• No results found

2 {[N (Pyridinium 2 ylmeth­yl) N (pyridin 2 ylmeth­yl)amino]meth­yl} 1 (pyridin 2 ylmeth­yl)pyridinium diperchlorate

N/A
N/A
Protected

Academic year: 2020

Share "2 {[N (Pyridinium 2 ylmeth­yl) N (pyridin 2 ylmeth­yl)amino]meth­yl} 1 (pyridin 2 ylmeth­yl)pyridinium diperchlorate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o2679–o2681 doi:10.1107/S1600536805022828 Ariyananda and Norman C

24H25N5"+2ClO4

o2679

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-{[

N

-(Pyridinium-2-ylmethyl)-

N

-(pyridin-2-yl-

methyl)amino]methyl}-1-(pyridin-2-ylmethyl)-pyridinium diperchlorate

L. Mihiri D. Ariyanandaaand Richard E. Normana,b*

a

Chemistry Department, CNSB-210, University of Louisiana at Monroe, LA 71209, USA, and

bDepartment of Chemistry, Box 2117, Sam

Houston State University, Huntsville, TX 77341, USA

Correspondence e-mail: norman@shsu.edu

Key indicators

Single-crystal X-ray study

T= 100 K

Mean(C–C) = 0.005 A˚ Disorder in main residue

Rfactor = 0.073

wRfactor = 0.161

Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The cation of the title salt, C24H25N5 2+

2ClO4

, contains a tris(2-pyridylmethyl)amine core in which one of the pyridine N atoms is protonated and a second pyridine N atom forms an additional C—N bond to another 2-pyridylmethyl group, resulting in a second pyridinium center. The protonated pyridinium hydrogen bonds to a pyridine ring of a neighboring dication. The hydrogen-bonded H atom is disordered between the two N atoms.

Comment

During an attempt to prepare an MnII tpa complex [tpa is tris(2-pyridylmethyl)amine] by reacting manganese(II) chloride tetrahydrate with H3tpa(ClO4)3and triethylamine in

methanol, the title compound was produced. The preparation of [Mn(tpa)Cl2] has been reported (Allenet al., 1995) under a

nitrogen atmosphere, but the structure has not been reported. So far, our attempts to prepare the title compound, (I), under metal-free conditions by reaction of 2-picolylchloride hydro-chloride with tpa [produced by in situ deprotonation of H3tpa(ClO4)3] have been unsuccessful.

The structure of (I) consists of two perchlorate anions (which have typical distances and angles) and a dication, shown in Fig. 1. The dication contains a tpa core structure in which two of the pyridine N atoms share a proton and a third pyridine N atom forms an additional C—N bond to another 2-pyridylmethyl group, resulting in a second pyridinium center. There is a hydrogen bond between the partially protonated pyridinium N atom of one dication and the pyridine N atom of an adjacent molecule [the N2 N3iseparation is 2.706 (3) A˚ ; see Fig. 2; symmetry code as in Table 2]. The H atom is disordered across the hydrogen bond. Thus, in the tpa core,

(2)

two of the pyridine rings are half protonated and the third is alkylated.

There are no obvious trends in the distances and angles of the various pyridine rings in (I), and the values are typical of

other tpa structures (e.g. Britton et al., 1991; Hazell et al., 1999). The distances and angles of the ‘extra’ 2-pyridylmethyl group are also typical.

Experimental

Triethylamine (0.1513 g, 1.495 mmol) and H3tpa(ClO4)3 (0.2956 g,

0.4995 mmol) were dissolved in methanol (20 ml). Manganese(II) chloride tetrahydrate (0.0989 g, 0.500 mmol) was added with stirring, producing a clear yellow solution. Colorless crystals formed after a few days. M.p. 445–449 K.1H NMR (300 MHz, D

2O): 4.07 (6H), 5.91

(2H), 7.22 (d, 1H), 7.34 (t, 1H), 7.47 (t, 2H), 7.54 (d, 2H), 7.81 (t, 1H), 7.89 (t, 1H), 7.97 (t, 2H), 8.19 (d, 1H), 8.24 (d, 1H), 8.44 (d, 2H), 8.48 (d,1H), 8.70 (d, 1H).

Crystal data

C24H25N52+2ClO4

Mr= 582.40 Monoclinic,P21=c a= 13.9313 (2) A˚

b= 10.9888 (2) A˚

c= 18.1280 (4) A˚ = 108.0650 (8) V= 2638.38 (8) A˚3

Z= 4

Dx= 1.466 Mg m

3

MoKradiation Cell parameters from 8603

reflections = 2.5–32.0

= 0.30 mm1

T= 100 K Prism, colorless 0.200.120.10 mm

Data collection

Nonius KappaCCD diffractometer !scans withoffsets

Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor 1997)

Tmin= 0.869,Tmax= 0.955

48722 measured reflections

9091 independent reflections 4740 reflections withI> 2(I)

Rint= 0.055 max= 32.1

h=20!20

k=16!13

l=26!25

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.073

wR(F2) = 0.161

S= 0.94 4740 reflections 352 parameters

H-atom parameters constrained

w= 1/[2

(Fo) + 0.003025|Fo|2]

(/)max< 0.001

max= 0.77 e A˚

3

min=0.56 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

N1—C6 1.462 (3)

N1—C12 1.472 (3)

N1—C24 1.462 (3)

N2—C1 1.339 (4)

N2—C5 1.349 (4)

N3—C7 1.350 (4)

N3—C11 1.351 (3)

N4—C13 1.360 (4)

N4—C17 1.338 (4)

N5—C18 1.480 (4)

N5—C19 1.360 (3)

N5—C23 1.351 (3)

C6—N1—C12 111.1 (2) C6—N1—C24 110.2 (2) C12—N1—C24 110.0 (2) C1—N2—C5 119.1 (2) C7—N3—C11 121.6 (2) C13—N4—C17 116.3 (3) C18—N5—C19 118.2 (2) C18—N5—C23 121.1 (2) C19—N5—C23 120.7 (2) N2—C1—C2 122.0 (3) N2—C5—C4 121.4 (2) N2—C5—C6 116.2 (2) N1—C6—C5 112.7 (2)

N3—C7—C8 121.1 (3) N3—C11—C10 119.1 (2) N3—C11—C12 117.3 (2) N1—C12—C11 111.2 (2) N4—C13—C14 123.8 (4) N4—C17—C16 123.8 (3) N4—C17—C18 117.3 (3) N5—C18—C17 112.1 (2) N5—C19—C20 121.3 (3) N5—C23—C22 119.4 (2) N5—C23—C24 117.3 (2) N1—C24—C23 112.8 (2)

organic papers

o2680

Ariyananda and Norman C

24H25N5"+2ClO4 Acta Cryst.(2005). E61, o2679–o2681 Figure 2

[image:2.610.46.293.71.348.2] [image:2.610.46.295.404.639.2]

A view of two dications of (I), showing the hydrogen bonding. The disordered H atoms, bound to N2 and N3, are shown in violet. The prime corresponds to symmetry code (i) in Table 2.

Figure 1

(3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N2—H1 N3i

0.95 1.79 2.706 (3) 162

Symmetry code: (i)x;y;zþ1.

Atom H1, the H atom associated with N2, was found in a differ-ence map, and then placed in a calculated position. During subse-quent refinement, atom H26, the H atom associated with N3, was observed in a difference map. Atoms N2 and N3 are the hydrogen-bonded pair of N atoms. Consequently, both H atoms were placed in calculated positions with half occupancy, and assigned displacement parameters 0.6 times those of N2 and N3 (N—H = 0.95 A˚ ). All of the other H atoms were assigned displacement parameters 1.2 times those of the atoms to which they are bound and were treated as riding in idealized positions (C—H = 0.95 A˚ ). The perchlorate anions are probably disordered, as reflected by the large displacement para-meters. Attempts were made to model this disorder with various O atoms with partial occupancy, but the resulting models produced unreasonable distances and angles. The current model is reasonably well behaved and the Cl—O distances fall in the range 1.427 (3)– 1.429 (3) A˚ for Cl1, and 1.391 (3)–1.444 (4) A˚ for Cl2.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction:

SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure:SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN for Windows (Mol-ecular Structure Corporation, 1999); mol(Mol-ecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSANfor Windows.

We thank Frank Fronczek for data collection and the Louisiana Board of Regents Support Fund for financial support.

References

Allen, C. S., Chuang, C.-L., Cornebise, M. & Canary, J. W. (1995).Inorg. Chim. Acta,239, 29–37.

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993).J. Appl. Cryst.26, 343–350.

Britton, D., Norman, R. E. & Que, L. Jr (1991).Acta Cryst. C47, 2415– 2417.

Hazell, A., McGinley, J. & Toftlund, H. (1999).J. Chem. Soc. Dalton Trans.

pp. 1271–1276.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Molecular Structure Corporation (1999). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA. Nonius (2000).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

organic papers

Acta Cryst.(2005). E61, o2679–o2681 Ariyananda and Norman C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o2679–o2681

supporting information

Acta Cryst. (2005). E61, o2679–o2681 [https://doi.org/10.1107/S1600536805022828]

2-{[

N

-(Pyridinium-2-ylmethyl)-

N

-(pyridin-2-ylmethyl)amino]-methyl}-1-(pyridin-2-ylmethyl)pyridinium diperchlorate

L. Mihiri D. Ariyananda and Richard E. Norman

(I)

Crystal data

C24H25N52+·2ClO4−

Mr = 582.40

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 13.9313 (2) Å

b = 10.9888 (2) Å

c = 18.1280 (4) Å

β = 108.0650 (8)°

V = 2638.38 (8) Å3

Z = 4

F(000) = 1208

Dx = 1.466 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 8603 reflections

θ = 2.5–32.0°

µ = 0.30 mm−1

T = 100 K Prism, colorless 0.20 × 0.12 × 0.10 mm

Data collection

Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler) diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans with κ offsets

Absorption correction: multi-scan

(SCALEPACK: Otwinowski & Minor 1997)

Tmin = 0.869, Tmax = 0.955

48722 measured reflections 9091 independent reflections 4740 reflections with I > 2σ(I)

Rint = 0.055

θmax = 32.1°, θmin = 3.0°

h = 0→20

k = 0→16

l = −26→25

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.073

wR(F2) = 0.161

S = 0.94 4740 reflections 352 parameters 0 restraints

0 constraints

H-atom parameters constrained

Weighting scheme based on measured s.u.'s w = 1/[σ2(F

o) + 0.003025|Fo|2]

(Δ/σ)max = 0.0003

Δρmax = 0.77 e Å−3

Δρmin = −0.57 e Å−3

Special details

Refinement. Refinement of F2. The weighted R-factor wR and goodness of fit are based on F2, conventional R-factors R

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o2679–o2681

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Cl1 −0.04650 (6) −0.13051 (7) 0.27292 (4) 0.0341 (2) Cl2 0.36495 (6) 0.49562 (7) 0.62091 (4) 0.0348 (2) O1 −0.0774 (2) −0.2542 (3) 0.2573 (2) 0.0725 (9) O2 −0.1317 (2) −0.0509 (3) 0.2500 (2) 0.0795 (11) O3 0.0072 (2) −0.1158 (2) 0.35351 (12) 0.0430 (7) O4 0.0189 (2) −0.1000 (2) 0.22868 (12) 0.0400 (6) O5 0.3658 (3) 0.3683 (2) 0.6332 (2) 0.0742 (10) O6 0.4090 (3) 0.5282 (3) 0.5646 (2) 0.110 (1) O7 0.4136 (2) 0.5569 (2) 0.69111 (12) 0.0329 (6) O8 0.2608 (2) 0.5344 (4) 0.5979 (3) 0.1162 (13) N1 0.1388 (2) 0.1485 (2) 0.47253 (13) 0.0208 (6) N2 0.2301 (2) −0.1106 (2) 0.5972 (1) 0.0245 (6) N3 −0.0915 (2) 0.2702 (2) 0.48744 (13) 0.0235 (6) N4 0.3828 (2) −0.0465 (3) 0.3983 (2) 0.0391 (8) N5 0.2789 (2) 0.1525 (2) 0.32925 (13) 0.0223 (6) C1 0.3145 (2) −0.1546 (3) 0.6479 (2) 0.0332 (8) C2 0.3978 (2) −0.0822 (3) 0.6811 (2) 0.0377 (9) C3 0.3947 (2) 0.0393 (3) 0.6608 (2) 0.0322 (8) C4 0.3069 (2) 0.0852 (3) 0.6091 (2) 0.0272 (7) C5 0.2255 (2) 0.0086 (2) 0.5784 (2) 0.0206 (6) C6 0.1266 (2) 0.0532 (2) 0.5253 (2) 0.0203 (6) C7 −0.1304 (2) 0.3317 (3) 0.5360 (2) 0.0290 (8) C8 −0.0715 (2) 0.4091 (3) 0.5916 (2) 0.0293 (8) C9 0.0295 (2) 0.4210 (3) 0.5961 (2) 0.0275 (7) C10 0.0685 (2) 0.3580 (2) 0.5466 (2) 0.0249 (7) C11 0.0066 (2) 0.2812 (2) 0.4915 (2) 0.0214 (6) C12 0.0421 (2) 0.2095 (2) 0.4343 (2) 0.0231 (7) C13 0.4319 (2) −0.1436 (4) 0.4395 (2) 0.0493 (11) C14 0.4052 (3) −0.2620 (4) 0.4205 (3) 0.0536 (12) C15 0.3228 (3) −0.2851 (3) 0.3571 (3) 0.0538 (12) C16 0.2687 (3) −0.1889 (3) 0.3141 (2) 0.0452 (10) C17 0.3028 (2) −0.0716 (3) 0.3367 (2) 0.0310 (8) C18 0.2483 (2) 0.0349 (3) 0.2889 (2) 0.0273 (7) C19 0.3424 (2) 0.2254 (3) 0.3053 (2) 0.0301 (8) C20 0.3784 (2) 0.3312 (3) 0.3427 (2) 0.0347 (8) C21 0.3502 (2) 0.3636 (3) 0.4063 (2) 0.0306 (8) C22 0.2835 (2) 0.2913 (3) 0.4295 (2) 0.0255 (7) C23 0.2487 (2) 0.1842 (2) 0.3906 (2) 0.0206 (6) C24 0.1799 (2) 0.0971 (3) 0.4143 (2) 0.0261 (7)

H1 0.1741 −0.1625 0.5746 0.015* 0.5

H2 0.3172 −0.2383 0.6616 0.040*

H3 0.4565 −0.1155 0.7174 0.045*

H4 0.4517 0.0903 0.6820 0.039*

H5 0.3026 0.1687 0.5948 0.033*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o2679–o2681

H7 0.0918 −0.0134 0.4953 0.024*

H8 −0.1996 0.3213 0.5318 0.035*

H9 −0.0990 0.4527 0.6256 0.035*

H10 0.0720 0.4735 0.6339 0.033*

H11 0.1376 0.3669 0.5501 0.030*

H12 −0.0073 0.1498 0.4107 0.028*

H13 0.0504 0.2631 0.3956 0.028*

H14 0.4882 −0.1284 0.4841 0.059*

H15 0.4429 −0.3268 0.4505 0.064*

H16 0.3027 −0.3666 0.3428 0.065*

H17 0.2106 −0.2028 0.2707 0.054*

H18 0.2633 0.0365 0.2412 0.033*

H19 0.1777 0.0245 0.2789 0.033*

H20 0.3619 0.2020 0.2615 0.036*

H21 0.4223 0.3817 0.3253 0.042*

H22 0.3764 0.4357 0.4343 0.037*

H23 0.2617 0.3153 0.4721 0.031*

H24 0.1255 0.0763 0.3697 0.031*

H25 0.2171 0.0258 0.4351 0.031*

H26 −0.1341 0.2180 0.4495 0.014* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, o2679–o2681

C10 0.0265 (13) 0.0226 (13) 0.023 (2) −0.0014 (11) 0.0034 (11) 0.0014 (11) C11 0.0277 (13) 0.0186 (12) 0.018 (1) −0.0001 (10) 0.0071 (10) 0.0033 (10) C12 0.0279 (13) 0.0232 (13) 0.018 (1) −0.0037 (11) 0.0064 (11) 0.0017 (11) C13 0.034 (2) 0.056 (2) 0.055 (2) 0.009 (2) 0.009 (2) 0.020 (2) C14 0.051 (2) 0.044 (2) 0.070 (3) 0.019 (2) 0.026 (2) 0.024 (2) C15 0.071 (3) 0.034 (2) 0.063 (3) 0.008 (2) 0.031 (2) 0.007 (2) C16 0.057 (2) 0.036 (2) 0.044 (2) 0.005 (2) 0.018 (2) −0.005 (2) C17 0.031 (2) 0.035 (2) 0.033 (2) 0.0073 (13) 0.0198 (13) 0.0026 (13) C18 0.029 (1) 0.032 (1) 0.022 (2) 0.0012 (12) 0.0106 (12) −0.0039 (12) C19 0.0243 (13) 0.043 (2) 0.026 (2) 0.0010 (12) 0.0131 (12) 0.0060 (13) C20 0.027 (1) 0.043 (2) 0.035 (2) −0.0096 (13) 0.0119 (13) 0.008 (1) C21 0.030 (1) 0.031 (2) 0.029 (2) −0.0099 (12) 0.0066 (12) 0.0024 (13) C22 0.0294 (13) 0.028 (1) 0.021 (1) −0.0054 (11) 0.0098 (11) 0.0014 (11) C23 0.0190 (11) 0.0245 (13) 0.0178 (13) −0.0013 (10) 0.0052 (10) 0.0026 (10) C24 0.031 (1) 0.0261 (13) 0.026 (2) −0.0065 (11) 0.0163 (12) −0.0062 (12)

Geometric parameters (Å, º)

Cl1—O1 1.427 (3) C16—C17 1.391 (5)

Cl1—O2 1.429 (3) C17—C18 1.513 (4)

Cl1—O3 1.429 (2) C19—C20 1.362 (4)

Cl1—O4 1.428 (2) C20—C21 1.375 (4)

Cl2—O5 1.417 (3) C21—C22 1.383 (4)

Cl2—O6 1.391 (3) C22—C23 1.381 (4)

Cl2—O7 1.413 (2) C23—C24 1.508 (4)

Cl2—O8 1.444 (4) N2—H1 0.950

N1—C6 1.462 (3) C1—H2 0.950

N1—C12 1.472 (3) C2—H3 0.950

N1—C24 1.462 (3) C3—H4 0.950

N2—C1 1.339 (4) C4—H5 0.950

N2—C5 1.349 (4) C6—H6 0.950

N3—C7 1.350 (4) C6—H7 0.950

N3—C11 1.351 (3) C7—H8 0.950

N4—C13 1.360 (4) C8—H9 0.950

N4—C17 1.338 (4) C9—H10 0.950

N5—C18 1.480 (4) C10—H11 0.950

N5—C19 1.360 (3) C12—H12 0.950

N5—C23 1.351 (3) C12—H13 0.950

C1—C2 1.382 (5) C13—H14 0.950

C2—C3 1.381 (5) C14—H15 0.950

C3—C4 1.385 (4) C15—H16 0.950

C4—C5 1.383 (4) C16—H17 0.950

C5—C6 1.498 (4) C18—H18 0.950

C7—C8 1.378 (4) C18—H19 0.950

C8—C9 1.390 (4) C19—H20 0.950

C9—C10 1.372 (4) C20—H21 0.950

C10—C11 1.385 (4) C21—H22 0.950

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, o2679–o2681

C13—C14 1.367 (6) C24—H24 0.950

C14—C15 1.373 (6) C24—H25 0.950

C15—C16 1.388 (5) N3—H26 0.950

O1···N5i 2.943 (3) O8···C7ii 2.938 (5)

O1—Cl1—O2 110.7 (2) C7—N3—H26 119.2

O1—Cl1—O3 110.0 (2) C11—N3—H26 119.2

O1—Cl1—O4 108.5 (2) N2—C1—H2 119.0

O2—Cl1—O3 110.6 (2) C2—C1—H2 119.0

O2—Cl1—O4 108.0 (2) C1—C2—H3 120.4

O3—Cl1—O4 108.9 (1) C3—C2—H3 120.4

O5—Cl2—O6 112.7 (2) C2—C3—H4 120.6

O5—Cl2—O7 110.5 (2) C4—C3—H4 120.6

O5—Cl2—O8 107.2 (2) C3—C4—H5 120.3

O6—Cl2—O7 109.9 (2) C5—C4—H5 120.3

O6—Cl2—O8 110.2 (3) N1—C6—H6 108.7

O7—Cl2—O8 106.1 (2) N1—C6—H7 108.7

C6—N1—C12 111.1 (2) C5—C6—H6 108.7

C6—N1—C24 110.2 (2) C5—C6—H7 108.7

C12—N1—C24 110.0 (2) H6—C6—H7 109.5

C1—N2—C5 119.1 (2) N3—C7—H8 119.4

C7—N3—C11 121.6 (2) C8—C7—H8 119.4

C13—N4—C17 116.3 (3) C7—C8—H9 121.2

C18—N5—C19 118.2 (2) C9—C8—H9 121.2

C18—N5—C23 121.1 (2) C8—C9—H10 119.6

C19—N5—C23 120.7 (2) C10—C9—H10 119.6

N2—C1—C2 122.0 (3) C9—C10—H11 120.2

C1—C2—C3 119.2 (3) C11—C10—H11 120.2

C2—C3—C4 118.7 (3) N1—C12—H12 109.0

C3—C4—C5 119.5 (3) N1—C12—H13 109.0

N2—C5—C4 121.4 (2) C11—C12—H12 109.0

N2—C5—C6 116.2 (2) C11—C12—H13 109.0

C4—C5—C6 122.4 (2) H12—C12—H13 109.5

N1—C6—C5 112.7 (2) N4—C13—H14 118.1

N3—C7—C8 121.1 (3) C14—C13—H14 118.1

C7—C8—C9 117.6 (3) C13—C14—H15 120.7

C8—C9—C10 120.9 (3) C15—C14—H15 120.7

C9—C10—C11 119.7 (2) C14—C15—H16 120.1

N3—C11—C10 119.1 (2) C16—C15—H16 120.1

N3—C11—C12 117.3 (2) C15—C16—H17 121.2

C10—C11—C12 123.6 (2) C17—C16—H17 121.2

N1—C12—C11 111.2 (2) N5—C18—H18 108.8

N4—C13—C14 123.8 (4) N5—C18—H19 108.8

C13—C14—C15 118.6 (3) C17—C18—H18 108.8

C14—C15—C16 119.8 (4) C17—C18—H19 108.8

C15—C16—C17 117.6 (4) H18—C18—H19 109.5

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, o2679–o2681

N4—C17—C18 117.3 (3) C20—C19—H20 119.4

C16—C17—C18 118.9 (3) C19—C20—H21 120.6

N5—C18—C17 112.1 (2) C21—C20—H21 120.6

N5—C19—C20 121.3 (3) C20—C21—H22 120.0

C19—C20—C21 118.8 (3) C22—C21—H22 120.0

C20—C21—C22 120.0 (3) C21—C22—H23 120.1

C21—C22—C23 119.8 (3) C23—C22—H23 120.1

N5—C23—C22 119.4 (2) N1—C24—H24 108.6

N5—C23—C24 117.3 (2) N1—C24—H25 108.6

C22—C23—C24 123.2 (2) C23—C24—H24 108.6

N1—C24—C23 112.8 (2) C23—C24—H25 108.6

C1—N2—H1 120.4 H24—C24—H25 109.5

C5—N2—H1 120.4

N1—C6—C5—N2 −145.6 (2) C7—N3—C11—C10 −0.4 (4) N1—C6—C5—C4 36.6 (3) C7—N3—C11—C12 −179.5 (2) N1—C12—C11—N3 −134.6 (2) C7—C8—C9—C10 0.2 (4) N1—C12—C11—C10 46.3 (3) C8—C7—N3—C11 0.5 (4) N1—C24—C23—N5 −170.6 (2) C8—C9—C10—C11 −0.1 (4) N1—C24—C23—C22 11.1 (4) C9—C10—C11—C12 179.3 (3) N2—C1—C2—C3 −0.7 (5) C11—C12—N1—C24 −170.3 (2) N2—C5—C4—C3 −0.7 (4) C12—N1—C24—C23 90.9 (3) N3—C7—C8—C9 −0.4 (4) C13—N4—C17—C16 0.4 (4) N3—C11—C10—C9 0.2 (4) C13—N4—C17—C18 −178.7 (3) N4—C13—C14—C15 −1.4 (6) C13—C14—C15—C16 0.0 (6) N4—C17—C16—C15 −1.6 (5) C14—C13—N4—C17 1.2 (5) N4—C17—C18—N5 −13.3 (3) C14—C15—C16—C17 1.4 (5) N5—C18—C17—C16 167.6 (3) C15—C16—C17—C18 177.4 (3) N5—C19—C20—C21 0.4 (5) C17—C18—N5—C19 104.2 (3) N5—C23—C22—C21 −1.2 (4) C17—C18—N5—C23 −72.7 (3) C1—N2—C5—C4 1.6 (4) C18—N5—C19—C20 −176.0 (3) C1—N2—C5—C6 −176.3 (2) C18—N5—C23—C22 176.3 (2) C1—C2—C3—C4 1.5 (5) C18—N5—C23—C24 −2.0 (4) C2—C1—N2—C5 −0.9 (4) C19—N5—C23—C22 −0.6 (4) C2—C3—C4—C5 −0.8 (4) C19—N5—C23—C24 −178.9 (2) C3—C4—C5—C6 177.0 (3) C19—C20—C21—C22 −2.2 (5) C5—C6—N1—C12 −166.9 (2) C20—C19—N5—C23 0.9 (4) C5—C6—N1—C24 70.9 (3) C20—C21—C22—C23 2.6 (4) C6—N1—C12—C11 67.3 (3) C21—C22—C23—C24 177.0 (3) C6—N1—C24—C23 −146.2 (2)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H1···N3iii 0.95 1.79 2.706 (3) 162

Figure

Figure 1

References

Related documents

In this study, independent estimates of soil moisture derived from passive microwave (AMSR-E; LPRM), thermal infrared (ALEXI), and model- based (Noah) methods were cross-compared

A retrospective study involving 40 patients, half of whom were examined with a standard T2-weighted multi slice spin-echo sequence and half of whom were examined with a

Compared with a baseline of reports finalized by junior neuroradiologists and adjusting for the pres- ence of a CF flag, missed finding, examination time, imaging tech-

factors included aspect ratio, size ratio (SR), nonsphericity index (NSI), aneurysm volume ratio (AVSV), and aneurysm surface ratio (AASA) and were collected by using a

Both toxins intoxicate cultured cells by the same mechanism but they differ in cytotoxic potency, toxin B being generally 1,000 times more potent than toxin A.. Don and T84 cells

Dieser zeichnet sich durch seinen Weitblick aus aber auch dadurch, dass er Industrie 4.0 nicht auf seine technischen Aspekte reduziert, sondern die Aufgabe in seinen

Consequently, the tasks in textbooks or created by teachers should aim at heightening the active nature of the receptive skills “regardless of the level of comprehension or the

the second group of FD criteria are the local government expenditure to total public expenditure. ratio, the local government income to total public income ratio, and local