• No results found

A gadolinium based metal–organic framework, poly[[tris­­(μ4 benzene 1,4 di­carboxyl­ato)bis­­(μ2 N,N di­ethyl­formamide)digadolinium(III)] monohydrate]

N/A
N/A
Protected

Academic year: 2020

Share "A gadolinium based metal–organic framework, poly[[tris­­(μ4 benzene 1,4 di­carboxyl­ato)bis­­(μ2 N,N di­ethyl­formamide)digadolinium(III)] monohydrate]"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1337–m1339 doi:10.1107/S1600536805018271 Poulsenet al. [Gd

2(C8H4O4)3(C5H11NO)2]H2O

m1337

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A gadolinium-based metal–organic framework,

poly[[tris(

l

4

-benzene-1,4-dicarboxylato)-bis(

l

2

-

N

,

N

-diethylformamide)digadolinium(III)]

monohydrate]

Rasmus D. Poulsen, Jacob Overgaard,* Marie-Agnes Chevallier, Henrik F. Clausen and Bo B. Iversen

Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark

Correspondence e-mail: jacobo@chem.au.dk

Key indicators

Single-crystal X-ray study

T= 100 K

Mean(C–C) = 0.002 A˚ H-atom completeness 95% Disorder in main residue

Rfactor = 0.022

wRfactor = 0.054

Data-to-parameter ratio = 41.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The crystal structure of the title compound, {[Gd2(C8H4O4)3(C5H11NO)2]H2O}n, consists of chains of Gd

atoms interconnected by a benzene-1,4-dicarboxylate (BDC) linker. The chains are also intraconnected by carboxylate groups from the BDC linker, thus generating a three-dimensional framework with large cavities. The coordination of the eight carboxylate O atoms around the GdIII ion is distorted dodecahedral, due to the steric constraints of the carboxylate groups. The large anisotropic displacement parameters of the atoms of the coordinated diethylformamide (DEF) and the disorder in their positions indicate loose bonding to the framework, and hence solvent exchange may be possible. Additionally, one water molecule is located in the cavity.

Comment

Metal–organic frameworks (MOFs) are of great scientific interest (Kitahawaet al., 2004; Lu, 2003; O0Keeffeet al., 2000).

Their potential use in gas storage has gained enormous attention worldwide. Our main research effort has so far been focused on the magnetic properties of these compounds (Zhanget al., 2005), and in this context the title structure, (I), is the first in a series of new MOFs which may combine interesting magnetic effects and potential gas storage, due to their electron-rich metal centres.

The structure of (I) consists of chains of carboxylate-bridged GdIII atoms interconnected by benzene-1,4-dicarboxylate (BDC) linkers. The Gd chains are aligned along the c axis and thus there appears to be a unique magnetic direction, as interchain distances (>9.7 A˚ ) are much larger than the intrachain Gd Gd distance of 4.0363 (1) A˚ .

(2)

The GdIII ion is coordinated by seven O atoms from the carboxylate groups and one O atom from the diethyl-formamide (DEF) molecule. There is one -bridging carboxylate atom, O31, which bridges two Gd atoms with a long [Gd—O 2.818 (1) A˚ ] and a short [Gd—O 2.381 (1) A˚] bond. Not taking the long bond into account, the average bond length of the remaining carboxylate O atoms, <Gd— O(carboxylate)>, is 2.339 (1) A˚ , while <Gd—O(DEF)> is 2.428 (1) A˚ . The intraconnection of the Gd atoms by bridging carboxylate (OCO)groups and only one bridging O31 atom gives rise to a disrupted Gd—O—Gd coupling.

The carboxylate groups in (I) are all delocalized, with an average C—O bond length of 1.260 (2) A˚ . This gives a net charge of0.5 efor each unique O atom. A formal electron count suggests that the Gd atom has a charge of +3, which is in agreement with the synthesis conditions.

In the crystal structure of (I), the inner parts of the voids are occupied by DEF molecules, which are bonded directly to the Gd atoms. As previously reported (Poulsenet al., 2004, 2005) DEF solvent molecules do not only occupy the voids but also bond directly to the metal centres. The ethyl groups of the DEF molecule are disordered, with no overlap of atoms in the two positions [occupancy factors of 0.622 (6) and 0.378 (6)]. A single water molecule is found in the void, disordered over two crystallographically equivalent positions (50:50%) only 1.086 A˚ apart. The two H atoms of this water molecule were not located or included in the refinement.

Due to the bonding of the DEF molecule to the framework, it has been possible to refine the anisotropic displacement parameters of all non-H atoms. The displacement ellipsoid of the methyl group atom C20 is highly elongated towards H20C. This is probably due to further unresolved disorder.

Experimental

The title compound was prepared in an autoclave by adding a mixture of benzene dicarboxylic acid (BDC; 1 mmol, 0.166 g) and diethyl-formamide (DEF; 7 ml) to a solution of Gd(NO3)35H2O (1.0 mmol,

0.434 g) in DEF (3 ml). The mixture was kept at 383 K for 72 h. White crystals of (I) suitable for single-crystal X-ray analysis were formed.

Crystal data

[Gd2(C8H4O4)3(C5H11NO)2]H2O

Mr= 1025.13 Monoclinic,C2=c a= 18.0582 (5) A˚

b= 11.4381 (3) A˚

c= 18.6791 (4) A˚ = 108.796 (1) V= 3652.44 (16) A˚3

Z= 4

Dx= 1.864 Mg m

3

MoKradiation Cell parameters from 7811

reflections = 2.8–42.4

= 3.67 mm1

T= 100 (2) K Block, white

0.200.050.05 mm

Data collection

Bruker X8 APEXII CCD-based diffractometer

’and!scans

Absorption correction: multi-scan (Blessing, 1995)

Tmin= 0.741,Tmax= 0.830

61459 measured reflections

11366 independent reflections 9378 reflections withI> 2(I)

Rint= 0.039

max= 43.0

h=33!29

k=20!20

l=33!32

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.022

wR(F2) = 0.054

S= 0.95 11366 reflections 277 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0284P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 2.59 e A˚3 min=0.96 e A˚

3

H atoms bonded to C atoms were included in calculated positions (C—H = 0.95–0.99 A˚ ) and refined in a riding-model approximation, with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl groups. The

disorder in the DEF molecule has no overlapping positions, and the sum of the two disordered occupancies was fixed to unity. The nine largest residual peaks were distributed within 0.75 A˚ around the Gd atoms.

Data collection:APEX2(Bruker–Nonius, 2004); cell refinement: SAINT-Plus; data reduction: SAINT-Plus (Bruker–Nonius, 2004);

metal-organic papers

m1338

Poulsenet al. [Gd

[image:2.610.45.301.68.311.2]

2(C8H4O4)3(C5H11NO)2]H2O Acta Cryst.(2005). E61, m1337–m1339 Figure 1

[image:2.610.305.563.72.272.2]

Part of the structure of the title compound. The disorder of the ethyl groups is shown with purple and turquoise bonds. For clarity, all ethyl H atoms except H20C have been omitted. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

(3)

program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics: XSHELL (Bruker, 2004); software used to prepare material for publication: enCIFer(version 1.1; Allenet al., 2004).

Financial support of this work by the Carlsberg Foundation is gratefully acknowledged.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004).J. Appl. Cryst.37, 335–338.

Blessing, R. H. (1995).Acta Cryst.A51, 33–38.

Bruker–Nonius (2004).SAINT-Plus(Version 7.06a),XSHELL(Version 4.02) andAPEX2. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA. Kitahawa, S., Kitaura, R. & Noro, S. (2004).Angew. Chem. Int. Ed.43, 2334–

2375.

Lu, J. Y. (2003).Coord. Chem. Rev.246, 327–347.

O’Keeffe, M., Eddaoudi, M., Li, H., Reineke, T. & Yaghi, O. M. (2000).J. Solid State Chem.152, 3–20.

Poulsen, R. D., Bentien, A., Chevalier. M. & Iversen, B. B. (2005).J. Am. Chem. Soc.In the press.

Poulsen, R. D., Bentien, A., Graber, T. & Iversen, B. B. (2004).Acta Cryst.

A60, 382–389.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Zhang, H., Song, Y., Li, Y., Zuo, J., Gao, S. & You, X. (2005).Eur. J. Inorg. Chem.pp. 766–772.

metal-organic papers

Acta Cryst.(2005). E61, m1337–m1339 Poulsenet al. [Gd

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1337–m1339

supporting information

Acta Cryst. (2005). E61, m1337–m1339 [https://doi.org/10.1107/S1600536805018271]

A gadolinium-based metal

organic framework, poly[[tris(

µ

4

-benzene-1,4-di-carboxylato)bis(

µ

2

-

N

,

N

-diethylformamide)digadolinium(III)] monohydrate]

Rasmus D. Poulsen, Jacob Overgaard, Marie-Agnes Chevallier, Henrik F. Clausen and Bo B.

Iversen

poly[[tris(µ4-benzene-1,4-dicarboxylato)bis(µ2– N,N-diethylformamide)digadolinium(III)] monohydrate]

Crystal data

[Gd2(C8H4O4)3(C5H11NO)2]·H2O

Mr = 1025.13

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 18.0582 (5) Å

b = 11.4381 (3) Å

c = 18.6791 (4) Å

β = 108.796 (1)°

V = 3652.44 (16) Å3

Z = 4

F(000) = 2000

Dx = 1.864 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 7811 reflections

θ = 2.8–42.4°

µ = 3.67 mm−1

T = 100 K

Block, white

0.20 × 0.05 × 0.05 mm

Data collection

Bruker SMART APEXII CCD-based diffractometer

Radiation source: fine-focus sealed tube, Siemens K FFMO 2K 90

Graphite monochromator

Detector resolution: 83.33 pixels mm-1

φ and ω scans

Absorption correction: multi-scan (Blessing, 1995)

Tmin = 0.741, Tmax = 0.830 61459 measured reflections 11366 independent reflections 9378 reflections with I > 2σ(I)

Rint = 0.039

θmax = 43.0°, θmin = 2.1°

h = −33→29

k = −20→20

l = −33→32

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.022

wR(F2) = 0.054

S = 0.95

11366 reflections 277 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0284P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1337–m1339 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Gd1 0.001829 (3) 0.559920 (4) 0.102180 (3) 0.00726 (2)

O1 0.08900 (6) 0.56023 (9) 0.22407 (6) 0.01713 (18)

O31 −0.07784 (6) 0.43229 (9) 0.00789 (7) 0.01854 (19)

C1 0.11733 (7) 0.56150 (10) 0.29411 (7) 0.01022 (17)

O11 −0.08653 (5) 0.51300 (8) 0.16110 (5) 0.01153 (14)

O14 0.10513 (6) 0.68267 (9) 0.09204 (6) 0.01663 (17)

O21 −0.02661 (7) 0.74494 (9) 0.15146 (6) 0.01815 (18)

O41 −0.07090 (6) 0.67660 (9) 0.00048 (5) 0.01924 (19)

C11 0.18656 (7) 0.69969 (11) 0.01577 (7) 0.0142 (2)

C2 0.19404 (7) 0.62278 (11) 0.32888 (7) 0.01196 (18)

C3 0.22907 (8) 0.68160 (13) 0.28281 (7) 0.0176 (2)

H3 0.2064 0.6782 0.2294 0.021*

C12 0.19865 (8) 0.67711 (12) −0.05289 (8) 0.0165 (2)

H12 0.1636 0.6276 −0.0891 0.020*

C7 0.22854 (8) 0.62536 (12) 0.40715 (7) 0.0144 (2)

H7 0.2053 0.5841 0.4386 0.017*

C10 0.11899 (7) 0.64679 (11) 0.03387 (7) 0.0142 (2)

O13 0.07687 (8) 0.39149 (12) 0.11365 (6) 0.0318 (3)

C6 0.29705 (8) 0.68840 (12) 0.43921 (7) 0.0169 (2)

H6 0.3209 0.6894 0.4926 0.020*

C13 0.23812 (8) 0.77300 (13) 0.06843 (8) 0.0182 (2)

H13 0.2299 0.7889 0.1152 0.022*

C5 0.33072 (9) 0.75001 (13) 0.39337 (7) 0.0188 (2)

C41 −0.09999 (9) 0.67298 (13) −0.07060 (8) 0.0216 (3)

C4 0.29713 (9) 0.74512 (14) 0.31507 (8) 0.0223 (3)

H4 0.3209 0.7854 0.2837 0.027*

N16 −0.05939 (13) 0.93673 (12) 0.13197 (13) 0.0370 (4)

C15 −0.02170 (15) 0.84050 (15) 0.12457 (15) 0.0436 (6)

H15 0.0126 0.8466 0.0954 0.052*

C19 −0.1864 (2) 0.9755 (4) 0.1531 (3) 0.0573 (14) 0.622 (6)

H19A −0.2109 0.9768 0.1929 0.086* 0.622 (6)

H19B −0.2134 0.9186 0.1143 0.086* 0.622 (6)

H19C −0.1901 1.0533 0.1303 0.086* 0.622 (6)

C20 −0.0182 (3) 1.1406 (4) 0.1242 (5) 0.105 (3) 0.622 (6)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1337–m1339

H20B 0.0368 1.1165 0.1439 0.158* 0.622 (6)

H20C −0.0366 1.1620 0.1664 0.158* 0.622 (6)

C19A −0.1394 (7) 0.9902 (10) 0.2082 (7) 0.089 (4) 0.378 (6)

H19D −0.1923 0.9792 0.2108 0.134* 0.378 (6)

H19E −0.1298 1.0737 0.2034 0.134* 0.378 (6)

H19F −0.1011 0.9596 0.2544 0.134* 0.378 (6)

C20A −0.0652 (5) 1.0785 (6) 0.0379 (5) 0.056 (2) 0.378 (6)

H20D −0.0436 1.1513 0.0253 0.085* 0.378 (6)

H20E −0.1208 1.0894 0.0313 0.085* 0.378 (6)

H20F −0.0592 1.0158 0.0044 0.085* 0.378 (6)

C17 −0.0658 (3) 1.0433 (3) 0.0815 (3) 0.0497 (13) 0.626 (7)

H17A −0.0478 1.0226 0.0384 0.060* 0.626 (7)

H17B −0.1212 1.0680 0.0610 0.060* 0.626 (7)

C18 −0.1019 (2) 0.9415 (2) 0.1867 (2) 0.0290 (7) 0.626 (7)

H18A −0.0756 0.9984 0.2268 0.035* 0.626 (7)

H18B −0.0989 0.8639 0.2109 0.035* 0.626 (7)

C17A −0.0219 (4) 1.0459 (4) 0.1193 (4) 0.0326 (14) 0.374 (7)

H17C 0.0344 1.0332 0.1271 0.039* 0.374 (7)

H17D −0.0273 1.1080 0.1542 0.039* 0.374 (7)

C18A −0.1320 (5) 0.9287 (5) 0.1438 (5) 0.0387 (18) 0.374 (7)

H18C −0.1433 0.8450 0.1491 0.046* 0.374 (7)

H18D −0.1726 0.9584 0.0981 0.046* 0.374 (7)

O99 −0.0274 (3) 1.2785 (5) 0.2561 (4) 0.106 (2)* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Gd1 0.00684 (2) 0.00960 (2) 0.00528 (3) −0.00035 (2) 0.00190 (2) 0.00008 (2)

O1 0.0128 (4) 0.0305 (5) 0.0068 (4) −0.0046 (3) 0.0012 (3) 0.0011 (3)

O31 0.0150 (4) 0.0224 (5) 0.0208 (5) −0.0110 (3) 0.0094 (4) −0.0105 (4)

C1 0.0095 (4) 0.0136 (4) 0.0073 (4) 0.0013 (3) 0.0025 (3) 0.0000 (3)

O11 0.0112 (3) 0.0154 (4) 0.0095 (4) −0.0018 (3) 0.0053 (3) −0.0020 (3)

O14 0.0173 (4) 0.0220 (4) 0.0138 (4) −0.0087 (4) 0.0094 (3) −0.0059 (4)

O21 0.0257 (5) 0.0151 (4) 0.0142 (4) 0.0010 (4) 0.0071 (4) −0.0028 (3)

O41 0.0256 (5) 0.0213 (4) 0.0083 (4) 0.0115 (4) 0.0019 (3) 0.0022 (3)

C11 0.0137 (5) 0.0174 (5) 0.0140 (5) −0.0072 (4) 0.0080 (4) −0.0055 (4)

C2 0.0137 (5) 0.0140 (4) 0.0080 (4) −0.0027 (4) 0.0032 (4) −0.0006 (4)

C3 0.0208 (5) 0.0241 (6) 0.0072 (5) −0.0099 (5) 0.0034 (4) −0.0007 (4)

C12 0.0165 (5) 0.0216 (5) 0.0139 (5) −0.0096 (4) 0.0085 (4) −0.0069 (4)

C7 0.0162 (5) 0.0183 (5) 0.0080 (5) −0.0054 (4) 0.0030 (4) −0.0002 (4)

C10 0.0135 (5) 0.0174 (5) 0.0138 (5) −0.0062 (4) 0.0074 (4) −0.0035 (4)

O13 0.0444 (7) 0.0370 (6) 0.0103 (4) 0.0311 (6) 0.0038 (4) 0.0006 (4)

C6 0.0211 (5) 0.0197 (5) 0.0078 (5) −0.0082 (5) 0.0018 (4) −0.0006 (4)

C13 0.0186 (5) 0.0253 (6) 0.0142 (5) −0.0124 (5) 0.0101 (4) −0.0086 (5)

C5 0.0236 (6) 0.0216 (6) 0.0091 (5) −0.0128 (5) 0.0025 (4) −0.0012 (4)

C41 0.0292 (7) 0.0234 (6) 0.0100 (5) 0.0163 (5) 0.0032 (5) 0.0028 (5)

C4 0.0283 (7) 0.0281 (7) 0.0085 (5) −0.0173 (6) 0.0033 (5) −0.0003 (5)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m1337–m1339

C15 0.0628 (14) 0.0153 (6) 0.0760 (16) −0.0070 (7) 0.0546 (14) −0.0074 (8)

C19 0.0315 (18) 0.050 (2) 0.087 (4) 0.0063 (17) 0.014 (2) −0.009 (2)

C20 0.048 (2) 0.037 (2) 0.187 (7) −0.0153 (19) −0.024 (3) 0.056 (3)

C19A 0.092 (8) 0.099 (8) 0.106 (9) −0.034 (6) 0.074 (7) −0.067 (7)

C20A 0.049 (4) 0.045 (3) 0.070 (5) 0.012 (3) 0.013 (4) 0.037 (3)

C17 0.058 (3) 0.0241 (14) 0.070 (3) 0.0105 (16) 0.025 (3) 0.0231 (17)

C18 0.0346 (16) 0.0220 (11) 0.0317 (18) 0.0042 (10) 0.0127 (14) −0.0075 (11)

C17A 0.036 (3) 0.0129 (16) 0.051 (4) −0.0009 (16) 0.016 (3) 0.0037 (18)

C18A 0.046 (4) 0.025 (2) 0.058 (5) 0.000 (2) 0.034 (4) −0.003 (2)

Geometric parameters (Å, º)

Gd1—O11 2.2754 (9) C5—C41iv 1.5007 (19)

Gd1—O1 2.3135 (10) C41—O13i 1.2574 (17)

Gd1—O13 2.3253 (11) C41—C5v 1.5007 (19)

Gd1—O41 2.3468 (10) C4—H4 0.9500

Gd1—O31 2.3811 (10) N16—C15 1.325 (2)

Gd1—O14 2.3905 (9) N16—C18A 1.401 (6)

Gd1—O21 2.4278 (10) N16—C18 1.464 (4)

Gd1—O31i 2.8175 (11) N16—C17A 1.475 (5)

Gd1—Gd1i 4.0364 (1) N16—C17 1.522 (4)

O1—C1 1.2418 (15) C15—H15 0.9500

O31—C10i 1.2670 (15) C19—C18 1.503 (6)

O31—Gd1i 2.8175 (11) C19—H19A 0.9800

C1—O11ii 1.2715 (15) C19—H19B 0.9800

C1—C2 1.5007 (17) C19—H19C 0.9800

O11—C1ii 1.2715 (15) C20—C17 1.474 (8)

O14—C10 1.2598 (15) C20—H20A 0.9800

O21—C15 1.218 (2) C20—H20B 0.9800

O41—C41 1.2613 (17) C20—H20C 0.9800

C11—C12 1.3926 (17) C19A—C18A 1.436 (10)

C11—C13 1.3955 (18) C19A—H19D 0.9800

C11—C10 1.4952 (16) C19A—H19E 0.9800

C2—C7 1.3927 (17) C19A—H19F 0.9800

C2—C3 1.3944 (17) C20A—C17A 1.516 (11)

C3—C4 1.3872 (19) C20A—H20D 0.9800

C3—H3 0.9500 C20A—H20E 0.9800

C12—C13iii 1.3883 (17) C20A—H20F 0.9800

C12—H12 0.9500 C17—H17A 0.9900

C7—C6 1.3898 (18) C17—H17B 0.9900

C7—H7 0.9500 C18—H18A 0.9900

C10—O31i 1.2670 (15) C18—H18B 0.9900

O13—C41i 1.2574 (17) C17A—H17C 0.9900

C6—C5 1.3911 (19) C17A—H17D 0.9900

C6—H6 0.9500 C18A—H18C 0.9900

C13—C12iii 1.3883 (17) C18A—H18D 0.9900

C13—H13 0.9500 O99—O99ii 1.086 (11)

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m1337–m1339

O11—Gd1—O1 83.40 (3) C6—C5—C41iv 119.21 (12)

O11—Gd1—O13 103.81 (5) C4—C5—C41iv 120.84 (12)

O1—Gd1—O13 73.68 (4) O13i—C41—O41 125.52 (13)

O11—Gd1—O41 103.23 (4) O13i—C41—C5v 117.27 (12)

O1—Gd1—O41 145.25 (4) O41—C41—C5v 117.20 (12)

O13—Gd1—O41 134.69 (4) C3—C4—C5 120.16 (12)

O11—Gd1—O31 82.09 (3) C3—C4—H4 119.9

O1—Gd1—O31 141.83 (4) C5—C4—H4 119.9

O13—Gd1—O31 75.85 (4) C15—N16—C18A 120.0 (3)

O41—Gd1—O31 72.71 (4) C15—N16—C18 120.43 (19)

O11—Gd1—O14 149.72 (3) C15—N16—C17A 114.1 (3)

O1—Gd1—O14 77.07 (3) C18A—N16—C17A 125.6 (3)

O13—Gd1—O14 92.72 (5) C18—N16—C17A 116.8 (3)

O41—Gd1—O14 81.33 (4) C15—N16—C17 122.7 (2)

O31—Gd1—O14 127.05 (3) C18A—N16—C17 105.2 (4)

O11—Gd1—O21 75.83 (3) C18—N16—C17 116.8 (2)

O1—Gd1—O21 77.61 (4) O21—C15—N16 126.48 (18)

O13—Gd1—O21 151.10 (4) O21—C15—H15 116.8

O41—Gd1—O21 71.31 (4) N16—C15—H15 116.8

O31—Gd1—O21 131.58 (4) C18—C19—H19A 109.5

O14—Gd1—O21 77.52 (4) C18—C19—H19B 109.5

O11—Gd1—O31i 160.55 (3) H19A—C19—H19B 109.5

O1—Gd1—O31i 112.41 (4) C18—C19—H19C 109.5

O13—Gd1—O31i 71.76 (4) H19A—C19—H19C 109.5

O41—Gd1—O31i 70.64 (4) H19B—C19—H19C 109.5

O31—Gd1—O31i 78.46 (3) C17—C20—H20A 109.5

O14—Gd1—O31i 49.27 (3) C17—C20—H20B 109.5

O21—Gd1—O31i 117.48 (3) H20A—C20—H20B 109.5

C1—O1—Gd1 162.85 (9) C17—C20—H20C 109.5

C10i—O31—Gd1 171.04 (10) H20A—C20—H20C 109.5

C10i—O31—Gd1i 84.27 (8) H20B—C20—H20C 109.5

Gd1—O31—Gd1i 101.54 (3) C18A—C19A—H19D 109.5

O1—C1—O11ii 124.68 (11) C18A—C19A—H19E 109.5

O1—C1—C2 118.10 (11) H19D—C19A—H19E 109.5

O11ii—C1—C2 117.22 (11) C18A—C19A—H19F 109.5

C1ii—O11—Gd1 137.64 (8) H19D—C19A—H19F 109.5

C10—O14—Gd1 104.71 (8) H19E—C19A—H19F 109.5

C15—O21—Gd1 125.00 (12) C17A—C20A—H20D 109.5

C41—O41—Gd1 140.18 (9) C17A—C20A—H20E 109.5

C12—C11—C13 119.59 (11) H20D—C20A—H20E 109.5

C12—C11—C10 120.97 (11) C17A—C20A—H20F 109.5

C13—C11—C10 119.44 (11) H20D—C20A—H20F 109.5

C7—C2—C3 119.95 (11) H20E—C20A—H20F 109.5

C7—C2—C1 120.17 (11) C20—C17—N16 110.8 (4)

C3—C2—C1 119.82 (11) C20—C17—H17A 109.5

C4—C3—C2 119.95 (12) N16—C17—H17A 109.5

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m1337–m1339

C2—C3—H3 120.0 N16—C17—H17B 109.5

C13iii—C12—C11 119.99 (12) H17A—C17—H17B 108.1

C13iii—C12—H12 120.0 N16—C18—C19 114.1 (4)

C11—C12—H12 120.0 N16—C18—H18A 108.7

C6—C7—C2 119.89 (11) C19—C18—H18A 108.7

C6—C7—H7 120.1 N16—C18—H18B 108.7

C2—C7—H7 120.1 C19—C18—H18B 108.7

O14—C10—O31i 121.57 (11) H18A—C18—H18B 107.6

O14—C10—C11 117.82 (11) N16—C17A—C20A 104.7 (5)

O31i—C10—C11 120.61 (11) N16—C17A—H17C 110.8

O14—C10—Gd1 51.08 (6) C20A—C17A—H17C 110.8

O31i—C10—Gd1 70.63 (7) N16—C17A—H17D 110.8

C11—C10—Gd1 168.03 (9) C20A—C17A—H17D 110.8

C41i—O13—Gd1 136.94 (10) H17C—C17A—H17D 108.9

C7—C6—C5 120.17 (12) N16—C18A—C19A 116.4 (7)

C7—C6—H6 119.9 N16—C18A—H18C 108.2

C5—C6—H6 119.9 C19A—C18A—H18C 108.2

C12iii—C13—C11 120.43 (12) N16—C18A—H18D 108.2

C12iii—C13—H13 119.8 C19A—C18A—H18D 108.2

C11—C13—H13 119.8 H18C—C18A—H18D 107.3

C6—C5—C4 119.83 (12)

Figure

Figure 1

References

Related documents

The green line represents Runx3 mRNA lower expression in gastric carcinoma patients with a trend of worse survival than the blue line representing Runx3 mRNA higher expression

Among different skeletal muscle tissues, those with a lower oxidative capacity (e.g., tibialis anterior and quadriceps) mostly showed higher expression of GNA13 and GNA12

De esta manera abordaron la tarea, y es de resaltar que cada uno de los grupos generó una forma distinta de establecer el patrón observado, por ejemplo, para el primer grupo,

We contribute to the literature on exchange rate contagion by showing, using a large number of Asian economies and a long sample period covering the

Findings show that external debt positively and significantly affect the real exchange rate at 5% significant level.. Moreover, debt servicing affects negatively and

1) Bumi yang pemiliknya sudah masuk Islam, tanah atau bumi yang semacam ini adalah sah menjadi kepunyaan pemiliknya, dan tidak boleh ada kewajiban pajak terhadapnya. 2)

Wilson, (on the Faculty of Economic and Social Studies) at the University of Leeds was a specialist on equality and social justice who might have influenced

harmonizarion of external policies among member countries, ASEAN country. relations with other countries, capital and mobility and