• No results found

3 (4 Chloro­anilino)isobenzo­furan 1(3H) one1

N/A
N/A
Protected

Academic year: 2020

Share "3 (4 Chloro­anilino)isobenzo­furan 1(3H) one1"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2003–o2004 doi:10.1107/S160053680601436X Bu¨yu¨kgu¨ngo¨r and Odabas¸og˘lu C

14H10ClNO2

o2003

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

3-(4-Chloroanilino)isobenzofuran-1(3

H

)-one

Orhan Bu¨yu¨kgu¨ngo¨raand Mustafa Odabas¸og˘lub*

a

Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, andbDepartment of

Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study T= 296 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.055 wRfactor = 0.139

Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 10 April 2006 Accepted 20 April 2006 3-Substituted phthalides. Part IV.

#2006 International Union of Crystallography

All rights reserved

The structure of the title compound, C14H10ClNO2, is stabilized by N—H O, C—H and – interactions. The phthalide part of the molecule is planar and the dihedral angle between the phthalide group and the benzene ring is 75.58 (15).

Comment

Phthalides are known to show diverse biological activities as hormones, pheromones and antibiotics (Aoki et al., 1973; Kubota & Tatsuno, 1971; Tsi & Tan, 1997). As part of our ongoing research on 3-substituted phthalides, the title compound, (I), has been synthesized and its crystal structure is reported here.

[image:1.610.254.410.347.464.2] [image:1.610.209.461.582.704.2]

The molecule of (I) is built up from a phthalide unit connected to a chlorophenyl ring through an amino group (Fig. 1). The phthalide part (atoms C1–C8) is essentially planar, the largest deviation from the mean plane being 0.014 (3) A˚ for atom C1. The dihedral angle between thep -chlorophenyl ring and the mean plane of the phthalide group is 5.58 (15).

Figure 1

(2)

The occurrence of N—H O hydrogen bonds results in the formation ofC(6) chains (Etter, 1990) developing parallel to the a axis (Table 1, Fig. 2). TheseC(6) chains are linked to each other by C—H and–interactions, resulting in the formation of a sheet parallel to thebcplane (Table 1, Fig. 2). The–interaction occurs between the C2–C7 six-membered ring and its symmetry-related counterpart at (x,y+ 1,z), with a centroid-to-centroid distance of 3.618 A˚ and a plane-to-plane separation of 3.596 A˚ .

Experimental

The title compound was prepared according to the method described by Odabas¸og˘lu & Bu¨yu¨kgu¨ngo¨r (2006), using phthalaldehydic acid and 4-chloroaniline as starting materials (yield 90%; m.p. 454–455 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol (95%) solution at room temperature.

Crystal data

C14H10ClNO2

Mr= 259.68 Monoclinic,P21=c a= 12.9256 (14) A˚ b= 7.2383 (10) A˚ c= 15.6115 (16) A˚

= 122.196 (7) V= 1236.0 (3) A˚3

Z= 4

Dx= 1.395 Mg m3 MoKradiation

= 0.30 mm1 T= 296 K

Prismatic plate, pale yellow 0.600.420.16 mm

Data collection

Stoe IPDS 2 diffractometer

’scans

Absorption correction: integration (X-RED32; Stoe & Cie, 2002) Tmin= 0.848,Tmax= 0.955

16688 measured reflections 2422 independent reflections 1385 reflections withI> 2(I) Rint= 0.090

max= 26.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.055

wR(F2) = 0.139 S= 1.05 2422 reflections 167 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.0645P)2 + 0.036P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.15 e A˚

3

min=0.22 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

C1—O1 1.213 (3)

C1—O2 1.347 (3)

C2—C7 1.375 (4)

C7—C8 1.492 (4)

C8—N1 1.404 (4)

C8—O2 1.505 (3)

C9—N1 1.400 (4)

O1—C1—O2 121.5 (3)

O1—C1—C2 130.0 (3)

N1—C8—C7 114.2 (2)

N1—C8—O2 111.6 (2)

Table 2

Hydrogen-bond geometry (A˚ ,).

Cg1 is the centroid of ring C9–C14.

D—H A D—H H A D A D—H A

N1—H1 O1i

0.82 (2) 2.29 (3) 3.046 (4) 155 (2) C6—H6 Cg1ii

0.93 3.29 3.987 (4) 134

Symmetry codes: (i)x;yþ1 2;zþ

1

2; (ii)x;yþ 3 2;z

1 2.

All H atoms attached to C atoms were treated as riding on their parent atoms, with C—H = 0.93 A˚ for aromatic H and 0.98 A˚ for methine H, and withUiso(H) = 1.2Ueq(C). The H atom of the amino group was located in a Fourier difference map and freely refined.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction:X-RED32(Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEP-3 for Windows(Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F.279 of the University Research Fund).

References

Aoki, K., Furusho, T., Kimura, T., Satake, K. & Funayama, S. (1973). Jpn. Patent 7 324 724;Chem. Abstr.(1974),80, 129246.

Etter, M. C. (1990).Acc. Chem. Res.23, 120–126. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Kubota, Y. & Tatsuno, T. (1971).Chem. Pharm. Bull.19, 1226–1233. Odabas¸og˘lu, M. & Bu¨yu¨kgu¨ngo¨r, O. (2006).Acta Cryst.E62, o1879–o1881. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Stoe & Cie (2002).X-AREA(Version 1.18) andX-RED32(Version 1.04). Stoe & Cie, Darmstadt, Germany.

[image:2.610.45.292.68.252.2]

Tsi, D. & Tan, B. K. H. (1997).Phytother. Res.11, 576–582.

Figure 2

A packing diagram for (I), showing the N—H O, C—H and– interactions represented as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i)x, y+1

2,z+ 1

2; (ii)x,y+ 3 2,z+

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2003–o2004

supporting information

Acta Cryst. (2006). E62, o2003–o2004 [https://doi.org/10.1107/S160053680601436X]

3-(4-Chloroanilino)isobenzofuran-1(3

H

)-one

Orhan B

ü

y

ü

kg

ü

ng

ö

r and Mustafa Odaba

ş

o

ğ

lu

3-(4-chloroanilino)isobenzofuran-1(3H)-one

Crystal data

C14H10ClNO2

Mr = 259.68 Monoclinic, P21/c

Hall symbol: -P 2ybc a = 12.9256 (14) Å b = 7.2383 (10) Å c = 15.6115 (16) Å β = 122.196 (7)° V = 1236.0 (3) Å3

Z = 4

F(000) = 536 Dx = 1.395 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 16688 reflections θ = 1.9–27.9°

µ = 0.30 mm−1

T = 296 K

Prismatic plate, pale yellow 0.60 × 0.42 × 0.16 mm

Data collection

Stoe IPDS 2 diffractometer

Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus

Plane graphite monochromator Detector resolution: 6.67 pixels mm-1

φ–scan rotation method

Absorption correction: integration (X-RED32; Stoe & Cie, 2002)

Tmin = 0.848, Tmax = 0.955

16688 measured reflections 2422 independent reflections 1385 reflections with I > 2σ(I) Rint = 0.090

θmax = 26.0°, θmin = 1.9°

h = −15→15 k = −8→8 l = −18→19

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.055

wR(F2) = 0.139

S = 1.05 2422 reflections 167 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0645P)2 + 0.036P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.15 e Å−3

Δρmin = −0.22 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 −0.0602 (3) 0.6539 (4) 0.1814 (2) 0.0696 (7) C2 −0.0331 (3) 0.6997 (3) 0.10313 (19) 0.0661 (7) C3 −0.1129 (3) 0.7428 (4) 0.0023 (2) 0.0800 (8)

H3 −0.1968 0.7490 −0.0256 0.096*

C4 −0.0624 (4) 0.7762 (4) −0.0555 (2) 0.0857 (9)

H4 −0.1133 0.8033 −0.1240 0.103*

C5 0.0629 (4) 0.7697 (4) −0.0123 (2) 0.0888 (9)

H5 0.0945 0.7941 −0.0525 0.107*

C6 0.1419 (3) 0.7282 (4) 0.0882 (2) 0.0802 (8)

H6 0.2260 0.7257 0.1167 0.096*

C7 0.0913 (3) 0.6900 (4) 0.1459 (2) 0.0685 (7) C8 0.1515 (3) 0.6305 (4) 0.2536 (2) 0.0708 (7)

H8 0.1902 0.5098 0.2621 0.085*

C9 0.3168 (2) 0.7160 (4) 0.4265 (2) 0.0678 (7) C10 0.3829 (3) 0.8603 (5) 0.4909 (2) 0.0831 (9)

H10 0.3694 0.9802 0.4657 0.100*

C11 0.4683 (3) 0.8290 (5) 0.5917 (2) 0.0880 (9)

H11 0.5129 0.9267 0.6342 0.106*

C12 0.4871 (3) 0.6528 (5) 0.6289 (2) 0.0832 (9) C13 0.4212 (3) 0.5084 (5) 0.5677 (2) 0.0874 (9)

H13 0.4341 0.3894 0.5940 0.105*

C14 0.3352 (3) 0.5395 (5) 0.4661 (2) 0.0805 (8)

H14 0.2897 0.4415 0.4245 0.097*

N1 0.2387 (2) 0.7557 (4) 0.32346 (18) 0.0752 (7) O1 −0.15716 (19) 0.6504 (3) 0.17627 (15) 0.0834 (6) O2 0.04538 (17) 0.6100 (3) 0.26746 (13) 0.0756 (5) Cl1 0.59850 (9) 0.61279 (18) 0.75589 (6) 0.1182 (4) H1 0.220 (2) 0.864 (4) 0.3083 (19) 0.059 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2003–o2004

C9 0.0631 (16) 0.0783 (19) 0.0626 (16) −0.0025 (14) 0.0339 (13) 0.0000 (14) C10 0.082 (2) 0.082 (2) 0.0757 (19) −0.0026 (16) 0.0354 (16) 0.0016 (16) C11 0.082 (2) 0.099 (2) 0.074 (2) −0.0102 (17) 0.0359 (17) −0.0114 (18) C12 0.0688 (18) 0.111 (3) 0.0668 (17) 0.0052 (18) 0.0342 (15) 0.0053 (17) C13 0.080 (2) 0.096 (2) 0.084 (2) 0.0082 (18) 0.0421 (17) 0.0204 (18) C14 0.0782 (19) 0.082 (2) 0.0729 (18) −0.0036 (16) 0.0344 (15) 0.0064 (15) N1 0.0787 (16) 0.0680 (17) 0.0694 (15) 0.0004 (14) 0.0331 (13) 0.0035 (13) O1 0.0792 (14) 0.0857 (14) 0.0887 (14) −0.0069 (11) 0.0471 (11) 0.0005 (10) O2 0.0781 (12) 0.0872 (13) 0.0618 (11) 0.0012 (10) 0.0376 (10) 0.0073 (9) Cl1 0.0970 (7) 0.1644 (10) 0.0694 (5) 0.0160 (6) 0.0284 (4) 0.0124 (5)

Geometric parameters (Å, º)

C1—O1 1.213 (3) C8—O2 1.505 (3)

C1—O2 1.347 (3) C8—H8 0.9800

C1—C2 1.477 (4) C9—C14 1.384 (4)

C2—C7 1.375 (4) C9—C10 1.384 (4)

C2—C3 1.382 (4) C9—N1 1.400 (4)

C3—C4 1.388 (4) C10—C11 1.377 (4)

C3—H3 0.9300 C10—H10 0.9300

C4—C5 1.384 (4) C11—C12 1.368 (4)

C4—H4 0.9300 C11—H11 0.9300

C5—C6 1.374 (4) C12—C13 1.366 (5)

C5—H5 0.9300 C12—Cl1 1.745 (3)

C6—C7 1.393 (4) C13—C14 1.386 (4)

C6—H6 0.9300 C13—H13 0.9300

C7—C8 1.492 (4) C14—H14 0.9300

C8—N1 1.404 (4) N1—H1 0.82 (2)

O1—C1—O2 121.5 (3) C7—C8—H8 109.3

O1—C1—C2 130.0 (3) O2—C8—H8 109.3

O2—C1—C2 108.5 (3) C14—C9—C10 118.6 (3)

C7—C2—C3 122.3 (3) C14—C9—N1 123.4 (3)

C7—C2—C1 108.6 (2) C10—C9—N1 117.9 (3)

C3—C2—C1 129.1 (3) C11—C10—C9 121.0 (3)

C2—C3—C4 117.1 (3) C11—C10—H10 119.5

C2—C3—H3 121.5 C9—C10—H10 119.5

C4—C3—H3 121.5 C12—C11—C10 119.5 (3)

C5—C4—C3 120.7 (3) C12—C11—H11 120.3

C5—C4—H4 119.7 C10—C11—H11 120.3

C3—C4—H4 119.7 C13—C12—C11 120.9 (3)

C6—C5—C4 121.9 (3) C13—C12—Cl1 119.8 (3)

C6—C5—H5 119.0 C11—C12—Cl1 119.3 (3)

C4—C5—H5 119.0 C12—C13—C14 119.8 (3)

C5—C6—C7 117.5 (3) C12—C13—H13 120.1

C5—C6—H6 121.3 C14—C13—H13 120.1

C7—C6—H6 121.3 C9—C14—C13 120.2 (3)

(6)

C2—C7—C8 109.5 (2) C13—C14—H14 119.9

C6—C7—C8 130.0 (3) C9—N1—C8 123.3 (3)

N1—C8—C7 114.2 (2) C9—N1—H1 116.8 (18)

N1—C8—O2 111.6 (2) C8—N1—H1 113.9 (18)

C7—C8—O2 102.8 (2) C1—O2—C8 110.5 (2)

N1—C8—H8 109.3

O1—C1—C2—C7 178.1 (3) C14—C9—C10—C11 2.2 (4) O2—C1—C2—C7 −2.6 (3) N1—C9—C10—C11 −175.0 (3) O1—C1—C2—C3 −3.2 (5) C9—C10—C11—C12 −0.8 (5) O2—C1—C2—C3 176.1 (3) C10—C11—C12—C13 −0.8 (5) C7—C2—C3—C4 0.1 (4) C10—C11—C12—Cl1 178.1 (2) C1—C2—C3—C4 −178.5 (3) C11—C12—C13—C14 0.8 (5) C2—C3—C4—C5 −1.2 (4) Cl1—C12—C13—C14 −178.1 (2) C3—C4—C5—C6 0.8 (5) C10—C9—C14—C13 −2.1 (4) C4—C5—C6—C7 0.8 (5) N1—C9—C14—C13 174.9 (3) C3—C2—C7—C6 1.5 (4) C12—C13—C14—C9 0.7 (5) C1—C2—C7—C6 −179.7 (2) C14—C9—N1—C8 14.5 (4) C3—C2—C7—C8 −176.8 (2) C10—C9—N1—C8 −168.4 (3)

C1—C2—C7—C8 2.0 (3) C7—C8—N1—C9 −171.3 (3)

C5—C6—C7—C2 −1.9 (4) O2—C8—N1—C9 72.6 (3) C5—C6—C7—C8 176.0 (3) O1—C1—O2—C8 −178.5 (2) C2—C7—C8—N1 −121.8 (3) C2—C1—O2—C8 2.1 (3) C6—C7—C8—N1 60.0 (4) N1—C8—O2—C1 121.9 (2) C2—C7—C8—O2 −0.8 (3) C7—C8—O2—C1 −0.9 (3) C6—C7—C8—O2 −178.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1···O1i 0.82 (2) 2.29 (3) 3.046 (4) 155 (2)

C6—H6···Cg1ii 0.93 3.29 3.987 (4) 134

Figure

Figure 1
Figure 2

References

Related documents

Data collection: X-AREA (Stoe &amp; Cie, 2002); cell refinement: X- AREA ; data reduction: X-RED32 (Stoe &amp; Cie, 2002); program(s) used to solve structure: SHELXS97

Data collection: X-AREA (Stoe &amp; Cie, 2002); cell refinement: X- AREA ; data reduction: X-RED32 (Stoe &amp; Cie, 2002); program(s) used to solve structure: SHELXS97

Data collection: X-AREA (Stoe &amp; Cie, 2002); cell refinement: X- AREA ; data reduction: X-RED32 (Stoe &amp; Cie, 2002); program(s) used to solve structure: SHELXS97

Data collection: X-AREA (Stoe &amp; Cie, 2002); cell refinement: X- AREA; data reduction: X-RED32 (Stoe &amp; Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick,

Data collection: X-AREA (Stoe &amp; Cie, 2002); cell refinement: X- AREA ; data reduction: X-RED32 (Stoe &amp; Cie, 2002); program(s) used to solve structure: SHELXS97

Data collection: X-AREA (Stoe &amp; Cie, 2002); cell refinement: X- AREA ; data reduction: X-RED32 (Stoe &amp; Cie, 2002); program(s) used to solve structure: SHELXS97

Data collection: X-AREA (Stoe &amp; Cie, 2002); cell refinement: X-AREA ; data reduction: X-RED32 (Stoe &amp; Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick,

Data collection: X-AREA (Stoe &amp; Cie, 2002); cell refinement: X- AREA ; data reduction: X-RED32 (Stoe &amp; Cie, 2002); program(s) used to solve structure: SHELXS97