• No results found

2,4 Di­bromo 6 (4 methyl­pyridin 2 ylimino­meth­yl)phenol

N/A
N/A
Protected

Academic year: 2020

Share "2,4 Di­bromo 6 (4 methyl­pyridin 2 ylimino­meth­yl)phenol"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o1395–o1396 doi:10.1107/S1600536806008580 De-Suo Yang C

13H10Br2N2O

o1395

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2,4-Dibromo-6-(4-methylpyridin-2-ylimino-methyl)phenol

De-Suo Yang

Department of Chemistry and Chemical Engi-neering, Baoji College of Arts and Sciences, Baoji 721007, People’s Republic of China

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.007 A˚ Rfactor = 0.035 wRfactor = 0.075

Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 3 March 2006 Accepted 8 March 2006

#2006 International Union of Crystallography All rights reserved

The molecule of the title compound, C13H10Br2N2O, is nearly

planar and displays atransconfiguration with respect to the central C N double bond. In the crystal structure, the molecules are linked through intermolecular C—H Br hydrogen bonds, forming chains running along thebaxis.

Comment

Schiff base compounds have been of great interest for a long time. These compounds have played an important role in the development of coordination chemistry (Bernardoet al., 1996; Musieet al., 2001; Paulet al., 2002). As an extension of work on the structural characterization of such compounds, the crystal structure of the title compound, (I), is reported here (Fig. 1).

In compound (I), all the bond lengths are within normal ranges (Allen et al., 1987), for example the central trans

C7 N1 bond length of 1.265 (6) A˚ . The whole molecule is nearly planar, with a dihedral angle of 4.0 (4) between the

benzene ring and the pyridine ring. In the crystal structure, the molecules are linked through intermolecular C—H Br hydrogen bonds (Table 1), forming chains running along theb

axis (Fig. 2).

Experimental

3,5-Dibromosalicylaldehyde (0.1 mmol, 28.2 mg) and 2-amino-4-methylpyridine (0.1 mmol, 10.8 mg) were dissolved in MeOH (10 ml). The mixture was stirred at 298 K to give a clear yellow solution. Crystals of (I) were formed by slow evaporation of the solvent over a period of about one week at 298 K.

Crystal data

C13H10Br2N2O

Mr= 370.05

Monoclinic,P21

a= 6.077 (1) A˚

b= 14.224 (2) A˚

c= 7.676 (1) A˚ = 97.791 (2)

V= 657.38 (17) A˚3

Z= 2

Dx= 1.869 Mg m3

MoKradiation Cell parameters from 1653

reflections = 2.5–24.1

= 6.15 mm1

(2)

Data collection

Bruker APEX area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.298,Tmax= 0.310 5325 measured reflections

2617 independent reflections 2111 reflections withI> 2(I)

Rint= 0.030

max= 26.5

h=7!7

k=17!17

l=9!9 Refinement

Refinement onF2

R[F2> 2(F2)] = 0.035

wR(F2) = 0.075

S= 1.01 2617 reflections 166 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0257P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.39 e A˚3

min=0.23 e A˚ 3

Absolute structure: Flack (1983), 1197 Freidel pairs

Flack parameter: 0.389 (12)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C9—H9 Br2i

0.93 2.92 3.783 (5) 155

O1—H1 N1 0.82 1.88 2.608 (5) 147

C7—H7 N2 0.93 2.32 2.698 (5) 104

Symmetry code: (i)xþ2;yþ1 2;zþ1.

The refinement of the Flack (1983) parameter indicates partial inversion twinning. All H atoms were placed in idealized positions and constrained to ride on their parent atoms. Constrained distances: O—H = 0.82 A˚ and C—H = 0.93 and 0.96 A˚ for methyl CH3and

aromatic CH groups, respectively. Isotropic displacement parameters were fixed at Uiso(H) = 1.2Uiso(C) for aromatic CH groups and

1.5Uiso(C,O) for other H atoms.

Data collection:SMART(Bruker, 2002); cell refinement:SAINT

(Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 2002); software used to prepare material for publication:SHELXL97.

Financial support from the Baoji College of Arts and Sciences research funds is gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996).Inorg. Chem.35, 387–396.

Bruker (2002).SAINT (Version 6.36A),SMART(Version 5.10),SADABS

(Version 2.01) andSHELXTL(Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001).Inorg. Chem.

40, 3336–3341.

Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002).Inorg. Chem.41, 5803– 5809.

[image:2.610.314.565.74.209.2]

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.

Figure 2

[image:2.610.384.493.268.554.2]
(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o1395–o1396

supporting information

Acta Cryst. (2006). E62, o1395–o1396 [https://doi.org/10.1107/S1600536806008580]

2,4-Dibromo-6-(4-methylpyridin-2-yliminomethyl)phenol

De-Suo Yang

2,4-Dibromo-6-(4-methylpyridin-2-yliminomethyl)phenol

Crystal data

C13H10Br2N2O

Mr = 370.05 Monoclinic, P21 Hall symbol: P 2yb

a = 6.077 (1) Å

b = 14.224 (2) Å

c = 7.676 (1) Å

β = 97.791 (2)°

V = 657.38 (17) Å3

Z = 2

F(000) = 360

Dx = 1.869 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1653 reflections

θ = 2.5–24.1°

µ = 6.15 mm−1

T = 298 K Block, yellow

0.20 × 0.20 × 0.19 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin = 0.298, Tmax = 0.310

5325 measured reflections 2617 independent reflections 2111 reflections with I > 2σ(I)

Rint = 0.030

θmax = 26.5°, θmin = 2.7°

h = −7→7

k = −17→17

l = −9→9

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.035

wR(F2) = 0.075

S = 1.01 2617 reflections 166 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0257P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.39 e Å−3 Δρmin = −0.23 e Å−3

Absolute structure: 0.389 (12), 1197 Friedel pairs

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Br1 1.35666 (9) 0.97782 (3) 0.73700 (8) 0.06337 (18)

Br2 1.50915 (10) 0.58820 (3) 0.79446 (8) 0.0678 (2)

O1 0.9168 (6) 0.9128 (2) 0.5442 (5) 0.0566 (9)

H1 0.7966 0.8941 0.4949 0.085*

N1 0.6307 (7) 0.7910 (3) 0.3945 (5) 0.0437 (10)

N2 0.3830 (7) 0.6767 (3) 0.2523 (6) 0.0570 (12)

C1 0.9735 (7) 0.7456 (3) 0.5627 (6) 0.0389 (11)

C2 1.0435 (8) 0.8395 (3) 0.5993 (6) 0.0399 (11)

C3 1.2516 (8) 0.8536 (3) 0.6955 (6) 0.0408 (11)

C4 1.3888 (8) 0.7796 (4) 0.7537 (6) 0.0440 (12)

H4 1.5281 0.7906 0.8168 0.053*

C5 1.3156 (8) 0.6884 (3) 0.7164 (6) 0.0435 (11)

C6 1.1133 (8) 0.6704 (3) 0.6221 (6) 0.0432 (11)

H6 1.0683 0.6088 0.5974 0.052*

C7 0.7626 (8) 0.7265 (3) 0.4553 (6) 0.0451 (12)

H7 0.7229 0.6643 0.4303 0.054*

C8 0.4273 (9) 0.7670 (3) 0.2901 (7) 0.0419 (11)

C9 0.2835 (8) 0.8386 (4) 0.2342 (6) 0.0454 (11)

H9 0.3226 0.9003 0.2647 0.054*

C10 0.0825 (8) 0.8209 (4) 0.1335 (7) 0.0501 (13)

C11 0.0376 (9) 0.7271 (4) 0.0959 (7) 0.0585 (15)

H11 −0.0964 0.7101 0.0303 0.070*

C12 0.1885 (9) 0.6599 (4) 0.1544 (7) 0.0622 (15)

H12 0.1537 0.5978 0.1241 0.075*

C13 −0.0751 (10) 0.8978 (4) 0.0703 (8) 0.0696 (17)

H13A −0.0348 0.9541 0.1361 0.104*

H13B −0.2232 0.8797 0.0861 0.104*

H13C −0.0686 0.9093 −0.0522 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Br1 0.0593 (3) 0.0380 (3) 0.0848 (4) −0.0060 (2) −0.0192 (3) −0.0053 (3)

Br2 0.0616 (4) 0.0452 (3) 0.0911 (4) 0.0110 (3) −0.0095 (3) 0.0107 (3)

O1 0.046 (2) 0.0387 (18) 0.078 (3) 0.0044 (16) −0.0163 (18) −0.0031 (17)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o1395–o1396

N2 0.046 (3) 0.050 (3) 0.072 (3) 0.001 (2) −0.007 (2) −0.011 (2)

C1 0.038 (3) 0.042 (3) 0.036 (3) −0.005 (2) 0.002 (2) 0.0023 (19)

C2 0.041 (3) 0.036 (2) 0.041 (3) 0.000 (2) 0.001 (2) −0.001 (2)

C3 0.042 (3) 0.031 (3) 0.047 (3) −0.004 (2) 0.000 (2) −0.007 (2)

C4 0.042 (3) 0.046 (3) 0.042 (3) −0.001 (2) −0.001 (2) −0.004 (2)

C5 0.041 (3) 0.040 (3) 0.048 (3) 0.004 (2) 0.001 (2) 0.005 (2)

C6 0.050 (3) 0.031 (3) 0.048 (3) −0.003 (2) 0.005 (2) 0.000 (2)

C7 0.045 (3) 0.045 (3) 0.044 (3) −0.005 (2) 0.003 (2) −0.002 (2)

C8 0.039 (2) 0.040 (3) 0.047 (3) −0.006 (2) 0.003 (2) −0.004 (2)

C9 0.042 (3) 0.042 (3) 0.051 (3) −0.005 (2) 0.001 (2) 0.003 (2)

C10 0.042 (3) 0.061 (3) 0.046 (3) 0.004 (2) 0.005 (2) 0.003 (2)

C11 0.044 (3) 0.073 (4) 0.058 (4) −0.010 (3) 0.001 (3) −0.014 (3)

C12 0.054 (3) 0.052 (3) 0.076 (4) −0.005 (3) −0.008 (3) −0.016 (3)

C13 0.062 (4) 0.072 (4) 0.070 (4) 0.014 (3) −0.007 (3) 0.020 (3)

Geometric parameters (Å, º)

Br1—C3 1.891 (4) C5—C6 1.364 (6)

Br2—C5 1.893 (5) C6—H6 0.9300

O1—C2 1.330 (5) C7—H7 0.9300

O1—H1 0.8200 C8—C9 1.372 (8)

N1—C7 1.265 (6) C9—C10 1.378 (7)

N1—C8 1.420 (6) C9—H9 0.9300

N2—C12 1.334 (6) C10—C11 1.383 (8)

N2—C8 1.336 (6) C10—C13 1.492 (7)

C1—C6 1.403 (6) C11—C12 1.359 (8)

C1—C2 1.418 (6) C11—H11 0.9300

C1—C7 1.452 (7) C12—H12 0.9300

C2—C3 1.390 (6) C13—H13A 0.9600

C3—C4 1.379 (7) C13—H13B 0.9600

C4—C5 1.388 (7) C13—H13C 0.9600

C4—H4 0.9300

C2—O1—H1 109.5 C1—C7—H7 118.7

C7—N1—C8 119.6 (4) N2—C8—C9 123.0 (5)

C12—N2—C8 115.6 (5) N2—C8—N1 119.2 (5)

C6—C1—C2 120.1 (4) C9—C8—N1 117.8 (5)

C6—C1—C7 119.3 (4) C8—C9—C10 121.2 (5)

C2—C1—C7 120.5 (4) C8—C9—H9 119.4

O1—C2—C3 120.1 (4) C10—C9—H9 119.4

O1—C2—C1 122.0 (4) C9—C10—C11 115.4 (5)

C3—C2—C1 117.9 (4) C9—C10—C13 122.0 (5)

C4—C3—C2 122.0 (4) C11—C10—C13 122.7 (5)

C4—C3—Br1 118.9 (3) C12—C11—C10 120.3 (5)

C2—C3—Br1 119.1 (3) C12—C11—H11 119.9

C3—C4—C5 118.9 (4) C10—C11—H11 119.9

C3—C4—H4 120.6 N2—C12—C11 124.5 (5)

(6)

C6—C5—C4 121.7 (4) C11—C12—H12 117.7

C6—C5—Br2 120.2 (4) C10—C13—H13A 109.5

C4—C5—Br2 118.0 (4) C10—C13—H13B 109.5

C5—C6—C1 119.5 (4) H13A—C13—H13B 109.5

C5—C6—H6 120.3 C10—C13—H13C 109.5

C1—C6—H6 120.3 H13A—C13—H13C 109.5

N1—C7—C1 122.7 (5) H13B—C13—H13C 109.5

N1—C7—H7 118.7

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C9—H9···Br2i 0.93 2.92 3.783 (5) 155

O1—H1···N1 0.82 1.88 2.608 (5) 147

C7—H7···N2 0.93 2.32 2.698 (5) 104

Figure

Figure 1

References

Related documents

(Bruker, 1999); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 2004); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 2000); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 1997); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 1999); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 1997); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 1997); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 2001); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);