate bis[triaqua(perfluorosebacato-jO)(1,10-phenanthroline-j2N,N0 )zinc(II)] 3.32-hydrate. The asymmetric unit of the title compound, [Zn2{O2C(CF2)8CO 2 }(C 12 H 8 N 2 ) 4 (H 2 O) 2 ](C 10 F 16 O 4 )[Zn{O 2 C(CF 2 ) 8 CO 2 }(C12H8N2)(H2O)3]3.32H2O, contains a neutral mononuclear [ZnL(phen)(H2O)3] complex (phen is 1,10-phenanthroline and L is perfluorosebacate), one half each of a centrosymmetric [Zn2L(phen)4(H2O)2]2+ binuclear complex and an uncoordinated centrosymmetric L ligand, and 1.66 water molecules of solvation. The ZnII atoms in both the mononuclear and the binuclear complexes are six-coordinated in a distorted octahedral geometry.. Received 3 July 2006 Accepted 17 July 2006. Key indicators Single-crystal X-ray study T = 100 K ˚ Mean (C–C) = 0.004 A Disorder in solvent or counterion R factor = 0.045 wR factor = 0.122 Data-to-parameter ratio = 14.7 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. # 2006 International Union of Crystallography All rights reserved. Acta Cryst. (2006). E62, m1909–m1911. Comment Polynuclear d10 metal complexes are very attractive in that they not only exhibit intriguing structures but also show photoluminescent properties. As a d10 metal ion, ZnII in particular is studied for the construction of coordination polymers and networks (Erxleben, 2003). The spherical d10 configuration is associated with a flexible coordination environment, so the geometries of zinc complexes can vary from tetrahedral through trigonal–bipyramidal to octahedral, and severe distortions of the ideal polyhedron easily occur. Transition metal complexes with dicarboxylates as bridging ligands. and heteroaromatic N-donor ligands as sources for – stacking interactions are of great interest to generate a variety doi:10.1107/S1600536806027656. Ibrahim et al.. . A [ZnL(phen)(H2O)3] complex. m1909.

(2) metal-organic papers of supramolecular networks (Ye et al., 2005; McCann et al., 1997; Geragthy et al., 1998; Zheng, Lin & Kong, 2003; Zheng, Lin & Chen, 2003; Devereux et al., 1999). The coordination chemistry of saturated linear ,!-dicarboxylate anions [O2C(CH2)nCO2]2 (n = 1–8) has not been developed and, indeed, structural information for this class of complex is relatively scarce, since it involves the formation of insoluble polymeric materials, which can be difficult to characterize and almost impossible to crystallize. Devereux et al. (1999, 2000) showed that the introduction of a second competing ligand, such as 1,10-phenanthroline (phen) or 2,2 bipyridine, lowers the dimensionality of the structures, since their chelation to the metal ion leaves fewer sites for dicarboxylic acid coordination. Mixed phen and long-chain ,!-dicarboxylate ligand complexes are very rare and no published data have been found in the literature on the X-ray analysis of multinuclear ZnII complexes with perfluorosebacic acid. We report here the crystal structure of the title compound, (I). The asymmetric unit of (I) contains one half of a centrosymmetric [Zn2L(phen)4(H2O)2]2+ binuclear complex cation (Fig. 1), a neutral mononuclear [ZnL(phen)(H2O)3] complex (Fig. 2), one half of an uncoordinated centrosymmetric perfluorosebacate ligand and 1.66 water molecules of solvation (Fig. 2), where H2L is HO2C(CF2)8CO2H and phen is 1,10-phenanthroline. Selected bond lengths and angles are listed in Table 1. Each ZnII atom of the binuclear complex cation has a distorted octahedral coordination geometry, defined by four N atoms from two chelating phen ligands and an O atom from the carboxylate group of a bridging perfluorosebacate ligand and the O atom of a water molecule. The observed distortion from octahedral geometry is caused by the small bite angles of the chelating phen ligands (Table 1). Around the central ZnII atom, both chelating phen planes are oriented nearly perpendicular to each other [dihedral angle 85.38 (10) ]. The N1—Zn1—O1 angle exhibits less deviation from linearity compared with the other trans angles. The Zn1—O1 distance is slightly longer than the Zn1—O2 distance. All Zn–N bond distances are comparable with those observed in similar compounds (Zhang et al., 2003; Yin et al., 2004; Guo et al., 2004; Viossat et al., 2005). An intramoleculer C—H   interaction and an OW—H  O hydrogen bond (Table 2) are observed in the complex cation. In the neutral mononuclear [ZnL(phen)(H2O)3] complex, the ZnII atom is six-coordinated in a distorted octahedral geometry by two N atoms from a chelating phen ligand, three O atoms from three water molecules and one O atom from a deprotonated perfluorosebacate ligand. The perfluorosebacate ligand is coordinated to the metal atom in monodentate fashion. The bite angle of the phen ligand is 77.75 (9) and the cis angles lie in the range 86.88 (9)–96.25 (9) . The N6—Zn2—O9 trans angle exhibits the largest deviation from linearity. Zn—O distances lie in the range 2.0587 (18)– ˚ . Intramolecular O—H  O hydrogen bonds 2.144 (2) A involving the coordinated water molecules are observed in the mononuclear complex (Table 2).. m1910. Ibrahim et al.. . A [ZnL(phen)(H2O)3] complex. Figure 1 The structure of the [Zn2L(phen)4(H2O)2]2+ complex, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) 1  x, 2  y, 1  z.]. Figure 2 The structures of the [ZnL(phen)(H2O)3] and C10F16O42 units, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines. [Symmetry code: (ii) 1  x, 1  y, 1  z.]. The free perfluorosebacate anion lies between the two zinc(II) complexes and it is linked to them via strong O— H  O hydrogen bonds involvolving the coordinated water molecules (Table 2). The crystal packing of (I) is stabilized by a complicated network of O—H  O and O—H  F hydrogen bonds. In addition, a – stacking interaction is observed between adjacent phen ligands. The Cg2  Cg3iii and Cg3  Cg3iv ˚ , respectively, where distances are 3.459 (2) and 3.411 (2) A Cg2 and Cg3 are centroids of the central C4–C7/C11/C12 and C39–C41/C45/C46 benzene rings [symmetry codes: (iii) x, y, 1 + z; (iv) 1  x, 2  y, 2  z]. The – interactions are similar to those in the known analogues of Mn, Cu, Zn and Co complexes, with characteristic interplanar distances between ˚ (Geragthy et al., 1999; Zheng & Kong, the rings of 3.6 A 2004; Zheng & Ying, 2005).. Experimental Na2CO3 (0.5 ml, 1 mol) was added to a stirred solution of Zn(NO3)26H2O (121.4 mg, 0.408 mmol) in H2O (10 ml). The resultant precipitate was separated by filtration, washed several times with distilled water and finally added to a stirred solution of phenanthroline monohydrate (80.78 mg, 0.408 mmol) and perfluorosebacic acid (200 mg, 0.408 mmol) dissolved in EtOH and H2O (1:1 v/v, 20 ml). The mixture was stirred for ca 2 h and the solution was allowed to stand at room temperature for 2 d to obtain colourless crystals of (I) (m.p. 500 K). Acta Cryst. (2006). E62, m1909–m1911.

(3) metal-organic papers Crystal data  = 70.530 (11) ˚3 V = 3175.6 (9) A Z=1 Dx = 1.830 Mg m3 Mo K radiation  = 0.92 mm1 T = 100 K Prism, colourless 0.54  0.35  0.23 mm. [Zn2(C10F16O4)(C12H8N2)4(H2O)2](C10F16O4)[Zn(C10F16O4)(C12H8N2)(H2O)3]3.32H2O Mr = 3499.05 Triclinic, P1 ˚ a = 13.505 (2) A ˚ b = 15.271 (2) A ˚ c = 17.332 (3) A  = 70.556 (12)  = 81.673 (13). Refinement w = 1/[ 2(Fo2) + (0.0623P)2 + 3.9061P] where P = (Fo2 + 2Fc2)/3 (/)max = 0.003 ˚ 3 max = 1.40 e A ˚ 3 min = 0.78 e A. Table 1 ˚ ,  ). Selected geometric parameters (A N1—Zn1 N2—Zn1 N3—Zn1 N4—Zn1 N5—Zn2 N6—Zn2. 2.197 2.126 2.206 2.138 2.136 2.168. O2—Zn1—N2 O2—Zn1—N4 N2—Zn1—N4 O2—Zn1—O1 N2—Zn1—O1 N4—Zn1—O1 O2—Zn1—N1 N2—Zn1—N1 N4—Zn1—N1 O1—Zn1—N1 O2—Zn1—N3 N2—Zn1—N3 N4—Zn1—N3 O1—Zn1—N3 N1—Zn1—N3. (2) (2) (2) (2) (2) (2). 103.70 92.33 160.24 91.47 97.71 93.28 94.92 77.40 89.95 172.71 167.92 88.03 76.81 84.00 90.39. (8) (9) (9) (8) (8) (8) (9) (8) (8) (8) (8) (8) (8) (8) (8). O1—Zn1 O2—Zn1 O6—Zn2 O7—Zn2 O8—Zn2 O9—Zn2. 2.1532 (19) 2.040 (2) 2.0587 (18) 2.144 (2) 2.113 (2) 2.0980 (18). O6—Zn2—O9 O6—Zn2—O8 O9—Zn2—O8 O6—Zn2—N5 O9—Zn2—N5 O8—Zn2—N5 O6—Zn2—O7 O9—Zn2—O7 O8—Zn2—O7 N5—Zn2—O7 O6—Zn2—N6 O9—Zn2—N6 O8—Zn2—N6 N5—Zn2—N6 O7—Zn2—N6. 95.59 87.90 91.13 171.75 90.90 86.88 88.76 90.83 176.28 96.25 95.67 168.64 87.75 77.75 90.95. (8) (8) (8) (9) (8) (9) (8) (8) (7) (9) (8) (8) (8) (9) (8). Table 2 ˚ ,  ). Hydrogen-bond geometry (A Cg1 is the centroid of the N1/C7–C11 ring. D—H  A i. O1—H1A  O11 O1—H1A  O3 O1—H1A  F29i O1—H1B  O4ii O6—H6A  O4iii O6—H6B  O11iv O7—H7A  O10 O7—H7B  O5iii. D—H. H  A. D  A. D—H  A. 0.82 0.82 0.82 0.83 0.82 0.82 0.84 0.83. 2.13 2.55 2.54 2.01 1.87 1.90 1.96 1.95. 2.833 3.003 3.133 2.834 2.661 2.706 2.706 2.776. 143 116 130 168 162 168 148 176. (2) (2) (2) (2) (2) (2) (2) (2). Acta Cryst. (2006). E62, m1909–m1911. (3) (3) (3) (2) (2) (2) (3) (2). (3) (3) (2) (3) (3) (3) (3) (3). H  A. D  A. D—H  A. 0.83 0.82 0.82 0.82 0.82 0.83 0.82 0.93. 1.88 1.93 1.99 2.29 2.50 2.12 2.17 2.84. 2.698 2.724 2.806 2.991 3.151 2.930 2.955 3.613. 171 163 170 143 137 163 159 142. (2) (2) (2) (2) (2) (2) (2). (2) (2) (2) (3) (3) (3) (3). (3) (3) (3) (3) (3) (4) (4) (3). (3) (3) (3) (4) (4) (4) (4) (4). (4) (4) (4) (4) (4) (6) (6) (iii). One of the uncoordinated water molecules is disordered, with a partial occupancy factor of 0.658 (9). The water H atoms were located in a difference map and refined with an O—H distance restraint of ˚ and with Uiso(H) = 1.5Ueq(O). C-bound H atoms were 0.83 (2) A ˚ refined using the riding-model approximation, with C—H = 0.93 A and Uiso(H) = 1.2Ueq(C). The structure contains a solvent-accessible ˚ 3 around (0 0.5 0), but there is no evidence of any void of volume 45 A solvent molecule, as the modelling of the electron density using PLATON (Spek, 2003) showed no electron density in the void space. ˚ from The highest peak in the final difference map is located 1.20 A ˚ from F1. atom F6 and the deepest hole 0.59 A Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).. 46049 measured reflections 15080 independent reflections 12163 reflections with I > 2(I) Rint = 0.061 max = 27.9. Refinement on F 2 R[F 2 > 2(F 2)] = 0.045 wR(F 2) = 0.122 S = 0.99 15080 reflections 1028 parameters H atoms treated by a mixture of independent and constrained refinement. D—H. O8—H8A  O13 O8—H8B  O12iv O13—H13A  O3v O13—H13B  O9 O13—H13B  F17 O14—H14A  O7 O14—H14B  O5 C13—H13  Cg1. Symmetry codes: (i) x þ 1; y; z; (ii) x þ 2; y þ 1; z þ 1; x þ 1; y þ 1; z þ 2; (iv) x; y; z þ 1; (v) x þ 1; y þ 2; z þ 1.. Data collection Stoe IPDS II diffractometer ! scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) Tmin = 0.686, Tmax = 0.809. D—H  A. The authors acknowledge Anadolu University Commission of Scientific Research Projects for financial support (Project No. 031036), and the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).. References Devereux, M., McCann, M., Cronin, J. F., Ferguson, V. & McKee, V. (1999). Polyhedron, 18, 2141–2148. Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaria, J. (2000). Polyhedron, 19, 1205–1211. Erxleben, A. (2003). Coord. Chem. Rev. 246, 203–228. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. Geragthy, M., McCann, M., Casey, M. T., Curran, M., Devereux, M., McKee, V. & McCrea, J. (1998). Inorg. Chim. Acta, 277, 257–262. Geragthy, M., McCann, M., Devereux, M. & McKee, V. (1999). Inorg. Chim. Acta, 293, 160–166. Guo, W., Peng, Z., Li, D. & Zhou, Y. (2004). Polyhedron, 23, 1707–1707. McCann, S., McCann, M., Casey, M. T., Devereux, M., McKee, V., McMichael, P. & McCrea, J. G. (1997). Polyhedron, 16, 4247–4252. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany. Viossat, V., Lemoine, P., Dayan, E. & Vioassat, B. (2005). J. Mol. Struct. 741, 45–52. Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565. Yin, M.-C., Yuan, L.-J., Ai, C.-C., Wang, C.-W., Yuan, E.-T. & Sun, J.-T. (2004). Polyhedron, 23, 529–536. Zhang, L.-Y., Liu, G.-F., Zheng, S.-L., Ye, B.-H., Zhang, X.-M. & Chen, X.-M. (2003). Eur. J. Org. Chem. pp. 2965–2971. Zheng, Y. Q. & Kong, Z. P. (2004). J. Solid State Chem. 177, 1352–1358. Zheng, Y. Q., Lin, J. L. & Chen, B. Y. (2003). J. Mol. Struct. 646, 151–159. Zheng, Y. Q., Lin, J. L. & Kong, Z. P. (2003). Polyhedron, 22, 2699–2708. Zheng, Y. Q. & Ying, E. B. (2005). Polyhedron, 24, 397–406.. Ibrahim et al.. . A [ZnL(phen)(H2O)3] complex. m1911.

(4) supporting information. supporting information Acta Cryst. (2006). E62, m1909–m1911. [https://doi.org/10.1107/S1600536806027656]. (µ-Perfluorosebacato-κ2O:O′)bis[aquabis(1,10-phenanthroline-κ2N,N′)zinc(II)] perfluorosebacate bis[triaqua(perfluorosebacato-κO)(1,10-phenanthrolineκ2N,N′)zinc(II)] 3.32-hydrate Kani İbrahim, Onur Şahin, Yilmaz Filiz and Orhan Büyükgüngör (µ-Perfluorosebacato-κ2O:O′)bis[aquabis(1,10-phenanthroline- κ2N,N′)zinc(II)] perfluorosebacate bis[triaqua(perfluorosebacato- κO)(1,10-phenanthroline-κ2N,N′)zinc(II)] 3.32-hydrate Crystal data [Zn2(C10F16O4)(C12H8N2)4(H2O)2] (C10F16O4)·[Zn(C10F16O4)(C12H8N2) (H2O)3]·3.32H2O Mr = 3499.05 Triclinic, P1 Hall symbol: -P 1 a = 13.505 (2) Å b = 15.271 (2) Å c = 17.332 (3) Å α = 70.556 (12)° β = 81.673 (13)° γ = 70.530 (11)°. V = 3175.6 (9) Å3 Z=1 F(000) = 1741.2 Dx = 1.830 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 46049 reflections θ = 1.8–28.0° µ = 0.92 mm−1 T = 100 K Prism, colourless 0.54 × 0.35 × 0.23 mm. Data collection Stoe IPDS II diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 6.67 pixels mm-1 ω scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) Tmin = 0.686, Tmax = 0.809. 46049 measured reflections 15080 independent reflections 12163 reflections with I > 2σ(I) Rint = 0.061 θmax = 27.9°, θmin = 1.8° h = −17→17 k = −19→20 l = −22→22. Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.045 wR(F2) = 0.122 S = 0.99 15080 reflections 1028 parameters 12 restraints Primary atom site location: structure-invariant direct methods. Acta Cryst. (2006). E62, m1909–m1911. Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0623P)2 + 3.9061P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.003 Δρmax = 1.40 e Å−3 Δρmin = −0.78 e Å−3 sup-1.

(5) supporting information Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). C1 H1 C2 H2 C3 H3 C4 C5 H5 C6 H6 C7 C8 H8 C9 H9 C10 H10 C11 C12 C13 H13 C14 H14 C15 H15 C16 C17 H17 C18 H18 C19 C20 H20 C21. x. y. z. Uiso*/Ueq. 0.7391 (2) 0.7424 0.6712 (2) 0.6286 0.6684 (2) 0.6254 0.7311 (2) 0.7337 (2) 0.6934 0.7934 (2) 0.7961 0.8530 (2) 0.9086 (2) 0.9108 0.9591 (2) 0.9944 0.9569 (2) 0.9916 0.8539 (2) 0.7941 (2) 1.0977 (2) 1.0790 1.1800 (2) 1.2161 1.2066 (2) 1.2612 1.1510 (2) 1.1750 (2) 1.2258 1.1248 (2) 1.1412 1.0465 (2) 0.9955 (2) 1.0129 0.9207 (2). 0.5588 (2) 0.5346 0.5352 (2) 0.4982 0.5673 (2) 0.5506 0.6256 (2) 0.6624 (2) 0.6465 0.7198 (2) 0.7403 0.7501 (2) 0.8177 (2) 0.8426 0.8467 (2) 0.8925 0.8061 (2) 0.8256 0.71416 (19) 0.6488 (2) 0.5472 (2) 0.6079 0.4722 (2) 0.4832 0.3818 (2) 0.3308 0.3668 (2) 0.2752 (2) 0.2210 0.2666 (2) 0.2064 0.3484 (2) 0.3452 (2) 0.2878 0.4262 (2). 0.26376 (18) 0.3205 0.2256 (2) 0.2567 0.1420 (2) 0.1157 0.09623 (18) 0.00878 (18) −0.0206 −0.03156 (18) −0.0885 0.01086 (16) −0.02842 (16) −0.0852 0.01703 (16) −0.0083 0.10262 (15) 0.1334 0.09647 (15) 0.13982 (16) 0.14667 (16) 0.1070 0.12811 (17) 0.0776 0.18560 (17) 0.1744 0.26175 (17) 0.32563 (19) 0.3159 0.39949 (19) 0.4398 0.41731 (17) 0.49433 (17) 0.5377 0.50563 (16). 0.0309 (6) 0.037* 0.0350 (7) 0.042* 0.0345 (6) 0.041* 0.0281 (6) 0.0329 (6) 0.040* 0.0330 (6) 0.040* 0.0268 (5) 0.0293 (6) 0.035* 0.0288 (6) 0.035* 0.0237 (5) 0.028* 0.0223 (5) 0.0233 (5) 0.0250 (5) 0.030* 0.0281 (6) 0.034* 0.0286 (6) 0.034* 0.0261 (5) 0.0320 (6) 0.038* 0.0328 (6) 0.039* 0.0277 (6) 0.0305 (6) 0.037* 0.0290 (6). Acta Cryst. (2006). E62, m1909–m1911. Occ. (<1). sup-2.

(6) supporting information H21 C22 H22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 H35 C36 H36 C37 H37 C38 C39 H39 C40 H40 C41 C42 H42 C43 H43 C44 H44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 C56 N1 N2 N3. 0.8859 0.8968 (2) 0.8453 1.0185 (2) 1.0714 (2) 0.8182 (2) 0.7263 (3) 0.6491 (3) 0.5456 (2) 0.5514 (3) 0.5568 (2) 0.5955 (2) 0.5808 (2) 0.6521 (2) 0.6568 (2) 0.4542 (2) 0.4131 0.5260 (3) 0.5333 0.5846 (2) 0.6310 0.5746 (2) 0.6338 (2) 0.6784 0.6259 (2) 0.6661 0.5570 (2) 0.5475 (2) 0.5888 0.4766 (2) 0.4697 0.4151 (2) 0.3666 0.4937 (2) 0.5028 (2) 0.2385 (2) 0.1678 (2) 0.2220 (2) 0.1646 (2) 0.1990 (2) 0.1640 (2) 0.1680 (2) 0.1643 (2) 0.1273 (2) 0.1512 (2) 0.79913 (17) 0.90697 (17) 1.04445 (17). Acta Cryst. (2006). E62, m1909–m1911. 0.4239 0.5130 (2) 0.5678 0.4384 (2) 0.44742 (19) 0.8209 (2) 0.8860 (2) 0.8380 (3) 0.9016 (2) 0.9780 (3) 0.4696 (2) 0.4708 (2) 0.5698 (2) 0.5661 (2) 0.4848 (2) 0.8358 (2) 0.8150 0.8819 (3) 0.8896 0.9150 (2) 0.9470 0.9008 (2) 0.9321 (2) 0.9674 0.9112 (2) 0.9315 0.8584 (2) 0.8330 (2) 0.8486 0.7849 (2) 0.7676 0.7621 (2) 0.7304 0.83029 (19) 0.8511 (2) 0.6976 (2) 0.7259 (2) 0.7636 (2) 0.7722 (2) 0.8366 (2) 0.8221 (2) 0.9024 (2) 0.86979 (19) 0.9527 (2) 0.91734 (19) 0.61437 (17) 0.74087 (16) 0.53631 (16). 0.5563 0.44000 (16) 0.4479 0.35512 (15) 0.27573 (15) 0.31066 (16) 0.3509 (2) 0.4073 (2) 0.44048 (19) 0.4765 (2) 0.51195 (17) 0.59231 (16) 0.60479 (16) 0.66886 (16) 0.75284 (15) 0.85193 (16) 0.8274 0.80270 (19) 0.7469 0.83712 (19) 0.8048 0.92224 (19) 0.9637 (2) 0.9336 1.0459 (2) 1.0716 1.09435 (18) 1.18006 (19) 1.2088 1.22132 (18) 1.2781 1.17733 (16) 1.2059 1.05507 (17) 0.96745 (17) 0.90502 (15) 0.83132 (15) 0.74747 (15) 0.67231 (14) 0.58908 (15) 0.51389 (14) 0.43125 (15) 0.35577 (14) 0.27605 (15) 0.19886 (14) 0.22268 (14) 0.14127 (12) 0.21838 (13). 0.035* 0.0267 (5) 0.032* 0.0229 (5) 0.0220 (5) 0.0270 (5) 0.0345 (6) 0.0370 (7) 0.0337 (6) 0.0387 (7) 0.0305 (6) 0.0254 (5) 0.0258 (5) 0.0256 (5) 0.0238 (5) 0.0325 (6) 0.039* 0.0387 (7) 0.046* 0.0366 (7) 0.044* 0.0305 (6) 0.0355 (7) 0.043* 0.0345 (7) 0.041* 0.0283 (6) 0.0323 (6) 0.039* 0.0311 (6) 0.037* 0.0271 (5) 0.032* 0.0241 (5) 0.0254 (5) 0.0256 (5) 0.0245 (5) 0.0233 (5) 0.0222 (5) 0.0236 (5) 0.0224 (5) 0.0229 (5) 0.0212 (5) 0.0248 (5) 0.0214 (5) 0.0240 (4) 0.0210 (4) 0.0216 (4). sup-3.

(7) supporting information N4 N5 N6 O1 H1A H1B O2 O3 O4 O5 O6 H6A H6B O7 H7A H7B O8 H8A H8B O9 O10 O11 O12 O13 H13A H13B O14 H14A H14B F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19. 0.94561 (18) 0.44311 (19) 0.42296 (18) 1.05782 (15) 1.057 (3) 1.1156 (19) 0.82544 (16) 0.87687 (19) 0.73773 (16) 0.57842 (16) 0.21278 (15) 0.235 (3) 0.183 (3) 0.40724 (16) 0.379 (3) 0.415 (3) 0.24015 (16) 0.196 (2) 0.213 (3) 0.25083 (16) 0.27299 (19) 0.12639 (16) 0.19102 (18) 0.11155 (19) 0.117 (3) 0.139 (3) 0.5717 (3) 0.529 (4) 0.557 (5) 0.6653 (2) 0.76424 (18) 0.61555 (14) 0.70507 (18) 0.47889 (17) 0.50129 (18) 0.5721 (2) 0.63076 (17) 0.62119 (14) 0.56749 (15) 0.69820 (14) 0.54794 (15) 0.60186 (15) 0.47957 (14) 0.61709 (15) 0.74979 (13) 0.07888 (13) 0.13908 (15) 0.22924 (15). Acta Cryst. (2006). E62, m1909–m1911. 0.51914 (17) 0.82103 (18) 0.78383 (16) 0.67892 (14) 0.7357 (16) 0.644 (2) 0.73301 (15) 0.86375 (17) 0.41427 (15) 0.50037 (16) 0.73669 (15) 0.6836 (18) 0.775 (2) 0.61865 (15) 0.593 (3) 0.583 (2) 0.91993 (15) 0.940 (3) 0.938 (3) 0.77031 (14) 0.61056 (16) 0.84333 (14) 0.96729 (15) 0.97708 (16) 1.019 (2) 0.9245 (19) 0.6144 (3) 0.603 (5) 0.591 (5) 0.95839 (17) 0.92810 (18) 0.78863 (15) 0.77189 (14) 0.95016 (17) 0.83885 (16) 1.05102 (16) 0.9364 (2) 0.50011 (15) 0.37534 (13) 0.42130 (14) 0.41963 (13) 0.63050 (13) 0.60587 (13) 0.65495 (13) 0.55726 (13) 0.79814 (14) 0.64976 (14) 0.85173 (13). 0.36712 (13) 0.93215 (13) 1.09631 (13) 0.29094 (11) 0.282 (2) 0.278 (2) 0.33026 (12) 0.26480 (14) 0.76271 (12) 0.79911 (12) 1.10209 (11) 1.1370 (18) 1.128 (2) 1.03947 (11) 1.017 (2) 1.0872 (13) 0.99704 (11) 0.9622 (19) 1.0368 (17) 0.91641 (10) 0.94211 (12) 0.20584 (10) 0.13913 (11) 0.87225 (12) 0.8287 (17) 0.864 (3) 0.9091 (2) 0.948 (3) 0.877 (3) 0.28837 (14) 0.39051 (16) 0.37142 (12) 0.47344 (11) 0.37703 (13) 0.49450 (13) 0.41391 (16) 0.52831 (16) 0.44884 (10) 0.52340 (11) 0.59256 (11) 0.65630 (10) 0.53243 (10) 0.62763 (10) 0.68013 (11) 0.63230 (10) 0.83879 (10) 0.83079 (10) 0.73953 (9). 0.0224 (4) 0.0264 (5) 0.0226 (4) 0.0227 (4) 0.034* 0.034* 0.0295 (4) 0.0401 (5) 0.0291 (4) 0.0307 (4) 0.0230 (4) 0.035* 0.035* 0.0259 (4) 0.039* 0.039* 0.0265 (4) 0.040* 0.040* 0.0258 (4) 0.0352 (5) 0.0242 (4) 0.0296 (4) 0.0326 (5) 0.049* 0.049* 0.0346 (11) 0.052* 0.052* 0.0633 (7) 0.0580 (7) 0.0390 (4) 0.0430 (5) 0.0484 (5) 0.0482 (5) 0.0596 (7) 0.0631 (7) 0.0377 (4) 0.0349 (4) 0.0345 (4) 0.0341 (4) 0.0341 (4) 0.0327 (4) 0.0347 (4) 0.0312 (4) 0.0325 (4) 0.0340 (4) 0.0312 (4). 0.658 (9) 0.658 (9) 0.658 (9). sup-4.

(8) supporting information F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 Zn1 Zn2. 0.32003 (13) 0.06103 (13) 0.18385 (15) 0.15670 (15) 0.30407 (13) 0.06401 (13) 0.22472 (16) 0.08645 (15) 0.25718 (15) 0.09988 (15) 0.26162 (14) 0.02332 (15) 0.17557 (19) 0.92431 (2) 0.32520 (2). 0.70138 (14) 0.80958 (13) 0.68188 (12) 0.93047 (12) 0.81389 (15) 0.82016 (13) 0.73579 (13) 0.98178 (12) 0.92530 (15) 0.81457 (13) 0.81447 (15) 0.99493 (14) 1.02039 (14) 0.64810 (2) 0.77141 (2). 0.74712 (9) 0.68455 (9) 0.66690 (9) 0.58572 (9) 0.58530 (10) 0.52899 (9) 0.50628 (9) 0.43079 (9) 0.42581 (10) 0.37561 (9) 0.34125 (10) 0.28353 (10) 0.26881 (10) 0.264318 (16) 1.014147 (16). 0.0334 (4) 0.0293 (4) 0.0322 (4) 0.0309 (4) 0.0366 (4) 0.0290 (4) 0.0350 (4) 0.0328 (4) 0.0382 (4) 0.0324 (4) 0.0372 (4) 0.0395 (4) 0.0442 (5) 0.02023 (8) 0.02163 (8). Atomic displacement parameters (Å2). C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29. U11. U22. U33. U12. U13. U23. 0.0295 (14) 0.0263 (14) 0.0259 (14) 0.0238 (13) 0.0325 (15) 0.0340 (15) 0.0276 (13) 0.0299 (14) 0.0285 (14) 0.0232 (12) 0.0218 (12) 0.0217 (12) 0.0270 (13) 0.0298 (14) 0.0280 (13) 0.0279 (13) 0.0331 (15) 0.0353 (15) 0.0299 (14) 0.0349 (15) 0.0340 (15) 0.0289 (13) 0.0234 (12) 0.0247 (12) 0.0294 (14) 0.0346 (16) 0.0378 (17) 0.0277 (14) 0.0357 (17). 0.0311 (15) 0.0300 (15) 0.0323 (16) 0.0265 (14) 0.0353 (16) 0.0377 (16) 0.0280 (14) 0.0324 (15) 0.0284 (14) 0.0243 (13) 0.0235 (13) 0.0241 (13) 0.0299 (14) 0.0336 (15) 0.0305 (15) 0.0245 (13) 0.0246 (14) 0.0240 (14) 0.0281 (14) 0.0360 (16) 0.0400 (16) 0.0358 (15) 0.0260 (13) 0.0243 (13) 0.0306 (14) 0.0310 (16) 0.0410 (18) 0.0356 (16) 0.0415 (18). 0.0335 (14) 0.0523 (18) 0.0542 (18) 0.0387 (15) 0.0353 (15) 0.0251 (13) 0.0226 (12) 0.0172 (11) 0.0230 (12) 0.0217 (11) 0.0206 (11) 0.0252 (12) 0.0202 (11) 0.0249 (12) 0.0322 (14) 0.0301 (13) 0.0402 (15) 0.0388 (15) 0.0281 (13) 0.0243 (12) 0.0179 (11) 0.0203 (11) 0.0232 (11) 0.0222 (11) 0.0244 (12) 0.0398 (16) 0.0368 (15) 0.0370 (15) 0.0437 (17). −0.0143 (12) −0.0131 (12) −0.0092 (12) −0.0028 (11) −0.0018 (13) 0.0019 (13) −0.0015 (11) −0.0020 (12) −0.0081 (12) −0.0067 (11) −0.0026 (10) −0.0037 (10) −0.0101 (11) −0.0109 (12) −0.0082 (12) −0.0103 (11) −0.0093 (12) −0.0133 (12) −0.0167 (12) −0.0232 (13) −0.0236 (13) −0.0175 (12) −0.0128 (11) −0.0121 (10) −0.0111 (12) −0.0120 (13) −0.0152 (14) −0.0109 (13) −0.0171 (15). 0.0040 (11) 0.0025 (13) −0.0038 (13) −0.0061 (11) −0.0102 (12) −0.0081 (11) −0.0031 (10) 0.0020 (10) 0.0044 (10) 0.0021 (9) −0.0011 (9) −0.0012 (9) 0.0021 (10) 0.0039 (10) 0.0010 (11) −0.0031 (10) −0.0040 (12) −0.0051 (12) −0.0033 (10) −0.0036 (11) 0.0018 (10) 0.0038 (10) −0.0011 (9) −0.0020 (9) 0.0057 (10) 0.0092 (12) 0.0120 (13) 0.0056 (12) 0.0112 (14). −0.0089 (12) −0.0146 (13) −0.0233 (14) −0.0186 (12) −0.0213 (12) −0.0165 (12) −0.0110 (10) −0.0055 (10) −0.0026 (10) −0.0064 (10) −0.0098 (9) −0.0118 (10) −0.0103 (10) −0.0149 (11) −0.0174 (11) −0.0106 (10) −0.0108 (12) −0.0034 (11) −0.0036 (11) −0.0003 (11) −0.0041 (11) −0.0093 (10) −0.0069 (10) −0.0086 (9) −0.0137 (11) −0.0155 (13) −0.0201 (13) −0.0115 (12) −0.0191 (14). Acta Cryst. (2006). E62, m1909–m1911. sup-5.

(9) supporting information C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 C56 N1 N2 N3 N4 N5 N6 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 F1. 0.0340 (16) 0.0258 (13) 0.0272 (13) 0.0275 (13) 0.0277 (13) 0.0343 (15) 0.0377 (17) 0.0306 (15) 0.0242 (13) 0.0233 (14) 0.0233 (13) 0.0233 (13) 0.0319 (15) 0.0374 (16) 0.0312 (14) 0.0205 (12) 0.0215 (12) 0.0352 (14) 0.0316 (14) 0.0286 (13) 0.0290 (13) 0.0280 (13) 0.0283 (13) 0.0296 (13) 0.0261 (12) 0.0372 (15) 0.0283 (13) 0.0211 (10) 0.0213 (10) 0.0221 (10) 0.0254 (11) 0.0274 (11) 0.0256 (11) 0.0264 (9) 0.0320 (10) 0.0458 (13) 0.0286 (10) 0.0304 (10) 0.0264 (9) 0.0332 (10) 0.0323 (10) 0.0366 (11) 0.0551 (14) 0.0340 (10) 0.0462 (12) 0.0464 (13) 0.0310 (18) 0.0579 (14). 0.0308 (15) 0.0282 (14) 0.0272 (14) 0.0266 (14) 0.0253 (13) 0.0380 (16) 0.0399 (18) 0.0283 (15) 0.0213 (13) 0.0251 (14) 0.0268 (15) 0.0216 (13) 0.0292 (15) 0.0322 (15) 0.0291 (14) 0.0199 (12) 0.0205 (12) 0.0317 (14) 0.0295 (14) 0.0276 (13) 0.0262 (13) 0.0299 (14) 0.0259 (13) 0.0263 (13) 0.0248 (13) 0.0228 (13) 0.0238 (12) 0.0265 (12) 0.0237 (11) 0.0249 (11) 0.0270 (11) 0.0291 (12) 0.0236 (11) 0.0233 (9) 0.0304 (11) 0.0345 (12) 0.0305 (11) 0.0359 (11) 0.0261 (10) 0.0261 (10) 0.0282 (10) 0.0290 (10) 0.0317 (11) 0.0273 (10) 0.0301 (10) 0.0276 (11) 0.042 (2) 0.0439 (13). Acta Cryst. (2006). E62, m1909–m1911. 0.0275 (13) 0.0229 (12) 0.0209 (11) 0.0239 (12) 0.0209 (11) 0.0196 (12) 0.0251 (13) 0.0371 (15) 0.0385 (15) 0.0541 (19) 0.0562 (19) 0.0404 (15) 0.0408 (16) 0.0269 (13) 0.0220 (12) 0.0306 (13) 0.0291 (13) 0.0140 (10) 0.0170 (11) 0.0174 (11) 0.0157 (10) 0.0164 (11) 0.0160 (10) 0.0171 (11) 0.0160 (10) 0.0174 (11) 0.0138 (10) 0.0259 (10) 0.0177 (9) 0.0202 (10) 0.0178 (9) 0.0202 (10) 0.0208 (10) 0.0209 (8) 0.0264 (9) 0.0411 (12) 0.0245 (9) 0.0228 (9) 0.0182 (8) 0.0196 (8) 0.0196 (9) 0.0156 (8) 0.0237 (9) 0.0171 (8) 0.0171 (8) 0.0221 (9) 0.042 (2) 0.0494 (12). −0.0113 (13) −0.0108 (11) −0.0101 (11) −0.0109 (11) −0.0098 (11) −0.0122 (13) −0.0105 (14) −0.0085 (12) −0.0069 (11) −0.0097 (12) −0.0102 (12) −0.0058 (11) −0.0083 (12) −0.0109 (13) −0.0116 (12) −0.0069 (10) −0.0063 (10) −0.0151 (12) −0.0145 (12) −0.0122 (11) −0.0130 (11) −0.0134 (11) −0.0113 (11) −0.0144 (11) −0.0116 (11) −0.0137 (11) −0.0102 (11) −0.0088 (9) −0.0068 (9) −0.0098 (9) −0.0139 (9) −0.0112 (10) −0.0098 (9) −0.0112 (8) −0.0109 (9) −0.0179 (11) −0.0065 (9) −0.0095 (9) −0.0114 (8) −0.0114 (8) −0.0101 (9) −0.0138 (9) −0.0189 (10) −0.0166 (8) −0.0217 (10) −0.0096 (10) −0.0169 (15) 0.0043 (11). −0.0009 (11) 0.0001 (10) −0.0020 (10) −0.0024 (10) −0.0031 (10) 0.0013 (11) 0.0075 (12) 0.0094 (12) 0.0044 (11) 0.0037 (12) −0.0033 (13) −0.0047 (11) −0.0106 (12) −0.0081 (11) −0.0028 (10) −0.0017 (10) 0.0019 (10) 0.0014 (10) 0.0008 (10) 0.0010 (9) 0.0007 (9) 0.0008 (9) 0.0021 (9) 0.0017 (9) 0.0011 (9) 0.0009 (10) 0.0004 (9) 0.0012 (8) 0.0009 (8) 0.0010 (8) 0.0015 (8) 0.0033 (8) −0.0030 (8) 0.0018 (7) 0.0097 (8) 0.0169 (10) −0.0010 (7) 0.0020 (8) 0.0036 (7) 0.0024 (7) −0.0020 (7) −0.0021 (7) −0.0093 (9) 0.0034 (7) 0.0053 (8) −0.0052 (9) 0.0105 (14) 0.0099 (10). −0.0084 (11) −0.0065 (10) −0.0024 (10) −0.0060 (10) −0.0076 (10) −0.0017 (11) 0.0023 (12) 0.0028 (12) −0.0017 (11) −0.0069 (13) −0.0131 (13) −0.0095 (11) −0.0143 (12) −0.0099 (11) −0.0060 (10) −0.0053 (10) −0.0024 (10) −0.0080 (10) −0.0083 (10) −0.0085 (9) −0.0080 (9) −0.0078 (10) −0.0084 (9) −0.0073 (9) −0.0073 (9) −0.0063 (9) −0.0061 (9) −0.0091 (9) −0.0067 (8) −0.0082 (8) −0.0056 (8) −0.0035 (9) −0.0062 (8) −0.0076 (7) −0.0124 (8) −0.0149 (10) −0.0063 (8) −0.0071 (8) −0.0074 (7) −0.0077 (7) −0.0068 (7) −0.0073 (7) −0.0057 (8) −0.0085 (7) −0.0056 (7) −0.0056 (8) −0.0263 (16) 0.0099 (10). sup-6.

(10) supporting information F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 Zn1 Zn2. 0.0543 (13) 0.0319 (9) 0.0620 (13) 0.0439 (11) 0.0568 (13) 0.0680 (15) 0.0382 (11) 0.0314 (9) 0.0396 (10) 0.0288 (9) 0.0468 (10) 0.0459 (10) 0.0303 (9) 0.0432 (10) 0.0316 (9) 0.0310 (9) 0.0498 (11) 0.0492 (10) 0.0286 (8) 0.0261 (8) 0.0549 (11) 0.0518 (11) 0.0262 (8) 0.0340 (9) 0.0524 (11) 0.0490 (11) 0.0472 (11) 0.0558 (11) 0.0341 (9) 0.0409 (10) 0.0888 (16) 0.02239 (15) 0.02592 (15). 0.0726 (16) 0.0499 (11) 0.0349 (10) 0.0534 (13) 0.0447 (12) 0.0402 (12) 0.101 (2) 0.0531 (12) 0.0284 (9) 0.0376 (10) 0.0329 (9) 0.0335 (9) 0.0336 (9) 0.0267 (9) 0.0392 (10) 0.0457 (10) 0.0405 (10) 0.0350 (9) 0.0472 (11) 0.0446 (10) 0.0262 (8) 0.0271 (8) 0.0632 (13) 0.0434 (10) 0.0278 (9) 0.0258 (8) 0.0623 (12) 0.0370 (9) 0.0486 (11) 0.0439 (11) 0.0385 (10) 0.02375 (15) 0.02748 (16). 0.0839 (16) 0.0463 (10) 0.0261 (8) 0.0437 (11) 0.0471 (11) 0.0777 (16) 0.0743 (16) 0.0277 (8) 0.0376 (9) 0.0389 (9) 0.0244 (8) 0.0235 (8) 0.0340 (9) 0.0369 (9) 0.0267 (8) 0.0222 (7) 0.0216 (7) 0.0188 (7) 0.0207 (7) 0.0200 (7) 0.0196 (7) 0.0207 (7) 0.0212 (7) 0.0189 (7) 0.0194 (7) 0.0218 (7) 0.0211 (7) 0.0169 (7) 0.0222 (8) 0.0261 (8) 0.0215 (8) 0.01586 (13) 0.01473 (13). −0.0447 (12) −0.0197 (9) −0.0101 (9) −0.0091 (10) −0.0248 (10) −0.0299 (11) −0.0135 (12) −0.0141 (9) −0.0046 (8) −0.0066 (8) −0.0206 (8) −0.0222 (8) −0.0058 (7) −0.0121 (8) −0.0203 (8) −0.0098 (8) −0.0287 (9) −0.0256 (8) −0.0068 (8) −0.0153 (7) −0.0159 (8) −0.0184 (8) −0.0192 (9) −0.0245 (8) −0.0021 (8) −0.0058 (8) −0.0407 (10) −0.0323 (9) 0.0018 (8) 0.0054 (9) −0.0438 (11) −0.00966 (12) −0.01326 (13). 0.0374 (12) 0.0060 (8) −0.0012 (8) −0.0086 (9) 0.0211 (10) 0.0433 (13) −0.0024 (11) 0.0067 (7) −0.0130 (7) −0.0052 (7) −0.0002 (7) −0.0066 (7) −0.0038 (7) −0.0074 (8) 0.0007 (6) 0.0029 (6) −0.0012 (7) −0.0023 (7) 0.0001 (6) 0.0020 (6) −0.0032 (7) −0.0025 (7) 0.0008 (6) 0.0023 (6) −0.0029 (7) −0.0026 (7) 0.0035 (7) 0.0033 (7) −0.0019 (7) −0.0065 (7) 0.0037 (9) 0.00286 (10) 0.00132 (10). −0.0618 (14) −0.0248 (9) −0.0066 (7) −0.0124 (9) −0.0193 (9) −0.0325 (11) −0.0647 (15) −0.0131 (8) −0.0122 (7) −0.0159 (8) −0.0031 (7) 0.0025 (7) −0.0129 (7) −0.0095 (7) −0.0062 (7) −0.0156 (7) −0.0072 (7) −0.0070 (6) −0.0108 (7) −0.0101 (7) −0.0078 (6) −0.0091 (6) −0.0093 (8) −0.0101 (6) −0.0100 (6) −0.0101 (6) −0.0109 (8) −0.0080 (6) −0.0164 (7) −0.0172 (8) −0.0078 (7) −0.00658 (11) −0.00631 (11). Geometric parameters (Å, º) C1—N1 C1—C2 C1—H1 C2—C3 C2—H2 C3—C4 C3—H3 C4—C12 C4—C5 C5—C6 C5—H5 C6—C7. Acta Cryst. (2006). E62, m1909–m1911. 1.331 (4) 1.401 (4) 0.93 1.368 (5) 0.93 1.407 (4) 0.93 1.409 (4) 1.430 (4) 1.345 (5) 0.93 1.431 (4). C35—N5 C35—C36 C35—H35 C36—C37 C36—H36 C37—C38 C37—H37 C38—C46 C38—C39 C39—C40 C39—H39 C40—C41. 1.326 (3) 1.407 (4) 0.93 1.358 (5) 0.93 1.411 (4) 0.93 1.415 (4) 1.427 (5) 1.349 (5) 0.93 1.428 (4). sup-7.

(11) supporting information C6—H6 C7—C11 C7—C8 C8—C9 C8—H8 C9—C10 C9—H9 C10—N2 C10—H10 C11—N2 C11—C12 C12—N1 C13—N3 C13—C14 C13—H13 C14—C15 C14—H14 C15—C16 C15—H15 C16—C24 C16—C17 C17—C18 C17—H17 C18—C19 C18—H18 C19—C20 C19—C23 C20—C21 C20—H20 C21—C22 C21—H21 C22—N4 C22—H22 C23—N4 C23—C24 C24—N3 C25—O3 C25—O2 C25—C26 C26—F2 C26—F1 C26—C27 C27—F3 C27—F4 C27—C28 C28—F6 C28—F5 C28—C29. Acta Cryst. (2006). E62, m1909–m1911. 0.93 1.401 (4) 1.412 (4) 1.368 (4) 0.93 1.405 (4) 0.93 1.330 (3) 0.93 1.360 (3) 1.440 (4) 1.358 (3) 1.331 (3) 1.395 (4) 0.93 1.373 (4) 0.93 1.409 (4) 0.93 1.403 (4) 1.435 (4) 1.346 (4) 0.93 1.434 (4) 0.93 1.404 (4) 1.407 (4) 1.363 (5) 0.93 1.405 (4) 0.93 1.326 (3) 0.93 1.354 (4) 1.441 (4) 1.357 (3) 1.227 (3) 1.243 (4) 1.549 (4) 1.329 (4) 1.389 (4) 1.522 (4) 1.335 (4) 1.369 (4) 1.569 (4) 1.333 (4) 1.367 (4) 1.522 (5). C40—H40 C41—C42 C41—C45 C42—C43 C42—H42 C43—C44 C43—H43 C44—N6 C44—H44 C45—N6 C45—C46 C46—N5 C47—O10 C47—O9 C47—C48 C48—F18 C48—F17 C48—C49 C49—F19 C49—F20 C49—C50 C50—F21 C50—F22 C50—C51 C51—F23 C51—F24 C51—C52 C52—F26 C52—F25 C52—C53 C53—F27 C53—F28 C53—C54 C54—F29 C54—F30 C54—C55 C55—F31 C55—F32 C55—C56 C56—O12 C56—O11 N1—Zn1 N2—Zn1 N3—Zn1 N4—Zn1 N5—Zn2 N6—Zn2 O1—Zn1. 0.93 1.403 (4) 1.411 (4) 1.374 (4) 0.93 1.395 (4) 0.93 1.328 (3) 0.93 1.357 (3) 1.440 (4) 1.346 (4) 1.226 (4) 1.256 (3) 1.562 (4) 1.346 (3) 1.357 (3) 1.548 (3) 1.342 (3) 1.349 (3) 1.557 (3) 1.338 (3) 1.349 (3) 1.558 (3) 1.339 (3) 1.342 (3) 1.553 (3) 1.338 (3) 1.346 (3) 1.553 (3) 1.338 (3) 1.345 (3) 1.559 (3) 1.340 (3) 1.345 (3) 1.541 (4) 1.343 (3) 1.359 (3) 1.557 (3) 1.237 (3) 1.246 (3) 2.197 (2) 2.126 (2) 2.206 (2) 2.138 (2) 2.136 (2) 2.168 (2) 2.1532 (19). sup-8.

(12) supporting information C29—F8 C29—F7 C29—C29i C30—F10 C30—F9 C30—C30ii C30—C31 C31—F11 C31—F12 C31—C32 C32—F14 C32—F13 C32—C33 C33—F15 C33—F16 C33—C34 C34—O4 C34—O5. 1.343 (4) 1.347 (4) 1.566 (6) 1.346 (3) 1.351 (3) 1.539 (6) 1.564 (4) 1.340 (3) 1.343 (3) 1.541 (4) 1.347 (3) 1.346 (3) 1.549 (4) 1.350 (3) 1.362 (3) 1.561 (4) 1.237 (3) 1.239 (3). O1—H1A O1—H1B O2—Zn1 O6—Zn2 O6—H6A O6—H6B O7—Zn2 O7—H7A O7—H7B O8—Zn2 O8—H8A O8—H8B O9—Zn2 O13—H13A O13—H13B O14—H14A O14—H14B. 0.824 (18) 0.833 (18) 2.040 (2) 2.0587 (18) 0.823 (18) 0.818 (18) 2.144 (2) 0.840 (19) 0.826 (18) 2.113 (2) 0.826 (19) 0.820 (19) 2.0980 (18) 0.822 (19) 0.819 (19) 0.83 (2) 0.82 (2). N1—C1—C2 N1—C1—H1 C2—C1—H1 C3—C2—C1 C3—C2—H2 C1—C2—H2 C2—C3—C4 C2—C3—H3 C4—C3—H3 C3—C4—C12 C3—C4—C5 C12—C4—C5 C6—C5—C4 C6—C5—H5 C4—C5—H5 C5—C6—C7 C5—C6—H6 C7—C6—H6 C11—C7—C8 C11—C7—C6 C8—C7—C6 C9—C8—C7 C9—C8—H8 C7—C8—H8 C8—C9—C10 C8—C9—H9 C10—C9—H9 N2—C10—C9 N2—C10—H10. 123.1 (3) 118.4 118.4 119.2 (3) 120.4 120.4 119.5 (3) 120.2 120.2 117.5 (3) 123.7 (3) 118.9 (3) 120.9 (3) 119.5 119.5 121.7 (3) 119.1 119.1 117.3 (3) 118.9 (3) 123.7 (3) 120.1 (2) 120.0 120.0 118.8 (3) 120.6 120.6 122.5 (3) 118.8. C38—C39—H39 C39—C40—C41 C39—C40—H40 C41—C40—H40 C42—C41—C45 C42—C41—C40 C45—C41—C40 C43—C42—C41 C43—C42—H42 C41—C42—H42 C42—C43—C44 C42—C43—H43 C44—C43—H43 N6—C44—C43 N6—C44—H44 C43—C44—H44 N6—C45—C41 N6—C45—C46 C41—C45—C46 N5—C46—C38 N5—C46—C45 C38—C46—C45 O10—C47—O9 O10—C47—C48 O9—C47—C48 F18—C48—F17 F18—C48—C49 F17—C48—C49 F18—C48—C47. 119.5 121.4 (3) 119.3 119.3 117.0 (3) 123.7 (3) 119.2 (3) 119.6 (3) 120.2 120.2 119.5 (3) 120.3 120.3 122.6 (3) 118.7 118.7 122.9 (3) 117.5 (2) 119.6 (2) 122.8 (3) 118.1 (2) 119.1 (3) 130.2 (3) 117.0 (2) 112.9 (2) 107.7 (2) 108.4 (2) 107.6 (2) 111.2 (2). Acta Cryst. (2006). E62, m1909–m1911. sup-9.

(13) supporting information C9—C10—H10 N2—C11—C7 N2—C11—C12 C7—C11—C12 N1—C12—C4 N1—C12—C11 C4—C12—C11 N3—C13—C14 N3—C13—H13 C14—C13—H13 C15—C14—C13 C15—C14—H14 C13—C14—H14 C14—C15—C16 C14—C15—H15 C16—C15—H15 C24—C16—C15 C24—C16—C17 C15—C16—C17 C18—C17—C16 C18—C17—H17 C16—C17—H17 C17—C18—C19 C17—C18—H18 C19—C18—H18 C20—C19—C23 C20—C19—C18 C23—C19—C18 C21—C20—C19 C21—C20—H20 C19—C20—H20 C20—C21—C22 C20—C21—H21 C22—C21—H21 N4—C22—C21 N4—C22—H22 C21—C22—H22 N4—C23—C19 N4—C23—C24 C19—C23—C24 N3—C24—C16 N3—C24—C23 C16—C24—C23 O3—C25—O2 O3—C25—C26 O2—C25—C26 F2—C26—F1 F2—C26—C27. Acta Cryst. (2006). E62, m1909–m1911. 118.8 122.5 (2) 118.0 (2) 119.5 (2) 122.8 (3) 117.4 (2) 119.8 (2) 123.2 (3) 118.4 118.4 118.9 (3) 120.6 120.6 119.6 (3) 120.2 120.2 117.4 (3) 119.4 (3) 123.2 (3) 120.8 (3) 119.6 119.6 121.4 (3) 119.3 119.3 116.9 (3) 124.0 (3) 119.2 (3) 120.1 (3) 119.9 119.9 119.4 (3) 120.3 120.3 122.0 (3) 119.0 119.0 122.7 (2) 117.8 (2) 119.5 (3) 122.7 (2) 117.5 (2) 119.7 (2) 128.4 (3) 114.4 (3) 117.2 (2) 108.4 (3) 109.4 (3). F17—C48—C47 C49—C48—C47 F19—C49—F20 F19—C49—C48 F20—C49—C48 F19—C49—C50 F20—C49—C50 C48—C49—C50 F21—C50—F22 F21—C50—C49 F22—C50—C49 F21—C50—C51 F22—C50—C51 C49—C50—C51 F23—C51—F24 F23—C51—C52 F24—C51—C52 F23—C51—C50 F24—C51—C50 C52—C51—C50 F26—C52—F25 F26—C52—C53 F25—C52—C53 F26—C52—C51 F25—C52—C51 C53—C52—C51 F27—C53—F28 F27—C53—C52 F28—C53—C52 F27—C53—C54 F28—C53—C54 C52—C53—C54 F29—C54—F30 F29—C54—C55 F30—C54—C55 F29—C54—C53 F30—C54—C53 C55—C54—C53 F31—C55—F32 F31—C55—C54 F32—C55—C54 F31—C55—C56 F32—C55—C56 C54—C55—C56 O12—C56—O11 O12—C56—C55 O11—C56—C55 C1—N1—C12. 108.9 (2) 112.9 (2) 108.4 (2) 109.1 (2) 107.6 (2) 108.3 (2) 108.8 (2) 114.4 (2) 108.3 (2) 108.9 (2) 108.4 (2) 108.5 (2) 108.2 (2) 114.3 (2) 109.2 (2) 108.6 (2) 108.7 (2) 108.8 (2) 108.6 (2) 113.0 (2) 108.6 (2) 108.8 (2) 107.6 (2) 108.5 (2) 107.76 (19) 115.4 (2) 108.4 (2) 108.5 (2) 108.8 (2) 109.4 (2) 108.9 (2) 112.7 (2) 108.5 (2) 108.4 (2) 108.2 (2) 107.96 (19) 107.8 (2) 115.8 (2) 107.7 (2) 108.9 (2) 106.9 (2) 109.1 (2) 110.9 (2) 113.2 (2) 129.3 (2) 115.4 (2) 115.4 (2) 117.9 (2). sup-10.

(14) supporting information F1—C26—C27 F2—C26—C25 F1—C26—C25 C27—C26—C25 F3—C27—F4 F3—C27—C26 F4—C27—C26 F3—C27—C28 F4—C27—C28 C26—C27—C28 F6—C28—F5 F6—C28—C29 F5—C28—C29 F6—C28—C27 F5—C28—C27 C29—C28—C27 F8—C29—F7 F8—C29—C28 F7—C29—C28 F8—C29—C29i F7—C29—C29i C28—C29—C29i F10—C30—F9 F10—C30—C30ii F9—C30—C30ii F10—C30—C31 F9—C30—C31 C30ii—C30—C31 F11—C31—F12 F11—C31—C32 F12—C31—C32 F11—C31—C30 F12—C31—C30 C32—C31—C30 F14—C32—F13 F14—C32—C31 F13—C32—C31 F14—C32—C33 F13—C32—C33 C31—C32—C33 F15—C33—F16 F15—C33—C32 F16—C33—C32 F15—C33—C34 F16—C33—C34 C32—C33—C34 O4—C34—O5 O4—C34—C33. Acta Cryst. (2006). E62, m1909–m1911. 104.3 (3) 109.6 (3) 107.5 (2) 117.2 (3) 107.6 (3) 110.9 (3) 105.7 (3) 104.1 (3) 107.8 (2) 120.2 (3) 106.1 (3) 110.7 (3) 106.5 (3) 106.0 (3) 107.5 (3) 119.4 (3) 109.8 (3) 107.9 (3) 107.2 (3) 108.7 (4) 108.4 (4) 114.8 (3) 109.3 (2) 108.3 (3) 107.6 (3) 105.1 (2) 108.6 (2) 117.8 (3) 107.9 (2) 109.2 (2) 107.9 (2) 104.4 (2) 108.1 (2) 118.9 (2) 108.9 (2) 108.2 (2) 107.9 (2) 108.8 (2) 107.9 (2) 114.9 (2) 106.7 (2) 106.1 (2) 106.3 (2) 110.2 (2) 110.7 (2) 116.4 (2) 129.9 (3) 115.1 (2). C1—N1—Zn1 C12—N1—Zn1 C10—N2—C11 C10—N2—Zn1 C11—N2—Zn1 C13—N3—C24 C13—N3—Zn1 C24—N3—Zn1 C22—N4—C23 C22—N4—Zn1 C23—N4—Zn1 C35—N5—C46 C35—N5—Zn2 C46—N5—Zn2 C44—N6—C45 C44—N6—Zn2 C45—N6—Zn2 Zn1—O1—H1A Zn1—O1—H1B H1A—O1—H1B C25—O2—Zn1 Zn2—O6—H6A Zn2—O6—H6B H6A—O6—H6B Zn2—O7—H7A Zn2—O7—H7B H7A—O7—H7B Zn2—O8—H8A Zn2—O8—H8B H8A—O8—H8B C47—O9—Zn2 H13A—O13—H13B H14A—O14—H14B O2—Zn1—N2 O2—Zn1—N4 N2—Zn1—N4 O2—Zn1—O1 N2—Zn1—O1 N4—Zn1—O1 O2—Zn1—N1 N2—Zn1—N1 N4—Zn1—N1 O1—Zn1—N1 O2—Zn1—N3 N2—Zn1—N3 N4—Zn1—N3 O1—Zn1—N3 N1—Zn1—N3. 130.6 (2) 111.09 (17) 118.8 (2) 127.32 (18) 112.58 (17) 118.1 (2) 128.79 (19) 112.85 (16) 118.9 (2) 126.0 (2) 115.05 (16) 118.7 (2) 127.7 (2) 112.97 (17) 118.4 (2) 129.24 (19) 111.99 (17) 121 (3) 114 (3) 113 (4) 119.72 (17) 113 (3) 118 (3) 105 (4) 111 (3) 120 (3) 104 (4) 111 (3) 120 (3) 109 (4) 127.12 (17) 106 (4) 102 (6) 103.70 (8) 92.33 (9) 160.24 (9) 91.47 (8) 97.71 (8) 93.28 (8) 94.92 (9) 77.40 (8) 89.95 (8) 172.71 (8) 167.92 (8) 88.03 (8) 76.81 (8) 84.00 (8) 90.39 (8). sup-11.

(15) supporting information O5—C34—C33 N5—C35—C36 N5—C35—H35 C36—C35—H35 C37—C36—C35 C37—C36—H36 C35—C36—H36 C36—C37—C38 C36—C37—H37 C38—C37—H37 C37—C38—C46 C37—C38—C39 C46—C38—C39 C40—C39—C38 C40—C39—H39. 114.9 (2) 122.2 (3) 118.9 118.9 119.7 (3) 120.2 120.2 119.6 (3) 120.2 120.2 117.0 (3) 123.4 (3) 119.6 (3) 120.9 (3) 119.5. O6—Zn2—O9 O6—Zn2—O8 O9—Zn2—O8 O6—Zn2—N5 O9—Zn2—N5 O8—Zn2—N5 O6—Zn2—O7 O9—Zn2—O7 O8—Zn2—O7 N5—Zn2—O7 O6—Zn2—N6 O9—Zn2—N6 O8—Zn2—N6 N5—Zn2—N6 O7—Zn2—N6. 95.59 (8) 87.90 (8) 91.13 (8) 171.75 (9) 90.90 (8) 86.88 (9) 88.76 (8) 90.83 (8) 176.28 (7) 96.25 (9) 95.67 (8) 168.64 (8) 87.75 (8) 77.75 (9) 90.95 (8). N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C5 C3—C4—C5—C6 C12—C4—C5—C6 C4—C5—C6—C7 C5—C6—C7—C11 C5—C6—C7—C8 C11—C7—C8—C9 C6—C7—C8—C9 C7—C8—C9—C10 C8—C9—C10—N2 C8—C7—C11—N2 C6—C7—C11—N2 C8—C7—C11—C12 C6—C7—C11—C12 C3—C4—C12—N1 C5—C4—C12—N1 C3—C4—C12—C11 C5—C4—C12—C11 N2—C11—C12—N1 C7—C11—C12—N1 N2—C11—C12—C4 C7—C11—C12—C4 N3—C13—C14—C15 C13—C14—C15—C16 C14—C15—C16—C24 C14—C15—C16—C17 C24—C16—C17—C18 C15—C16—C17—C18 C16—C17—C18—C19. 2.5 (5) −1.9 (5) −0.4 (4) 179.9 (3) 178.4 (3) −1.2 (4) −2.9 (5) 3.9 (4) −173.6 (3) −0.9 (4) 176.5 (3) 1.7 (4) −0.4 (4) −1.1 (4) −178.7 (2) 176.8 (2) −0.8 (4) 2.5 (4) −177.8 (3) −175.4 (3) 4.3 (4) −3.3 (4) 178.7 (2) 174.8 (2) −3.2 (4) 1.3 (4) −0.2 (4) −1.6 (4) −179.0 (3) −2.4 (4) 174.9 (3) −0.5 (5). C48—C49—C50—F22 F19—C49—C50—C51 F20—C49—C50—C51 C48—C49—C50—C51 F21—C50—C51—F23 F22—C50—C51—F23 C49—C50—C51—F23 F21—C50—C51—F24 F22—C50—C51—F24 C49—C50—C51—F24 F21—C50—C51—C52 F22—C50—C51—C52 C49—C50—C51—C52 F23—C51—C52—F26 F24—C51—C52—F26 C50—C51—C52—F26 F23—C51—C52—F25 F24—C51—C52—F25 C50—C51—C52—F25 F23—C51—C52—C53 F24—C51—C52—C53 C50—C51—C52—C53 F26—C52—C53—F27 F25—C52—C53—F27 C51—C52—C53—F27 F26—C52—C53—F28 F25—C52—C53—F28 C51—C52—C53—F28 F26—C52—C53—C54 F25—C52—C53—C54 C51—C52—C53—C54 F27—C53—C54—F29. −75.8 (3) 41.4 (3) −76.2 (3) 163.3 (2) 47.1 (3) 164.4 (2) −74.7 (3) 165.9 (2) −76.9 (3) 44.1 (3) −73.5 (3) 43.8 (3) 164.7 (2) 165.5 (2) 46.8 (3) −73.8 (3) −77.1 (3) 164.3 (2) 43.7 (3) 43.2 (3) −75.4 (3) 164.0 (2) 162.4 (2) 44.9 (3) −75.5 (3) −79.9 (3) 162.6 (2) 42.3 (3) 41.1 (3) −76.4 (3) 163.2 (2) −84.2 (3). Acta Cryst. (2006). E62, m1909–m1911. sup-12.

(16) supporting information C17—C18—C19—C20 C17—C18—C19—C23 C23—C19—C20—C21 C18—C19—C20—C21 C19—C20—C21—C22 C20—C21—C22—N4 C20—C19—C23—N4 C18—C19—C23—N4 C20—C19—C23—C24 C18—C19—C23—C24 C15—C16—C24—N3 C17—C16—C24—N3 C15—C16—C24—C23 C17—C16—C24—C23 N4—C23—C24—N3 C19—C23—C24—N3 N4—C23—C24—C16 C19—C23—C24—C16 O3—C25—C26—F2 O2—C25—C26—F2 O3—C25—C26—F1 O2—C25—C26—F1 O3—C25—C26—C27 O2—C25—C26—C27 F2—C26—C27—F3 F1—C26—C27—F3 C25—C26—C27—F3 F2—C26—C27—F4 F1—C26—C27—F4 C25—C26—C27—F4 F2—C26—C27—C28 F1—C26—C27—C28 C25—C26—C27—C28 F3—C27—C28—F6 F4—C27—C28—F6 C26—C27—C28—F6 F3—C27—C28—F5 F4—C27—C28—F5 C26—C27—C28—F5 F3—C27—C28—C29 F4—C27—C28—C29 C26—C27—C28—C29 F6—C28—C29—F8 F5—C28—C29—F8 C27—C28—C29—F8 F6—C28—C29—F7 F5—C28—C29—F7 C27—C28—C29—F7. Acta Cryst. (2006). E62, m1909–m1911. −176.5 (3) 2.7 (4) 1.8 (4) −179.0 (3) −1.3 (4) −0.6 (4) −0.5 (4) −179.8 (2) 177.3 (2) −2.0 (4) 2.5 (4) 179.9 (2) −174.4 (2) 3.0 (4) 0.0 (3) −177.9 (2) 177.1 (2) −0.9 (4) −55.7 (4) 122.0 (3) 61.9 (4) −120.3 (3) 178.9 (3) −3.3 (4) −175.3 (3) 68.9 (3) −49.8 (4) −58.9 (3) −174.7 (2) 66.6 (3) 63.2 (4) −52.7 (4) −171.4 (3) 61.9 (3) −52.2 (3) −173.3 (3) −51.2 (3) −165.3 (2) 73.6 (4) −172.5 (3) 73.4 (4) −47.6 (4) 76.6 (3) −168.5 (2) −46.7 (4) −165.2 (3) −50.3 (3) 71.4 (4). F28—C53—C54—F29 C52—C53—C54—F29 F27—C53—C54—F30 F28—C53—C54—F30 C52—C53—C54—F30 F27—C53—C54—C55 F28—C53—C54—C55 C52—C53—C54—C55 F29—C54—C55—F31 F30—C54—C55—F31 C53—C54—C55—F31 F29—C54—C55—F32 F30—C54—C55—F32 C53—C54—C55—F32 F29—C54—C55—C56 F30—C54—C55—C56 C53—C54—C55—C56 F31—C55—C56—O12 F32—C55—C56—O12 C54—C55—C56—O12 F31—C55—C56—O11 F32—C55—C56—O11 C54—C55—C56—O11 C2—C1—N1—C12 C2—C1—N1—Zn1 C4—C12—N1—C1 C11—C12—N1—C1 C4—C12—N1—Zn1 C11—C12—N1—Zn1 C9—C10—N2—C11 C9—C10—N2—Zn1 C7—C11—N2—C10 C12—C11—N2—C10 C7—C11—N2—Zn1 C12—C11—N2—Zn1 C14—C13—N3—C24 C14—C13—N3—Zn1 C16—C24—N3—C13 C23—C24—N3—C13 C16—C24—N3—Zn1 C23—C24—N3—Zn1 C21—C22—N4—C23 C21—C22—N4—Zn1 C19—C23—N4—C22 C24—C23—N4—C22 C19—C23—N4—Zn1 C24—C23—N4—Zn1 C36—C35—N5—C46. 157.4 (2) 36.6 (3) 158.8 (2) 40.4 (3) −80.4 (3) 37.5 (3) −80.9 (3) 158.3 (2) 48.7 (3) 166.2 (2) −72.7 (3) 164.8 (2) −77.8 (3) 43.3 (3) −72.8 (3) 44.7 (3) 165.8 (2) 105.3 (3) −13.1 (4) −133.3 (3) −73.9 (3) 167.6 (2) 47.4 (3) −0.4 (4) −171.8 (2) −2.1 (4) 175.9 (3) 170.9 (2) −11.1 (3) −1.7 (4) 164.3 (2) 2.4 (4) −175.6 (2) −165.5 (2) 16.5 (3) −0.5 (4) 172.9 (2) −1.4 (4) 175.5 (2) −175.9 (2) 1.0 (3) 1.9 (4) −175.95 (19) −1.3 (4) −179.1 (2) 176.8 (2) −1.1 (3) −0.1 (5). sup-13.

(17) supporting information F6—C28—C29—C29i F5—C28—C29—C29i C27—C28—C29—C29i F10—C30—C31—F11 F9—C30—C31—F11 C30ii—C30—C31—F11 F10—C30—C31—F12 F9—C30—C31—F12 C30ii—C30—C31—F12 F10—C30—C31—C32 F9—C30—C31—C32 C30ii—C30—C31—C32 F11—C31—C32—F14 F12—C31—C32—F14 C30—C31—C32—F14 F11—C31—C32—F13 F12—C31—C32—F13 C30—C31—C32—F13 F11—C31—C32—C33 F12—C31—C32—C33 C30—C31—C32—C33 F14—C32—C33—F15 F13—C32—C33—F15 C31—C32—C33—F15 F14—C32—C33—F16 F13—C32—C33—F16 C31—C32—C33—F16 F14—C32—C33—C34 F13—C32—C33—C34 C31—C32—C33—C34 F15—C33—C34—O4 F16—C33—C34—O4 C32—C33—C34—O4 F15—C33—C34—O5 F16—C33—C34—O5 C32—C33—C34—O5 N5—C35—C36—C37 C35—C36—C37—C38 C36—C37—C38—C46 C36—C37—C38—C39 C37—C38—C39—C40 C46—C38—C39—C40 C38—C39—C40—C41 C39—C40—C41—C42 C39—C40—C41—C45 C45—C41—C42—C43 C40—C41—C42—C43 C41—C42—C43—C44. Acta Cryst. (2006). E62, m1909–m1911. −44.8 (5) 70.1 (4) −168.1 (3) 65.8 (3) −51.0 (3) −173.6 (3) −48.9 (3) −165.7 (2) 71.7 (4) −172.3 (2) 70.9 (3) −51.6 (4) −162.7 (2) −45.7 (3) 77.8 (3) 79.6 (3) −163.4 (2) −39.9 (3) −40.8 (3) 76.2 (3) −160.3 (2) −49.3 (3) 68.7 (3) −170.9 (2) −162.6 (2) −44.6 (3) 75.8 (3) 73.6 (3) −168.3 (2) −47.9 (3) −135.3 (2) −17.5 (3) 103.9 (3) 45.3 (3) 163.1 (2) −75.4 (3) −1.8 (5) 1.5 (5) 0.3 (4) 179.2 (3) −175.8 (3) 3.0 (4) −1.0 (5) 178.6 (3) −2.0 (4) −1.6 (4) 177.9 (3) 0.0 (5). C36—C35—N5—Zn2 C38—C46—N5—C35 C45—C46—N5—C35 C38—C46—N5—Zn2 C45—C46—N5—Zn2 C43—C44—N6—C45 C43—C44—N6—Zn2 C41—C45—N6—C44 C46—C45—N6—C44 C41—C45—N6—Zn2 C46—C45—N6—Zn2 O3—C25—O2—Zn1 C26—C25—O2—Zn1 O10—C47—O9—Zn2 C48—C47—O9—Zn2 C25—O2—Zn1—N2 C25—O2—Zn1—N4 C25—O2—Zn1—O1 C25—O2—Zn1—N1 C25—O2—Zn1—N3 C10—N2—Zn1—O2 C11—N2—Zn1—O2 C10—N2—Zn1—N4 C11—N2—Zn1—N4 C10—N2—Zn1—O1 C11—N2—Zn1—O1 C10—N2—Zn1—N1 C11—N2—Zn1—N1 C10—N2—Zn1—N3 C11—N2—Zn1—N3 C22—N4—Zn1—O2 C23—N4—Zn1—O2 C22—N4—Zn1—N2 C23—N4—Zn1—N2 C22—N4—Zn1—O1 C23—N4—Zn1—O1 C22—N4—Zn1—N1 C23—N4—Zn1—N1 C22—N4—Zn1—N3 C23—N4—Zn1—N3 C1—N1—Zn1—O2 C12—N1—Zn1—O2 C1—N1—Zn1—N2 C12—N1—Zn1—N2 C1—N1—Zn1—N4 C12—N1—Zn1—N4 C1—N1—Zn1—N3 C12—N1—Zn1—N3. 170.7 (2) 2.1 (4) −177.0 (3) −169.9 (2) 11.0 (3) −0.2 (4) −172.2 (2) −1.6 (4) 178.6 (3) 171.7 (2) −8.1 (3) −14.9 (4) 167.7 (2) −7.1 (4) 173.13 (16) −38.8 (2) 152.8 (2) 59.5 (2) −117.0 (2) 127.2 (4) 84.7 (2) −108.61 (18) −132.0 (3) 34.8 (3) −8.8 (2) 157.97 (17) 176.7 (2) −16.55 (17) −92.4 (2) 74.30 (18) 4.4 (2) −173.46 (18) −140.1 (3) 42.0 (3) 96.0 (2) −81.85 (18) −90.5 (2) 91.61 (18) 179.1 (2) 1.20 (17) −70.4 (3) 117.75 (18) −173.4 (3) 14.79 (18) 21.9 (3) −149.91 (19) 98.7 (3) −73.11 (18). sup-14.

(18) supporting information C42—C43—C44—N6 C42—C41—C45—N6 C40—C41—C45—N6 C42—C41—C45—C46 C40—C41—C45—C46 C37—C38—C46—N5 C39—C38—C46—N5 C37—C38—C46—C45 C39—C38—C46—C45 N6—C45—C46—N5 C41—C45—C46—N5 N6—C45—C46—C38 C41—C45—C46—C38 O10—C47—C48—F18 O9—C47—C48—F18 O10—C47—C48—F17 O9—C47—C48—F17 O10—C47—C48—C49 O9—C47—C48—C49 F18—C48—C49—F19 F17—C48—C49—F19 C47—C48—C49—F19 F18—C48—C49—F20 F17—C48—C49—F20 C47—C48—C49—F20 F18—C48—C49—C50 F17—C48—C49—C50 C47—C48—C49—C50 F19—C49—C50—F21 F20—C49—C50—F21 C48—C49—C50—F21 F19—C49—C50—F22 F20—C49—C50—F22. 1.0 (5) 2.5 (4) −177.0 (3) −177.7 (3) 2.8 (4) −2.2 (4) 178.8 (3) 176.8 (3) −2.1 (4) −1.8 (4) 178.3 (3) 179.1 (2) −0.8 (4) 12.5 (3) −167.7 (2) 130.9 (3) −49.3 (3) −109.6 (3) 70.3 (3) 165.9 (2) 49.7 (3) −70.5 (3) −76.7 (3) 167.2 (2) 46.9 (3) 44.4 (3) −71.8 (3) 168.0 (2) −80.2 (3) 162.2 (2) 41.8 (3) 162.2 (2) 44.6 (3). C13—N3—Zn1—O2 C24—N3—Zn1—O2 C13—N3—Zn1—N2 C24—N3—Zn1—N2 C13—N3—Zn1—N4 C24—N3—Zn1—N4 C13—N3—Zn1—O1 C24—N3—Zn1—O1 C13—N3—Zn1—N1 C24—N3—Zn1—N1 C47—O9—Zn2—O6 C47—O9—Zn2—O8 C47—O9—Zn2—N5 C47—O9—Zn2—O7 C47—O9—Zn2—N6 C35—N5—Zn2—O9 C46—N5—Zn2—O9 C35—N5—Zn2—O8 C46—N5—Zn2—O8 C35—N5—Zn2—O7 C46—N5—Zn2—O7 C35—N5—Zn2—N6 C46—N5—Zn2—N6 C44—N6—Zn2—O6 C45—N6—Zn2—O6 C44—N6—Zn2—O9 C45—N6—Zn2—O9 C44—N6—Zn2—O8 C45—N6—Zn2—O8 C44—N6—Zn2—N5 C45—N6—Zn2—N5 C44—N6—Zn2—O7 C45—N6—Zn2—O7. −148.6 (4) 25.2 (5) 17.8 (2) −168.42 (18) −175.0 (2) −1.18 (17) −80.1 (2) 93.62 (17) 95.2 (2) −91.04 (18) −68.2 (2) −156.2 (2) 116.9 (2) 20.6 (2) 119.6 (4) −3.1 (3) 168.1 (2) −94.2 (3) 77.0 (2) 87.8 (3) −101.0 (2) 177.5 (3) −11.37 (19) 7.8 (3) −164.61 (18) 180.0 (4) 7.6 (5) 95.4 (2) −76.94 (19) −177.3 (3) 10.36 (18) −81.1 (2) 106.54 (19). Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.. Hydrogen-bond geometry (Å, º) D—H···A iii. O1—H1A···O11 O1—H1A···O3 O1—H1A···F29iii O1—H1B···O4iv O6—H6A···O4v O6—H6B···O11vi O7—H7A···O10 O7—H7B···O5v O8—H8A···O13. Acta Cryst. (2006). E62, m1909–m1911. D—H. H···A. D···A. D—H···A. 0.82 (2) 0.82 (2) 0.82 (2) 0.83 (2) 0.82 (2) 0.82 (2) 0.84 (2) 0.83 (2) 0.83 (2). 2.13 (3) 2.55 (3) 2.54 (3) 2.01 (2) 1.87 (2) 1.90 (2) 1.96 (3) 1.95 (2) 1.88 (2). 2.833 (3) 3.003 (3) 3.133 (2) 2.834 (3) 2.661 (3) 2.706 (3) 2.706 (3) 2.776 (3) 2.698 (3). 143 (3) 116 (3) 130 (3) 168 (4) 162 (4) 168 (4) 148 (4) 176 (4) 171 (4). sup-15.

(19) supporting information O8—H8B···O12vi O13—H13A···O3i O13—H13B···O9 O13—H13B···F17 O14—H14A···O7 O14—H14B···O5 C13—H13···Cg1. 0.82 (2) 0.82 (2) 0.82 (2) 0.82 (2) 0.83 (2) 0.82 (2) 0.93. 1.93 (2) 1.99 (2) 2.29 (3) 2.50 (3) 2.12 (3) 2.17 (3) 2.84. 2.724 (3) 2.806 (3) 2.991 (3) 3.151 (3) 2.930 (4) 2.955 (4) 3.613 (3). 163 (4) 170 (4) 143 (4) 137 (4) 163 (6) 159 (6) 142. Symmetry codes: (i) −x+1, −y+2, −z+1; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z+2; (vi) x, y, z+1.. Acta Cryst. (2006). E62, m1909–m1911. sup-16.

(20)

New documents

We explore six challenges for neural machine translation: domain mismatch, amount of training data, rare words, long sentences, word alignment, and beam search.. We show both

the subspace of image space in which the images generated by plenoptic function.. for an object have their

Our recommended techniques include: 1 a training approach using Adam with multiple restarts and learning rate annealing, 2 sub-word translation via byte pair encoding, and 3 decoding

This new algorithm called GAWES Genetic Algorithm With Early Stopping reduces the level of overfitting and yields feature subsets that have a better generalization accuracy... The

Model performance As shown in the table, we can improve the translation performance by 0.5 BLEU point by using the Ensemble system to rescore n-best list generated by the same system,

In this evaluation two methods for producing ensemble members are used, one selects feature subsets at random after Ho, 1998, the other uses a search approach.. This evaluation

In this paper, we investigate the adequate vision span of attention mod- els in the context of machine translation, by proposing a novel attention framework that is capable of reducing

Fluorochrome, Rhodamine, was used to label the nano lipid to observe its uptaking ratio and targeting property by confocal microscopy; CCK-8 method was used to detect the effect of

binding of a family of cyclophilins and cyclophilin-like proteins of the human malarial parasite Plasmodium.. This is a PDF file of an unedited manuscript that has been accepted for

Before any analysis of the differences in micropat- tern occurrence between users with mental health conditions and their matched controls, we demon- strate that these micropatterns are