• No results found

3 (3 Meth­oxy­phen­yl) 1 (4 meth­oxy­phen­yl)prop 2 en 1 one

N/A
N/A
Protected

Academic year: 2020

Share "3 (3 Meth­oxy­phen­yl) 1 (4 meth­oxy­phen­yl)prop 2 en 1 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2007). E63, o1895–o1896 doi:10.1107/S160053680701255X Patilet al. C

17H16O3

o1895

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

3-(3-Methoxyphenyl)-1-(4-methoxyphenyl)-prop-2-en-1-one

P. S. Patil,aJeannie Bee-Jan Teh,b Hoong-Kun Fun,b* H. B. Ramesh Babu,aIbrahim Abdul Razakb and S. M. Dharmaprakasha

aDepartment of Studies in Physics, Mangalore

University, Mangalagangotri, Mangalore 574 199, India, andbX-ray Crystallography Unit,

School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T= 100 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.051 wRfactor = 0.133

Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 14 March 2007 Accepted 17 March 2007

#2007 International Union of Crystallography All rights reserved

In the title compound, C17H16O3, the dihedral angle between

the benzene rings is 10.05 (9). Intermolecular C—H O

hydrogen bonds link the molecules to form chains along theb

axis. The crystal structure is further stabilized by C—H

interactions.

Comment

Chalcone derivatives are of interest not only because of their pharmacological properties (Batt et al., 1993; Sogawa et al., 1994; Arty et al., 2000) but also because of their nonlinear optical properties (Patil, Dharmaprakash et al., 2006; Patil, Dharmaprakashet al., 2007; Patil, Nget al., 2007; Patil, Rosliet al., 2007). In these materials, the C O bond acts as the electron-withdrawing group, and electron-rich substituents on the aromatic rings serve as the electron-donating group, forming a so-called D— A type molecule. During our search for non-linear optical chalcones, the title compound, (I), was synthesized. We present here a study of the molecular packing in (I), which crystallizes in a non-centrosymmetric crystal structure and hence could exhibit second-order non-linear optical properties.

[image:1.610.212.456.436.531.2] [image:1.610.209.457.604.704.2]

The bond lengths and angles in (I) display normal values (Allenet al., 1987), comparable to those of a related structure (Tehet al., 2007). The least-squares plane through the enone

Figure 1

(2)

group (C7–C9/O3) makes dihedral angles of 6.67 (11) and 6.70 (11) with the C1–C6 and C10–C15 benzene rings,

respectively. The dihedral angle between the two benzene rings is 10.05 (9).

An intramolecular C9—H9A O3 hydrogen bond gener-ates an S(5) ring motif (Bernstein et al., 1995). The crystal structure (Fig. 2) is stabilized by intermolecular C—H O hydrogen bonds (Table 1), that form chains of molecules along the b axis. The crystal structure is further stabilized by C— H interactions (Table 1).

Experimental

An aqueous solution of sodium hydroxide (10%, 10 ml) was added with stirring (4 h) to a solution of 3-methoxybenzaldehyde (0.01 mol) and 4-methoxyacetophenone (0.01 mol) in ethanol (60 ml) at room temperature. The reaction mixture was then poured on to ice-cold water. The precipitate that formed was filtered off and dried. The resulting crude product was recrystallized twice from acetone. Crys-tals suitable for single-crystal X-ray diffraction experiments were grown by slow evaporation of an acetone solution.

Crystal data

C17H16O3

Mr= 268.30 Monoclinic,P21

a= 7.7629 (3) A˚ b= 5.5537 (2) A˚ c= 15.7450 (6) A˚ = 90.828 (2)

V= 678.74 (4) A˚3

Z= 2

MoKradiation = 0.09 mm1

T= 100.0 (1) K 0.310.130.07 mm

Data collection

Bruker SMART APEX2 CCD diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2005) Tmin= 0.880,Tmax= 0.994

11987 measured reflections 2138 independent reflections 1760 reflections withI> 2(I) Rint= 0.054

Refinement

R[F2> 2(F2)] = 0.051

wR(F2) = 0.133

S= 1.07 2138 reflections 183 parameters

1 restraint

H-atom parameters constrained max= 0.34 e A˚

3

min=0.25 e A˚

[image:2.610.315.563.69.228.2]

3

Table 1

Hydrogen-bond geometry (A˚ ,).

Cg1 andCg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H A D—H H A D A D—H A

C9—H9A O3 0.93 2.44 2.784 (3) 102

C17—H17A O3i

0.96 2.52 3.373 (3) 148

C2—H2A Cg1ii

0.93 2.98 3.577 (3) 124

C5—H5A Cg1iii

0.93 2.95 3.684 (3) 137

C13—H13A Cg2iv

0.93 2.92 3.636 (3) 134

C17—H17C Cg2v 0.96 2.70 3.601 (3) 156

Symmetry codes: (i)xþ1;yþ1

2;zþ1; (ii)xþ2;yþ 1

2;z; (iii)xþ1;y 1 2;z;

(iv)xþ2;yþ1

2;zþ1; (v)xþ1;y 1 2;zþ1.

H atoms were positioned geometrically and treated as riding, with

In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection:APEX2(Bruker, 2005); cell refinement:APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL,PARST(Nardelli, 1995) andPLATON(Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118 and the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064. PSP thanks DRDO, the Government of India, for a Junior Research Fellowship (JRF).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Arty, I. S., Timmermen, H., Samhoedi, M., Sastrohamidjojo, S. & Van Der Goto, H. (2000).Eur. J. Med. Chem.35, 449–457.

Batt, D. G., Goodman, R., Jones, D. G., Kerr, J. R., Mantegna, J. R., McAllister, C., Newton, R. C., Nurnber, S., Welch, P. K. & Convington, M. B. (1993).J. Med. Chem.36, 1434–1442.

Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Bruker (2005).APEX2(Version 1.27),SAINT(Version 7.12A) andSADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.

Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006).J. Cryst. Growth,297, 111–116.

Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Narayana Rao, D. (2007).J. Cryst. Growth. In the press. Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007).

Acta Cryst.E63, o59–o60.

Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007).Acta Cryst.E63, o785–o786.

Sheldrick, G. M. (1998).SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sogawa, S., Nihro, Y., Ueda, H., Miki, T., Matsumoto, H. & Satoh, T. (1994). Biol. Pharm. Bull.17, 251–256.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Teh, J. B. J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M.

Figure 2

[image:2.610.44.296.609.683.2]
(3)

supporting information

sup-1 Acta Cryst. (2007). E63, o1895–o1896

supporting information

Acta Cryst. (2007). E63, o1895–o1896 [https://doi.org/10.1107/S160053680701255X]

3-(3-Methoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one

P. S. Patil, Jeannie Bee-Jan Teh, Hoong-Kun Fun, H. B. Ramesh Babu, Ibrahim Abdul Razak and

S. M. Dharmaprakash

3-(3-methoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one

Crystal data

C17H16O3

Mr = 268.30 Monoclinic, P21

Hall symbol: P 2yb a = 7.7629 (3) Å b = 5.5537 (2) Å c = 15.7450 (6) Å β = 90.828 (2)° V = 678.74 (4) Å3

Z = 2

F(000) = 284 Dx = 1.313 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2145 reflections θ = 1.3–29.9°

µ = 0.09 mm−1

T = 100 K Plate, colourless 0.31 × 0.13 × 0.07 mm

Data collection

Bruker SMART APEX2 CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8.33 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2005) Tmin = 0.880, Tmax = 0.994

11987 measured reflections 2138 independent reflections 1760 reflections with I > 2σ(I) Rint = 0.054

θmax = 29.9°, θmin = 1.3°

h = −10→10 k = −7→7 l = −22→22

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.051

wR(F2) = 0.133

S = 1.07 2138 reflections 183 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0651P)2 + 0.1655P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.34 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.8703 (2) −0.0537 (4) −0.17787 (11) 0.0265 (5) O2 0.7156 (2) 0.4701 (4) 0.59647 (11) 0.0245 (4) O3 0.5499 (3) −0.1497 (4) 0.18908 (12) 0.0316 (5) C1 0.8101 (3) 0.1688 (5) 0.03503 (16) 0.0217 (5)

H1A 0.8447 0.3016 0.0670 0.026*

C2 0.8609 (3) 0.1497 (5) −0.04852 (17) 0.0245 (6)

H2A 0.9292 0.2688 −0.0723 0.029*

C3 0.8097 (3) −0.0479 (5) −0.09704 (15) 0.0222 (5) C4 0.7062 (3) −0.2255 (5) −0.06174 (16) 0.0230 (5)

H4A 0.6711 −0.3572 −0.0941 0.028*

C5 0.6556 (3) −0.2040 (5) 0.02257 (16) 0.0228 (6)

H5A 0.5860 −0.3223 0.0460 0.027*

C6 0.7074 (3) −0.0085 (5) 0.07234 (16) 0.0210 (5) C7 0.6495 (3) 0.0026 (5) 0.16192 (16) 0.0221 (5) C8 0.7130 (3) 0.1978 (5) 0.21770 (16) 0.0245 (6)

H8A 0.7782 0.3217 0.1949 0.029*

C9 0.6781 (3) 0.1989 (5) 0.30023 (16) 0.0224 (5)

H9A 0.6095 0.0740 0.3198 0.027*

C10 0.7366 (3) 0.3764 (5) 0.36376 (16) 0.0207 (5) C11 0.6943 (3) 0.3345 (5) 0.44913 (16) 0.0208 (5)

H11A 0.6301 0.1997 0.4637 0.025*

C12 0.7489 (3) 0.4950 (5) 0.51139 (15) 0.0204 (5) C13 0.8443 (3) 0.6973 (5) 0.48993 (16) 0.0230 (6)

H13A 0.8814 0.8042 0.5318 0.028*

C14 0.8838 (3) 0.7383 (5) 0.40516 (16) 0.0237 (6)

H14A 0.9461 0.8748 0.3905 0.028*

C15 0.8315 (3) 0.5782 (6) 0.34247 (17) 0.0237 (6)

H15A 0.8601 0.6062 0.2862 0.028*

C16 0.8167 (4) −0.2490 (7) −0.23109 (17) 0.0311 (7)

H16A 0.8694 −0.2338 −0.2856 0.047*

H16B 0.6936 −0.2457 −0.2380 0.047*

H16C 0.8510 −0.3986 −0.2054 0.047*

C17 0.6386 (4) 0.2467 (6) 0.62274 (17) 0.0296 (6)

H17A 0.6277 0.2458 0.6834 0.044*

(5)

supporting information

sup-3 Acta Cryst. (2007). E63, o1895–o1896

H17C 0.5267 0.2308 0.5966 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0288 (10) 0.0277 (11) 0.0232 (9) −0.0055 (10) 0.0040 (7) −0.0045 (9) O2 0.0283 (9) 0.0267 (10) 0.0187 (8) −0.0018 (9) 0.0028 (7) −0.0035 (8) O3 0.0404 (11) 0.0316 (11) 0.0229 (9) −0.0119 (10) 0.0041 (8) −0.0001 (9) C1 0.0217 (12) 0.0185 (12) 0.0249 (12) −0.0010 (11) −0.0005 (9) −0.0010 (11) C2 0.0228 (12) 0.0237 (14) 0.0271 (13) −0.0025 (11) 0.0017 (10) 0.0028 (12) C3 0.0200 (11) 0.0268 (14) 0.0199 (11) 0.0047 (12) 0.0010 (9) −0.0001 (11) C4 0.0227 (12) 0.0196 (13) 0.0266 (13) −0.0012 (11) −0.0019 (10) −0.0014 (11) C5 0.0199 (12) 0.0211 (14) 0.0273 (13) −0.0023 (11) −0.0014 (10) 0.0011 (11) C6 0.0209 (11) 0.0190 (13) 0.0232 (12) 0.0014 (11) −0.0013 (9) 0.0010 (11) C7 0.0219 (12) 0.0228 (13) 0.0214 (12) 0.0013 (11) −0.0029 (9) 0.0001 (11) C8 0.0273 (13) 0.0220 (13) 0.0243 (12) −0.0016 (12) 0.0010 (10) −0.0033 (12) C9 0.0223 (12) 0.0207 (13) 0.0242 (12) 0.0007 (11) 0.0005 (10) −0.0019 (11) C10 0.0210 (12) 0.0187 (13) 0.0223 (12) 0.0016 (11) −0.0007 (9) −0.0045 (11) C11 0.0205 (12) 0.0190 (12) 0.0231 (12) −0.0004 (11) 0.0021 (9) −0.0022 (10) C12 0.0177 (10) 0.0224 (13) 0.0213 (11) 0.0020 (11) 0.0008 (9) −0.0020 (11) C13 0.0225 (12) 0.0200 (13) 0.0265 (13) 0.0031 (11) −0.0028 (10) −0.0055 (11) C14 0.0211 (12) 0.0194 (13) 0.0305 (13) −0.0011 (11) −0.0001 (10) 0.0000 (11) C15 0.0228 (12) 0.0247 (14) 0.0236 (12) 0.0019 (12) 0.0023 (10) 0.0001 (11) C16 0.0334 (15) 0.0351 (17) 0.0249 (13) −0.0054 (14) 0.0023 (11) −0.0073 (13) C17 0.0355 (15) 0.0281 (15) 0.0253 (13) −0.0019 (13) 0.0082 (11) 0.0012 (13)

Geometric parameters (Å, º)

O1—C3 1.364 (3) C9—C10 1.472 (4)

O1—C16 1.429 (4) C9—H9A 0.9300

O2—C12 1.375 (3) C10—C15 1.385 (4)

O2—C17 1.440 (4) C10—C11 1.407 (3)

O3—C7 1.227 (3) C11—C12 1.387 (4)

C1—C2 1.383 (4) C11—H11A 0.9300

C1—C6 1.402 (4) C12—C13 1.390 (4)

C1—H1A 0.9300 C13—C14 1.393 (4)

C2—C3 1.392 (4) C13—H13A 0.9300

C2—H2A 0.9300 C14—C15 1.385 (4)

C3—C4 1.393 (4) C14—H14A 0.9300

C4—C5 1.395 (4) C15—H15A 0.9300

C4—H4A 0.9300 C16—H16A 0.9600

C5—C6 1.395 (4) C16—H16B 0.9600

C5—H5A 0.9300 C16—H16C 0.9600

C6—C7 1.488 (3) C17—H17A 0.9600

C7—C8 1.475 (4) C17—H17B 0.9600

C8—C9 1.331 (3) C17—H17C 0.9600

(6)

C3—O1—C16 117.6 (2) C15—C10—C9 122.5 (2)

C12—O2—C17 116.8 (2) C11—C10—C9 117.7 (2)

C2—C1—C6 121.1 (2) C12—C11—C10 119.7 (2)

C2—C1—H1A 119.5 C12—C11—H11A 120.1

C6—C1—H1A 119.5 C10—C11—H11A 120.1

C1—C2—C3 120.0 (3) O2—C12—C11 124.3 (3)

C1—C2—H2A 120.0 O2—C12—C13 115.3 (2)

C3—C2—H2A 120.0 C11—C12—C13 120.4 (2)

O1—C3—C2 115.5 (2) C12—C13—C14 119.4 (2)

O1—C3—C4 124.4 (2) C12—C13—H13A 120.3

C2—C3—C4 120.1 (2) C14—C13—H13A 120.3

C3—C4—C5 119.4 (2) C15—C14—C13 120.8 (3)

C3—C4—H4A 120.3 C15—C14—H14A 119.6

C5—C4—H4A 120.3 C13—C14—H14A 119.6

C4—C5—C6 121.2 (2) C14—C15—C10 119.9 (2)

C4—C5—H5A 119.4 C14—C15—H15A 120.1

C6—C5—H5A 119.4 C10—C15—H15A 120.1

C5—C6—C1 118.2 (2) O1—C16—H16A 109.5

C5—C6—C7 118.4 (2) O1—C16—H16B 109.5

C1—C6—C7 123.3 (2) H16A—C16—H16B 109.5

O3—C7—C8 120.4 (2) O1—C16—H16C 109.5

O3—C7—C6 120.2 (2) H16A—C16—H16C 109.5

C8—C7—C6 119.5 (2) H16B—C16—H16C 109.5

C9—C8—C7 120.9 (3) O2—C17—H17A 109.5

C9—C8—H8A 119.5 O2—C17—H17B 109.5

C7—C8—H8A 119.5 H17A—C17—H17B 109.5

C8—C9—C10 127.0 (3) O2—C17—H17C 109.5

C8—C9—H9A 116.5 H17A—C17—H17C 109.5

C10—C9—H9A 116.5 H17B—C17—H17C 109.5

C15—C10—C11 119.8 (2)

C6—C1—C2—C3 0.1 (4) C6—C7—C8—C9 −173.0 (3)

(7)

supporting information

sup-5 Acta Cryst. (2007). E63, o1895–o1896

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C9—H9A···O3 0.93 2.44 2.784 (3) 102

C17—H17A···O3i 0.96 2.52 3.373 (3) 148

C2—H2A···Cg1ii 0.93 2.98 3.577 (3) 124

C5—H5A···Cg1iii 0.93 2.95 3.684 (3) 137

C13—H13A···Cg2iv 0.93 2.92 3.636 (3) 134

C17—H17C···Cg2v 0.96 2.70 3.601 (3) 156

Figure

Figure 1The molecular structure of (I), showing 50% probability displacementellipsoids and the atomic numbering
Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical