organic papers
Acta Cryst.(2006). E62, o1395–o1396 doi:10.1107/S1600536806008580 De-Suo Yang C
13H10Br2N2O
o1395
Acta Crystallographica Section EStructure Reports Online
ISSN 1600-5368
2,4-Dibromo-6-(4-methylpyridin-2-ylimino-methyl)phenol
De-Suo Yang
Department of Chemistry and Chemical Engi-neering, Baoji College of Arts and Sciences, Baoji 721007, People’s Republic of China
Correspondence e-mail: [email protected]
Key indicators
Single-crystal X-ray study T= 298 K
Mean(C–C) = 0.007 A˚ Rfactor = 0.035 wRfactor = 0.075
Data-to-parameter ratio = 15.8
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
Received 3 March 2006 Accepted 8 March 2006
#2006 International Union of Crystallography All rights reserved
The molecule of the title compound, C13H10Br2N2O, is nearly
planar and displays atransconfiguration with respect to the central C N double bond. In the crystal structure, the molecules are linked through intermolecular C—H Br hydrogen bonds, forming chains running along thebaxis.
Comment
Schiff base compounds have been of great interest for a long time. These compounds have played an important role in the development of coordination chemistry (Bernardoet al., 1996; Musieet al., 2001; Paulet al., 2002). As an extension of work on the structural characterization of such compounds, the crystal structure of the title compound, (I), is reported here (Fig. 1).
In compound (I), all the bond lengths are within normal ranges (Allen et al., 1987), for example the central trans
C7 N1 bond length of 1.265 (6) A˚ . The whole molecule is nearly planar, with a dihedral angle of 4.0 (4) between the
benzene ring and the pyridine ring. In the crystal structure, the molecules are linked through intermolecular C—H Br hydrogen bonds (Table 1), forming chains running along theb
axis (Fig. 2).
Experimental
3,5-Dibromosalicylaldehyde (0.1 mmol, 28.2 mg) and 2-amino-4-methylpyridine (0.1 mmol, 10.8 mg) were dissolved in MeOH (10 ml). The mixture was stirred at 298 K to give a clear yellow solution. Crystals of (I) were formed by slow evaporation of the solvent over a period of about one week at 298 K.
Crystal data
C13H10Br2N2O
Mr= 370.05
Monoclinic,P21
a= 6.077 (1) A˚
b= 14.224 (2) A˚
c= 7.676 (1) A˚ = 97.791 (2)
V= 657.38 (17) A˚3
Z= 2
Dx= 1.869 Mg m3
MoKradiation Cell parameters from 1653
reflections = 2.5–24.1
= 6.15 mm1
Data collection
Bruker APEX area-detector diffractometer
!scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
Tmin= 0.298,Tmax= 0.310 5325 measured reflections
2617 independent reflections 2111 reflections withI> 2(I)
Rint= 0.030
max= 26.5
h=7!7
k=17!17
l=9!9 Refinement
Refinement onF2
R[F2> 2(F2)] = 0.035
wR(F2) = 0.075
S= 1.01 2617 reflections 166 parameters
H-atom parameters constrained
w= 1/[2(F
o2) + (0.0257P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001
max= 0.39 e A˚3
min=0.23 e A˚ 3
Absolute structure: Flack (1983), 1197 Freidel pairs
Flack parameter: 0.389 (12)
Table 1
Hydrogen-bond geometry (A˚ ,).
D—H A D—H H A D A D—H A
C9—H9 Br2i
0.93 2.92 3.783 (5) 155
O1—H1 N1 0.82 1.88 2.608 (5) 147
C7—H7 N2 0.93 2.32 2.698 (5) 104
Symmetry code: (i)xþ2;yþ1 2;zþ1.
The refinement of the Flack (1983) parameter indicates partial inversion twinning. All H atoms were placed in idealized positions and constrained to ride on their parent atoms. Constrained distances: O—H = 0.82 A˚ and C—H = 0.93 and 0.96 A˚ for methyl CH3and
aromatic CH groups, respectively. Isotropic displacement parameters were fixed at Uiso(H) = 1.2Uiso(C) for aromatic CH groups and
1.5Uiso(C,O) for other H atoms.
Data collection:SMART(Bruker, 2002); cell refinement:SAINT
(Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:
SHELXTL (Bruker, 2002); software used to prepare material for publication:SHELXL97.
Financial support from the Baoji College of Arts and Sciences research funds is gratefully acknowledged.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996).Inorg. Chem.35, 387–396.
Bruker (2002).SAINT (Version 6.36A),SMART(Version 5.10),SADABS
(Version 2.01) andSHELXTL(Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983).Acta Cryst.A39, 876–881.
Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001).Inorg. Chem.
40, 3336–3341.
Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002).Inorg. Chem.41, 5803– 5809.
[image:2.610.314.565.74.209.2]Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.
Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
Figure 2
[image:2.610.384.493.268.554.2]supporting information
sup-1 Acta Cryst. (2006). E62, o1395–o1396
supporting information
Acta Cryst. (2006). E62, o1395–o1396 [https://doi.org/10.1107/S1600536806008580]
2,4-Dibromo-6-(4-methylpyridin-2-yliminomethyl)phenol
De-Suo Yang
2,4-Dibromo-6-(4-methylpyridin-2-yliminomethyl)phenol
Crystal data
C13H10Br2N2O
Mr = 370.05 Monoclinic, P21 Hall symbol: P 2yb
a = 6.077 (1) Å
b = 14.224 (2) Å
c = 7.676 (1) Å
β = 97.791 (2)°
V = 657.38 (17) Å3
Z = 2
F(000) = 360
Dx = 1.869 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 1653 reflections
θ = 2.5–24.1°
µ = 6.15 mm−1
T = 298 K Block, yellow
0.20 × 0.20 × 0.19 mm
Data collection
Bruker APEX area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
Tmin = 0.298, Tmax = 0.310
5325 measured reflections 2617 independent reflections 2111 reflections with I > 2σ(I)
Rint = 0.030
θmax = 26.5°, θmin = 2.7°
h = −7→7
k = −17→17
l = −9→9
Refinement
Refinement on F2 Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.035
wR(F2) = 0.075
S = 1.01 2617 reflections 166 parameters 1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
w = 1/[σ2(F
o2) + (0.0257P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001
Δρmax = 0.39 e Å−3 Δρmin = −0.23 e Å−3
Absolute structure: 0.389 (12), 1197 Friedel pairs
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
Br1 1.35666 (9) 0.97782 (3) 0.73700 (8) 0.06337 (18)
Br2 1.50915 (10) 0.58820 (3) 0.79446 (8) 0.0678 (2)
O1 0.9168 (6) 0.9128 (2) 0.5442 (5) 0.0566 (9)
H1 0.7966 0.8941 0.4949 0.085*
N1 0.6307 (7) 0.7910 (3) 0.3945 (5) 0.0437 (10)
N2 0.3830 (7) 0.6767 (3) 0.2523 (6) 0.0570 (12)
C1 0.9735 (7) 0.7456 (3) 0.5627 (6) 0.0389 (11)
C2 1.0435 (8) 0.8395 (3) 0.5993 (6) 0.0399 (11)
C3 1.2516 (8) 0.8536 (3) 0.6955 (6) 0.0408 (11)
C4 1.3888 (8) 0.7796 (4) 0.7537 (6) 0.0440 (12)
H4 1.5281 0.7906 0.8168 0.053*
C5 1.3156 (8) 0.6884 (3) 0.7164 (6) 0.0435 (11)
C6 1.1133 (8) 0.6704 (3) 0.6221 (6) 0.0432 (11)
H6 1.0683 0.6088 0.5974 0.052*
C7 0.7626 (8) 0.7265 (3) 0.4553 (6) 0.0451 (12)
H7 0.7229 0.6643 0.4303 0.054*
C8 0.4273 (9) 0.7670 (3) 0.2901 (7) 0.0419 (11)
C9 0.2835 (8) 0.8386 (4) 0.2342 (6) 0.0454 (11)
H9 0.3226 0.9003 0.2647 0.054*
C10 0.0825 (8) 0.8209 (4) 0.1335 (7) 0.0501 (13)
C11 0.0376 (9) 0.7271 (4) 0.0959 (7) 0.0585 (15)
H11 −0.0964 0.7101 0.0303 0.070*
C12 0.1885 (9) 0.6599 (4) 0.1544 (7) 0.0622 (15)
H12 0.1537 0.5978 0.1241 0.075*
C13 −0.0751 (10) 0.8978 (4) 0.0703 (8) 0.0696 (17)
H13A −0.0348 0.9541 0.1361 0.104*
H13B −0.2232 0.8797 0.0861 0.104*
H13C −0.0686 0.9093 −0.0522 0.104*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
Br1 0.0593 (3) 0.0380 (3) 0.0848 (4) −0.0060 (2) −0.0192 (3) −0.0053 (3)
Br2 0.0616 (4) 0.0452 (3) 0.0911 (4) 0.0110 (3) −0.0095 (3) 0.0107 (3)
O1 0.046 (2) 0.0387 (18) 0.078 (3) 0.0044 (16) −0.0163 (18) −0.0031 (17)
supporting information
sup-3 Acta Cryst. (2006). E62, o1395–o1396
N2 0.046 (3) 0.050 (3) 0.072 (3) 0.001 (2) −0.007 (2) −0.011 (2)
C1 0.038 (3) 0.042 (3) 0.036 (3) −0.005 (2) 0.002 (2) 0.0023 (19)
C2 0.041 (3) 0.036 (2) 0.041 (3) 0.000 (2) 0.001 (2) −0.001 (2)
C3 0.042 (3) 0.031 (3) 0.047 (3) −0.004 (2) 0.000 (2) −0.007 (2)
C4 0.042 (3) 0.046 (3) 0.042 (3) −0.001 (2) −0.001 (2) −0.004 (2)
C5 0.041 (3) 0.040 (3) 0.048 (3) 0.004 (2) 0.001 (2) 0.005 (2)
C6 0.050 (3) 0.031 (3) 0.048 (3) −0.003 (2) 0.005 (2) 0.000 (2)
C7 0.045 (3) 0.045 (3) 0.044 (3) −0.005 (2) 0.003 (2) −0.002 (2)
C8 0.039 (2) 0.040 (3) 0.047 (3) −0.006 (2) 0.003 (2) −0.004 (2)
C9 0.042 (3) 0.042 (3) 0.051 (3) −0.005 (2) 0.001 (2) 0.003 (2)
C10 0.042 (3) 0.061 (3) 0.046 (3) 0.004 (2) 0.005 (2) 0.003 (2)
C11 0.044 (3) 0.073 (4) 0.058 (4) −0.010 (3) 0.001 (3) −0.014 (3)
C12 0.054 (3) 0.052 (3) 0.076 (4) −0.005 (3) −0.008 (3) −0.016 (3)
C13 0.062 (4) 0.072 (4) 0.070 (4) 0.014 (3) −0.007 (3) 0.020 (3)
Geometric parameters (Å, º)
Br1—C3 1.891 (4) C5—C6 1.364 (6)
Br2—C5 1.893 (5) C6—H6 0.9300
O1—C2 1.330 (5) C7—H7 0.9300
O1—H1 0.8200 C8—C9 1.372 (8)
N1—C7 1.265 (6) C9—C10 1.378 (7)
N1—C8 1.420 (6) C9—H9 0.9300
N2—C12 1.334 (6) C10—C11 1.383 (8)
N2—C8 1.336 (6) C10—C13 1.492 (7)
C1—C6 1.403 (6) C11—C12 1.359 (8)
C1—C2 1.418 (6) C11—H11 0.9300
C1—C7 1.452 (7) C12—H12 0.9300
C2—C3 1.390 (6) C13—H13A 0.9600
C3—C4 1.379 (7) C13—H13B 0.9600
C4—C5 1.388 (7) C13—H13C 0.9600
C4—H4 0.9300
C2—O1—H1 109.5 C1—C7—H7 118.7
C7—N1—C8 119.6 (4) N2—C8—C9 123.0 (5)
C12—N2—C8 115.6 (5) N2—C8—N1 119.2 (5)
C6—C1—C2 120.1 (4) C9—C8—N1 117.8 (5)
C6—C1—C7 119.3 (4) C8—C9—C10 121.2 (5)
C2—C1—C7 120.5 (4) C8—C9—H9 119.4
O1—C2—C3 120.1 (4) C10—C9—H9 119.4
O1—C2—C1 122.0 (4) C9—C10—C11 115.4 (5)
C3—C2—C1 117.9 (4) C9—C10—C13 122.0 (5)
C4—C3—C2 122.0 (4) C11—C10—C13 122.7 (5)
C4—C3—Br1 118.9 (3) C12—C11—C10 120.3 (5)
C2—C3—Br1 119.1 (3) C12—C11—H11 119.9
C3—C4—C5 118.9 (4) C10—C11—H11 119.9
C3—C4—H4 120.6 N2—C12—C11 124.5 (5)
C6—C5—C4 121.7 (4) C11—C12—H12 117.7
C6—C5—Br2 120.2 (4) C10—C13—H13A 109.5
C4—C5—Br2 118.0 (4) C10—C13—H13B 109.5
C5—C6—C1 119.5 (4) H13A—C13—H13B 109.5
C5—C6—H6 120.3 C10—C13—H13C 109.5
C1—C6—H6 120.3 H13A—C13—H13C 109.5
N1—C7—C1 122.7 (5) H13B—C13—H13C 109.5
N1—C7—H7 118.7
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
C9—H9···Br2i 0.93 2.92 3.783 (5) 155
O1—H1···N1 0.82 1.88 2.608 (5) 147
C7—H7···N2 0.93 2.32 2.698 (5) 104