• No results found

(S) 2 Hydr­­oxy 2 phenyl­acetic acid–(R) 2 amino­butanoic acid–water (1/1/0 5)

N/A
N/A
Protected

Academic year: 2020

Share "(S) 2 Hydr­­oxy 2 phenyl­acetic acid–(R) 2 amino­butanoic acid–water (1/1/0 5)"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2454

Tenget al. C

8H8O3C4H9NO20.5H2O doi:10.1107/S1600536806018605 Acta Cryst.(2006). E62, o2454–o2456

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(

S

)-2-Hydroxy-2-phenylacetic acid–(

R

)-2-amino-butanoic acid–water (1/1/0.5)

Ming-Yu Teng,aJie Sun,b Chun-An Maaand Qing-Bao Songa*

aThe State Key Laboratory Breeding Base of

Green Chemistry–Synthesis Technology, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China, andbShanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China

Correspondence e-mail: qbsong6@163.com

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.045 wRfactor = 0.104 Data-to-parameter ratio = 7.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 3 May 2006 Accepted 18 May 2006

#2006 International Union of Crystallography All rights reserved

The title complex, C8H6O3C4H8NO20.5H2O, was obtained

from an aqueous solution of racemic 2-aminobutyric acid and (S)-2-hydroxyphenylacetic acid. In the crystal structure, a

two-dimensional network is formed via O—H O [H O =

1.63 (5)–2.52 (5) A˚ ] and N—H O [H O = 1.91 (4)–

2.30 (4) A˚ ] hydrogen bonds.

Comment

The asymmetric unit of the title compound, (I), consists of two molecules of 2-aminobutyric acid, two molecules of 2-hy-droxyphenylacetic acid and one molecule of water (Fig. 1 and

Table 1). The absolute configuration of (R)-2-aminobutyric

acid has been determined with reference to 2-hydroxy-phenylacetic acid. The synthetic procedure is a useful method

for separating theRisomer from a racemic mixture.

In the crystal structure, a two-dimensional network is

formed via O—H O and N—H O hydrogen bonds

(Table 2 and Fig. 2).

Experimental

dl--Aminobutyric acid (4.12 g) and D-mandelic acid (6.09 g) were mixed with water (6 ml) and heated to 349 K until the solid had dissolved. The solution was left to stand at room temperature for one week. The resulting single crystals were separated by filtration, washed with water (3 ml) and dried to obtain crystals ofl-mandelic acidd--aminobutyric acid hemihydrate (Tashiroet al.1980): []25D= 79.75(c= 4.0, water).

Crystal data

C8H8O3C4H9NO20.5H2O Mr= 264.28

Monoclinic,P21 a= 6.0017 (7) A˚

b= 8.4357 (9) A˚

c= 26.733 (3) A˚

= 94.614 (2)

V= 1349.0 (3) A˚3

Z= 8

Dx= 1.301 Mg m

3

MoKradiation

[image:1.610.205.475.374.472.2]
(2)

Data collection

Bruker SMART CCD diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.748,Tmax= 0.980

8010 measured reflections 3134 independent reflections 2378 reflections withI> 2(I)

Rint= 0.104 max= 27.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.045 wR(F2) = 0.104 S= 0.92 3134 reflections 401 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.0478P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.027

max= 0.24 e A˚ 3

min=0.19 e A˚3

Extinction correction:SHELXL97

Extinction coefficient: 0.021 (2)

Table 1

Selected bond lengths (A˚ ).

O1—C1 1.233 (3) O2—C1 1.247 (3) O3—C5 1.210 (4) O4—C5 1.313 (4) O5—C6 1.424 (4) O6—C13 1.221 (3)

[image:2.610.324.545.75.308.2]

O7—C13 1.259 (3) O8—C17 1.227 (4) O9—C17 1.294 (4) O10—C18 1.420 (4) N1—C2 1.479 (3) N2—C14 1.482 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O10—H10A O8 0.81 (5) 2.19 (5) 2.667 (3) 119 (4) O10—H10A O1 0.81 (5) 2.29 (4) 2.908 (3) 134 (4) N2—H16 O11 1.02 (5) 2.03 (5) 2.959 (4) 150 (4) O11—H11A O1 0.91 (2) 2.10 (2) 2.962 (4) 159 (3) N1—H14A O5 0.82 (4) 2.30 (4) 2.962 (4) 139 (3) O11—H11B O3 0.86 (2) 2.52 (5) 3.194 (4) 136 (6) O4—H4 O2i

0.92 (4) 1.65 (4) 2.561 (3) 168 (3) O5—H5 O8ii

0.79 (5) 2.20 (5) 2.904 (3) 148 (5) O9—H9A O7iii

0.87 (5) 1.63 (5) 2.505 (3) 177 (3) N1—H13 O2ii

0.88 (3) 1.91 (4) 2.786 (3) 172 (3) N1—H15 O6iv 0.91 (5) 1.93 (5) 2.787 (3) 158 (4) N2—H17 O7iii

0.90 (3) 1.95 (3) 2.820 (3) 161 (2) N2—H18A O10v

0.79 (3) 2.19 (3) 2.953 (4) 161 (3)

Symmetry codes: (i)xþ1;y1;z; (ii)xþ1;y;z; (iii)x1;y;z; (iv)x;yþ1;z; (v)

x;y1;z.

H atoms bonded to O and N atoms were located in difference Fourier maps and were refined isotropically, as were H2, H6, H14, and H18 [C—H = 0.93 (3)–0.97 (3) A˚ ]. The remaining H atoms were placed in calculated positions, with C—H distances in the range 0.93– 0.97 A˚ , and were refined using the riding-model approximation, with

Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 2000); software used to prepare material for publication:SHELXTL.

This work was supported by the State Key Laboratory Breeding Base of Green Chemistry–Synthesis Technology, Zhejiang University of Technology

organic papers

Acta Cryst.(2006). E62, o2454–o2456 Tenget al. C

[image:2.610.318.562.351.667.2]

8H8O3C4H9NO20.5H2O

o2455

Figure 1

View of the asymmetric unit of (I), with displacement ellipsoids drawn at the 40% probability level. H atoms are represented by circles of arbitrary size.

Figure 2

[image:2.610.45.296.414.545.2]
(3)

References

Bruker (2000).SMART,SAINT,SADABSandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1990).Acta Cryst.A46, 467–473.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Tashiro, Y., Nagashima, T., Aoki, S. & Nishizawa, R. (1980). US Patent No. 4

224 239.

organic papers

o2456

Tenget al. C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, o2454–o2456

supporting information

Acta Cryst. (2006). E62, o2454–o2456 [https://doi.org/10.1107/S1600536806018605]

(

S

)-2-Hydroxy-2-phenylacetic acid

(

R

)-2-aminobutanoic acid

water (1/1/0.5)

Ming-Yu Teng, Jie Sun, Chun-An Ma and Qing-Bao Song

(S)-2-Hydroxy-2-phenylacetic acid–(R)-2-aminobutanoic acid–water (1/1/2)

Crystal data

C8H8O3·C4H9NO2·0.5H2O Mr = 264.28

Monoclinic, P21

Hall symbol: P 2yb

a = 6.0017 (7) Å

b = 8.4357 (9) Å

c = 26.733 (3) Å

β = 94.614 (2)°

V = 1349.0 (3) Å3 Z = 8

F(000) = 564

Dx = 1.301 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2567 reflections

θ = 5.1–47.2°

µ = 0.10 mm−1 T = 293 K Prism, colorless 0.50 × 0.47 × 0.17 mm

Data collection

Bruker SMART CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.748, Tmax = 0.980

8010 measured reflections 3134 independent reflections 2378 reflections with I > 2σ(I)

Rint = 0.104

θmax = 27.0°, θmin = 1.5°

h = −7→7

k = −8→10

l = −34→34

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.045 wR(F2) = 0.104 S = 0.92 3134 reflections 401 parameters 3 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.0478P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.027

Δρmax = 0.24 e Å−3

Δρmin = −0.19 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o2454–o2456

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.4186 (3) 0.8232 (2) 0.28496 (8) 0.0494 (5)

O2 0.2602 (3) 1.0191 (3) 0.32406 (8) 0.0557 (6)

O3 0.9807 (4) 0.3209 (3) 0.30162 (8) 0.0568 (6)

O4 1.2453 (4) 0.2941 (3) 0.36424 (8) 0.0532 (6)

O5 0.9632 (5) 0.6353 (3) 0.31287 (9) 0.0712 (8)

O6 0.6110 (3) 0.1284 (2) 0.20869 (7) 0.0468 (5)

O7 0.7728 (3) 0.3246 (3) 0.17047 (8) 0.0480 (5)

O8 0.0585 (4) 0.6155 (2) 0.20827 (8) 0.0562 (6)

O9 −0.2254 (4) 0.6137 (3) 0.14912 (9) 0.0604 (6)

O10 0.1068 (4) 0.9291 (3) 0.20287 (8) 0.0534 (6)

O11 0.5037 (5) 0.4796 (4) 0.27371 (10) 0.0669 (6)

N1 0.8152 (4) 0.9645 (4) 0.29053 (9) 0.0385 (5)

N2 0.2207 (4) 0.2697 (4) 0.20649 (9) 0.0394 (5)

C1 0.4247 (4) 0.9466 (3) 0.30970 (10) 0.0343 (6)

C2 0.6534 (4) 1.0175 (3) 0.32595 (9) 0.0323 (6)

C3 0.7400 (5) 0.9652 (5) 0.37903 (10) 0.0544 (8)

H3A 0.7451 0.8503 0.3799 0.065*

H3B 0.8919 1.0035 0.3857 0.065*

C4 0.6045 (7) 1.0216 (5) 0.41995 (12) 0.0736 (11)

H4A 0.5913 1.1350 0.4184 0.110*

H4B 0.6766 0.9914 0.4519 0.110*

H4C 0.4583 0.9748 0.4159 0.110*

C5 1.0989 (5) 0.3769 (4) 0.33595 (10) 0.0421 (7)

C6 1.0905 (5) 0.5488 (4) 0.35099 (11) 0.0465 (7)

C7 0.9809 (5) 0.5704 (4) 0.39961 (10) 0.0433 (6)

C8 1.0834 (6) 0.6657 (4) 0.43707 (13) 0.0624 (9)

H8 1.2218 0.7114 0.4330 0.075*

C9 0.9784 (8) 0.6920 (6) 0.48029 (14) 0.0790 (12)

H9 1.0458 0.7568 0.5053 0.095*

C10 0.7798 (9) 0.6251 (6) 0.48669 (14) 0.0878 (14)

H10 0.7115 0.6439 0.5161 0.105*

C11 0.6754 (7) 0.5285 (5) 0.45015 (14) 0.0731 (11)

H11 0.5384 0.4818 0.4549 0.088*

C12 0.7786 (5) 0.5025 (4) 0.40614 (11) 0.0513 (8)

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, o2454–o2456

C13 0.6064 (4) 0.2528 (3) 0.18530 (9) 0.0323 (5)

C14 0.3776 (4) 0.3250 (3) 0.17014 (9) 0.0319 (5)

C15 0.2879 (5) 0.2765 (4) 0.11751 (10) 0.0506 (7)

H15A 0.2863 0.1617 0.1154 0.061*

H15B 0.1348 0.3131 0.1117 0.061*

C16 0.4224 (6) 0.3412 (5) 0.07667 (11) 0.0719 (10)

H16A 0.4292 0.4547 0.0791 0.108*

H16B 0.3524 0.3117 0.0445 0.108*

H16C 0.5710 0.2984 0.0805 0.108*

C17 −0.0657 (5) 0.6828 (4) 0.17630 (10) 0.0423 (7)

C18 −0.0421 (5) 0.8569 (3) 0.16565 (10) 0.0409 (6)

C19 0.0338 (5) 0.8822 (4) 0.11393 (11) 0.0454 (7)

C20 −0.0995 (6) 0.9694 (5) 0.07920 (12) 0.0652 (9)

H20 −0.2368 1.0086 0.0873 0.078*

C21 −0.0247 (10) 0.9976 (7) 0.03192 (15) 0.0971 (15)

H21 −0.1105 1.0590 0.0088 0.117*

C22 0.1671 (11) 0.9375 (7) 0.01969 (16) 0.1064 (19)

H22 0.2118 0.9555 −0.0123 0.128*

C23 0.3032 (8) 0.8485 (7) 0.05326 (17) 0.0938 (16)

H23 0.4378 0.8073 0.0442 0.113*

C24 0.2338 (6) 0.8227 (4) 0.10066 (14) 0.0620 (9)

H24 0.3236 0.7642 0.1239 0.074*

H2 0.641 (4) 1.127 (4) 0.3229 (9) 0.038 (6)*

H4 1.258 (5) 0.191 (5) 0.3540 (12) 0.050 (9)*

H5 1.039 (8) 0.630 (7) 0.2900 (19) 0.11 (2)*

H6 1.242 (5) 0.590 (3) 0.3546 (9) 0.033 (7)*

H9A −0.228 (6) 0.512 (6) 0.1554 (12) 0.056 (10)*

H10A 0.187 (7) 0.858 (6) 0.2133 (15) 0.073 (13)*

H13 0.956 (6) 0.988 (4) 0.2986 (11) 0.046 (8)*

H14 0.395 (4) 0.437 (4) 0.1733 (9) 0.038 (6)*

H15 0.777 (7) 1.005 (6) 0.2596 (16) 0.093 (14)*

H16 0.282 (7) 0.327 (6) 0.2384 (17) 0.106 (15)*

H17 0.075 (5) 0.297 (3) 0.2022 (10) 0.032 (7)*

H18 −0.189 (5) 0.899 (3) 0.1664 (10) 0.032 (7)*

H11A 0.503 (7) 0.587 (2) 0.2710 (14) 0.077 (13)*

H14A 0.796 (5) 0.869 (5) 0.2868 (11) 0.043 (9)*

H18A 0.219 (4) 0.176 (4) 0.2089 (10) 0.036 (8)*

H11B 0.644 (4) 0.483 (9) 0.2704 (18) 0.101 (19)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0375 (10) 0.0409 (12) 0.0687 (13) −0.0010 (9) −0.0037 (9) −0.0148 (10)

O2 0.0264 (10) 0.0567 (14) 0.0835 (15) 0.0046 (9) 0.0001 (10) −0.0198 (12)

O3 0.0573 (13) 0.0576 (14) 0.0529 (12) 0.0006 (12) −0.0120 (10) −0.0032 (11)

O4 0.0562 (13) 0.0424 (13) 0.0583 (13) 0.0119 (10) −0.0128 (10) −0.0060 (10)

O5 0.103 (2) 0.0573 (15) 0.0569 (14) 0.0343 (15) 0.0271 (15) 0.0191 (12)

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o2454–o2456

O7 0.0284 (10) 0.0487 (12) 0.0664 (12) −0.0043 (9) 0.0006 (9) 0.0078 (10)

O8 0.0649 (14) 0.0437 (12) 0.0560 (12) 0.0004 (11) −0.0198 (10) 0.0048 (10)

O9 0.0541 (14) 0.0461 (15) 0.0764 (15) −0.0112 (11) −0.0218 (11) 0.0114 (12)

O10 0.0673 (15) 0.0403 (13) 0.0490 (12) −0.0032 (11) −0.0168 (11) −0.0056 (10)

O11 0.0709 (17) 0.0620 (16) 0.0658 (15) −0.0118 (15) −0.0067 (13) −0.0091 (13)

N1 0.0297 (12) 0.0415 (15) 0.0436 (14) −0.0008 (11) −0.0003 (10) 0.0012 (11)

N2 0.0314 (14) 0.0393 (15) 0.0473 (14) 0.0029 (11) 0.0017 (10) 0.0058 (11)

C1 0.0277 (12) 0.0305 (14) 0.0441 (14) 0.0025 (11) −0.0012 (10) 0.0026 (12)

C2 0.0311 (13) 0.0328 (15) 0.0323 (13) 0.0001 (10) −0.0019 (10) 0.0012 (10)

C3 0.0553 (18) 0.067 (2) 0.0390 (15) 0.0070 (17) −0.0084 (13) 0.0012 (15)

C4 0.092 (3) 0.078 (3) 0.0497 (18) 0.011 (2) 0.0042 (18) 0.0004 (18)

C5 0.0348 (15) 0.0513 (17) 0.0400 (14) 0.0047 (13) 0.0023 (12) 0.0029 (13)

C6 0.0435 (17) 0.0423 (16) 0.0545 (17) 0.0014 (14) 0.0081 (13) 0.0041 (14)

C7 0.0450 (16) 0.0382 (14) 0.0458 (15) 0.0062 (13) −0.0020 (12) 0.0015 (12)

C8 0.061 (2) 0.058 (2) 0.065 (2) 0.0045 (17) −0.0117 (17) −0.0079 (17)

C9 0.104 (3) 0.080 (3) 0.050 (2) 0.010 (3) −0.015 (2) −0.0130 (19)

C10 0.132 (4) 0.088 (3) 0.046 (2) 0.029 (3) 0.022 (2) 0.003 (2)

C11 0.077 (2) 0.076 (3) 0.069 (2) 0.010 (2) 0.027 (2) 0.016 (2)

C12 0.0514 (17) 0.0531 (19) 0.0498 (17) 0.0064 (15) 0.0063 (14) 0.0015 (14)

C13 0.0315 (13) 0.0308 (13) 0.0341 (12) 0.0002 (11) −0.0001 (10) −0.0026 (11)

C14 0.0305 (13) 0.0325 (14) 0.0322 (12) −0.0007 (11) 0.0005 (10) 0.0033 (10)

C15 0.0456 (16) 0.066 (2) 0.0377 (14) −0.0041 (15) −0.0134 (12) 0.0013 (14)

C16 0.086 (2) 0.086 (3) 0.0422 (17) −0.008 (2) −0.0039 (16) 0.0104 (19)

C17 0.0361 (15) 0.0477 (17) 0.0424 (15) −0.0004 (13) −0.0010 (13) −0.0016 (13)

C18 0.0355 (15) 0.0415 (16) 0.0447 (15) 0.0055 (12) −0.0038 (12) −0.0032 (13)

C19 0.0516 (17) 0.0373 (15) 0.0456 (15) −0.0104 (13) −0.0060 (13) −0.0028 (12)

C20 0.077 (2) 0.060 (2) 0.0542 (18) −0.0138 (19) −0.0213 (16) 0.0042 (17)

C21 0.147 (4) 0.092 (4) 0.047 (2) −0.028 (4) −0.021 (2) 0.006 (2)

C22 0.164 (5) 0.105 (4) 0.053 (2) −0.042 (4) 0.023 (3) −0.011 (3)

C23 0.101 (3) 0.096 (4) 0.090 (3) −0.025 (3) 0.045 (3) −0.031 (3)

C24 0.064 (2) 0.057 (2) 0.066 (2) −0.0047 (18) 0.0122 (17) −0.0067 (17)

Geometric parameters (Å, º)

O1—C1 1.233 (3) C6—H6 0.97 (3)

O2—C1 1.247 (3) C7—C12 1.366 (4)

O3—C5 1.210 (4) C7—C8 1.389 (4)

O4—C5 1.313 (4) C8—C9 1.378 (5)

O4—H4 0.92 (4) C8—H8 0.9300

O5—C6 1.424 (4) C9—C10 1.342 (7)

O5—H5 0.79 (5) C9—H9 0.9300

O6—C13 1.221 (3) C10—C11 1.383 (6)

O7—C13 1.259 (3) C10—H10 0.9300

O8—C17 1.227 (4) C11—C12 1.390 (5)

O9—C17 1.294 (4) C11—H11 0.9300

O9—H9A 0.87 (5) C12—H12 0.9300

O10—C18 1.420 (4) C13—C14 1.527 (4)

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, o2454–o2456

O11—H11A 0.91 (2) C14—H14 0.96 (3)

O11—H11B 0.86 (2) C15—C16 1.512 (4)

N1—C2 1.479 (3) C15—H15A 0.9700

N1—H13 0.88 (3) C15—H15B 0.9700

N1—H15 0.91 (5) C16—H16A 0.9600

N1—H14A 0.82 (4) C16—H16B 0.9600

N2—C14 1.482 (3) C16—H16C 0.9600

N2—H16 1.02 (5) C17—C18 1.505 (4)

N2—H17 0.90 (3) C18—C19 1.505 (4)

N2—H18A 0.79 (3) C18—H18 0.95 (3)

C1—C2 1.528 (4) C19—C24 1.373 (5)

C2—C3 1.536 (4) C19—C20 1.387 (5)

C2—H2 0.93 (3) C20—C21 1.395 (6)

C3—C4 1.493 (4) C20—H20 0.9300

C3—H3A 0.9700 C21—C22 1.323 (7)

C3—H3B 0.9700 C21—H21 0.9300

C4—H4A 0.9600 C22—C23 1.385 (7)

C4—H4B 0.9600 C22—H22 0.9300

C4—H4C 0.9600 C23—C24 1.383 (6)

C5—C6 1.507 (4) C23—H23 0.9300

C6—C7 1.514 (4) C24—H24 0.9300

C5—O4—H4 114 (2) C9—C10—H10 119.5

C6—O5—H5 103 (4) C11—C10—H10 119.5

C17—O9—H9A 111 (2) C10—C11—C12 118.9 (4)

C18—O10—H10A 104 (3) C10—C11—H11 120.6

H11A—O11—H11B 88 (5) C12—C11—H11 120.6

C2—N1—H13 116.3 (19) C7—C12—C11 120.2 (3)

C2—N1—H15 110 (3) C7—C12—H12 119.9

H13—N1—H15 108 (3) C11—C12—H12 119.9

C2—N1—H14A 106 (2) O6—C13—O7 126.1 (3)

H13—N1—H14A 112 (3) O6—C13—C14 117.5 (2)

H15—N1—H14A 104 (4) O7—C13—C14 116.3 (2)

C14—N2—H16 101 (3) N2—C14—C15 109.0 (2)

C14—N2—H17 119.8 (17) N2—C14—C13 107.8 (2)

H16—N2—H17 105 (3) C15—C14—C13 112.4 (2)

C14—N2—H18A 112.4 (19) N2—C14—H14 109.0 (14)

H16—N2—H18A 114 (3) C15—C14—H14 112.1 (15)

H17—N2—H18A 104 (3) C13—C14—H14 106.4 (15)

O1—C1—O2 126.1 (3) C16—C15—C14 113.6 (3)

O1—C1—C2 118.1 (2) C16—C15—H15A 108.8

O2—C1—C2 115.8 (2) C14—C15—H15A 108.8

N1—C2—C1 108.7 (2) C16—C15—H15B 108.8

N1—C2—C3 108.3 (2) C14—C15—H15B 108.8

C1—C2—C3 112.3 (2) H15A—C15—H15B 107.7

N1—C2—H2 107.3 (15) C15—C16—H16A 109.5

C1—C2—H2 107.3 (16) C15—C16—H16B 109.5

(9)

supporting information

sup-6 Acta Cryst. (2006). E62, o2454–o2456

C4—C3—C2 114.9 (3) C15—C16—H16C 109.5

C4—C3—H3A 108.5 H16A—C16—H16C 109.5

C2—C3—H3A 108.5 H16B—C16—H16C 109.5

C4—C3—H3B 108.5 O8—C17—O9 124.3 (3)

C2—C3—H3B 108.5 O8—C17—C18 121.5 (3)

H3A—C3—H3B 107.5 O9—C17—C18 114.2 (3)

C3—C4—H4A 109.5 O10—C18—C17 110.5 (2)

C3—C4—H4B 109.5 O10—C18—C19 111.3 (2)

H4A—C4—H4B 109.5 C17—C18—C19 110.6 (2)

C3—C4—H4C 109.5 O10—C18—H18 110.8 (17)

H4A—C4—H4C 109.5 C17—C18—H18 105.0 (17)

H4B—C4—H4C 109.5 C19—C18—H18 108.4 (16)

O3—C5—O4 123.6 (3) C24—C19—C20 119.3 (3)

O3—C5—C6 123.2 (3) C24—C19—C18 121.4 (3)

O4—C5—C6 113.2 (3) C20—C19—C18 119.3 (3)

O5—C6—C5 109.2 (3) C19—C20—C21 119.1 (4)

O5—C6—C7 107.9 (2) C19—C20—H20 120.4

C5—C6—C7 111.8 (2) C21—C20—H20 120.4

O5—C6—H6 109.3 (17) C22—C21—C20 120.6 (5)

C5—C6—H6 108.7 (17) C22—C21—H21 119.7

C7—C6—H6 109.9 (15) C20—C21—H21 119.7

C12—C7—C8 119.8 (3) C21—C22—C23 121.8 (4)

C12—C7—C6 120.7 (3) C21—C22—H22 119.1

C8—C7—C6 119.4 (3) C23—C22—H22 119.1

C9—C8—C7 119.5 (3) C24—C23—C22 118.3 (4)

C9—C8—H8 120.3 C24—C23—H23 120.9

C7—C8—H8 120.3 C22—C23—H23 120.9

C10—C9—C8 120.7 (4) C19—C24—C23 120.8 (4)

C10—C9—H9 119.7 C19—C24—H24 119.6

C8—C9—H9 119.7 C23—C24—H24 119.6

C9—C10—C11 121.0 (3)

O1—C1—C2—N1 25.1 (3) O6—C13—C14—N2 26.1 (3)

O2—C1—C2—N1 −156.5 (2) O7—C13—C14—N2 −156.8 (2)

O1—C1—C2—C3 −94.7 (3) O6—C13—C14—C15 −94.0 (3)

O2—C1—C2—C3 83.7 (3) O7—C13—C14—C15 83.1 (3)

N1—C2—C3—C4 175.1 (3) N2—C14—C15—C16 174.1 (3)

C1—C2—C3—C4 −64.8 (4) C13—C14—C15—C16 −66.5 (4)

O3—C5—C6—O5 −12.4 (4) O8—C17—C18—O10 −10.9 (4)

O4—C5—C6—O5 168.3 (2) O9—C17—C18—O10 169.1 (2)

O3—C5—C6—C7 106.9 (3) O8—C17—C18—C19 112.8 (3)

O4—C5—C6—C7 −72.3 (3) O9—C17—C18—C19 −67.2 (3)

O5—C6—C7—C12 69.8 (4) O10—C18—C19—C24 62.7 (4)

C5—C6—C7—C12 −50.3 (4) C17—C18—C19—C24 −60.5 (4)

O5—C6—C7—C8 −107.5 (3) O10—C18—C19—C20 −116.3 (3)

C5—C6—C7—C8 132.3 (3) C17—C18—C19—C20 120.5 (3)

C12—C7—C8—C9 −0.7 (5) C24—C19—C20—C21 −1.4 (5)

(10)

supporting information

sup-7 Acta Cryst. (2006). E62, o2454–o2456

C7—C8—C9—C10 0.8 (6) C19—C20—C21—C22 2.3 (7)

C8—C9—C10—C11 −0.2 (7) C20—C21—C22—C23 −1.6 (8)

C9—C10—C11—C12 −0.5 (6) C21—C22—C23—C24 0.1 (7)

C8—C7—C12—C11 0.0 (5) C20—C19—C24—C23 0.0 (5)

C6—C7—C12—C11 −177.4 (3) C18—C19—C24—C23 −179.1 (3)

C10—C11—C12—C7 0.6 (5) C22—C23—C24—C19 0.7 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O10—H10A···O8 0.81 (5) 2.19 (5) 2.667 (3) 119 (4)

O10—H10A···O1 0.81 (5) 2.29 (4) 2.908 (3) 134 (4)

N2—H16···O11 1.02 (5) 2.03 (5) 2.959 (4) 150 (4)

O11—H11A···O1 0.91 (2) 2.10 (2) 2.962 (4) 159 (3)

N1—H14A···O5 0.82 (4) 2.30 (4) 2.962 (4) 139 (3)

O11—H11B···O3 0.86 (2) 2.52 (5) 3.194 (4) 136 (6)

O4—H4···O2i 0.92 (4) 1.65 (4) 2.561 (3) 168 (3)

O5—H5···O8ii 0.79 (5) 2.20 (5) 2.904 (3) 148 (5)

O9—H9A···O7iii 0.87 (5) 1.63 (5) 2.505 (3) 177 (3)

N1—H13···O2ii 0.88 (3) 1.91 (4) 2.786 (3) 172 (3)

N1—H15···O6iv 0.91 (5) 1.93 (5) 2.787 (3) 158 (4)

N2—H17···O7iii 0.90 (3) 1.95 (3) 2.820 (3) 161 (2)

N2—H18A···O10v 0.79 (3) 2.19 (3) 2.953 (4) 161 (3)

Figure

Table 1). The absolute configuration of (R)-2-aminobutyric
Table 2

References

Related documents

Our analysis provides some idea about the distinct compartmentalization of the Indian credit market with respect to the disbursement of loan from various credit

In effect, we hypothesized that the unproductive expenditures depend on real, financial and demand variables which we captured in the movement of the economy- wide

We recast their tasks so that they only require a sentence embedding as input (two of their tasks also require word embeddings, polluting sentence- level evaluation), we extend

In this paper, we introduce a Low-rank Multi- modal Fusion method that performs multimodal fu- sion with modality-specific low-rank factors.. LMF scales linearly in the number

Based on the lag length, it could be suggested that the changes in world oil price and output of trade industries have immediate effect on currency appreciation,

In his most recent blog, Aaker still uses the same definition for brand equity but identifies only three elements or assets as the major dimensions of brand

Aim: The purpose of this study was to evaluate and compare the total time duration and comfort equation of three different appliances used to manage the

But the overall accuracy ( 42.21% ) is poorer than the one obtained by the two base- lines. On the foil word detection task, when con- sidering only nouns as possible foil word,