• No results found

(E,E) N1,N6 Bis[4 (di­methyl­amino)benzyl­­idene]hexane 1,6 di­amine

N/A
N/A
Protected

Academic year: 2020

Share "(E,E) N1,N6 Bis[4 (di­methyl­amino)benzyl­­idene]hexane 1,6 di­amine"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o833–o835 doi:10.1107/S1600536806002911 Linet al. C

24H34N4

o833

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(

E

,

E

)-

N

1

,

N

6

-Bis[4-(dimethylamino)benzyl-idene]hexane-1,6-diamine

Zhi-Dong Lin,a* Zhi-Dong Lin,b Li-Ming Liucand Ya-Min Huanga

a

School of Materials Science and Technology, Wuhan Institute of Chemical Technology, Wuhan, 430073, People’s Republic of China,

bState Key Laboratory of New Nonferrous Metal

Materials, Gansu University of Technology, Lanzhou 730050, People’s Republic of China, andcKunming Institute of Physics, Kunming

650223, People’s Republic of China

Correspondence e-mail: zhidong.lin@126.com

Key indicators

Single-crystal X-ray study

T= 292 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.062

wRfactor = 0.167

Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 4 January 2006 Accepted 24 January 2006

#2006 International Union of Crystallography All rights reserved

The title compound, C24H34N4, is a Schiff base synthesized by

the reaction of hexane-1,6-diamine with 4-(dimethylamino)-benzaldehyde in ethanol. It crystallizes with one half-molecule in the asymmetric unit; there is a centre of symmetry at the mid-point of the central C—C bond. Since there are no strong hydrogen-bond-forming groups, the molecules interact through C—H hydrogen bonds, forming layers in the ac

plane.

Comment

Much research has been devoted to the physicochemical characterization of substituted aromatic Schiff bases, because these compounds show remarkable photochromic properties. Photochromism arises from intramolecular H-atom transfer, together with a change in the -electron configuration. The effect of intermolecular interactions, such as – charge transfer or hydrogen bonding, on H-atom transfer processes has been investigated in the solid state (Hadjoudiset al., 1987; Puraniket al., 1992). In the design of solid materials, one of the key steps is the understanding of how the constituent mol-ecules are packed, what kinds of interactions play a role in crystal packing and how they interplay (Desiraju, 1989). In this paper, we report the crystal structure of the title Schiff base, (I) (Fig. 1).

In the crystal structure of (I) (Fig. 1) there is one half-molecule in the asymmetric unit; there is a centre of symmetry at the mid-point of the central C—C bond. The C N unit has a trans configuration. All the bond lengths and angles are within expected ranges (You et al., 2004, Munro & Camp, 2003). The planar benzylidene group is attached at C10.

There are no strong hydrogen-bond-forming groups, such as –COOH, –NH2CO–, –OH or –NO2, in the crystal structure, so

weak interactions must play determining roles in the crystal packing (Fig. 2). The molecules interact through C—H

(2)

ordinary, weaker, van der Waals interactions, consistent with the formation of thin plates.

Experimental

Hexane-1,6-diamine (1.16 g, 10 mmol) was added slowly to an ethanol solution (100 ml) of 4-(dimethylamino)benzaldehyde (2.98 g, 20 mmol). The mixture was stirred for 15 min, refluxed for 6 h and the volume then reduced to 10 ml by vacuum evaporation. A yellow precipitate was obtained from the solution after allowing it to stand at room temperature for 12 h. The solid was filtered off and washed with cold ethanol. Yellow crystals of (I) were obtained by slow evapora-tion of an ethanol soluevapora-tion of the compound. The crystals were dried in a vacuum desiccator using anhydrous CaCl2(yield 64%). Analysis

calculated for C24H34N4: C 76.15, H 9.05, N 14.80%; found: C 76.41,

H 9.21, N 14.56%.

Crystal data

C24H34N4

Mr= 378.55 Monoclinic,P21=n a= 6.1695 (15) A˚

b= 6.6209 (16) A˚

c= 27.417 (6) A˚ = 93.212 (5)

V= 1118.2 (5) A˚3

Z= 2

Dx= 1.124 Mg m

3

MoKradiation Cell parameters from 2600

reflections = 2.3–26.6 = 0.07 mm1

T= 292 (2) K Block, yellow 0.200.100.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.992,Tmax= 0.996

7590 measured reflections

1976 independent reflections 949 reflections withI> 2(I)

Rint= 0.070 max= 25.0

h=7!6

k=7!7

l=32!32

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.062

wR(F2) = 0.167

S= 0.99 1976 reflections 129 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.079P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.003

max= 0.17 e A˚ 3

min=0.12 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

C1—N1 1.443 (3)

C2—N1 1.436 (3)

C3—N1 1.371 (3)

C8—C9 1.441 (3)

C9—N2 1.261 (3)

C10—N2 1.456 (3)

N1—C3—C4 121.7 (3)

N1—C3—C5 121.5 (2)

C4—C3—C5 116.7 (2)

C7—C8—C6 116.0 (2)

C7—C8—C9 123.4 (3)

C6—C8—C9 120.5 (3)

N2—C9—C8 125.3 (3)

C3—N1—C2 120.8 (2)

C3—N1—C1 121.2 (2)

C2—N1—C1 117.3 (2)

C9—N2—C10 118.0 (3)

C7—C8—C9—N2 2.1 (4)

C6—C8—C9—N2 176.6 (3)

N2—C10—C11—C12 172.5 (2)

C4—C3—N1—C1 5.3 (4)

C5—C3—N1—C1 174.9 (2)

C8—C9—N2—C10 177.7 (2)

C11—C10—N2—C9 141.8 (3)

All H atoms were positioned geometrically and refined using a riding model, with C—H distances in the range 0.93–0.97 A˚ . The isotropic displacement parameters were set equal to 1.5Ueq(parent

atom) for methyl H atoms and 1.2Ueq(parent atom) for the remaining

H atoms.

Data collection:SMART(Siemens, 1996); cell refinement:SAINT (Siemens, 1996); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

Financial support from the Bureau of Science and Tech-nology of Wuhan City, Hubei Province, People’s Republic of China, through research grant No. 20055003059–28, is grate-fully acknowledged.

References

Desiraju, G. R. (1989).Crystal Engineering: The Design of Organic Solids, ch. 5. Amsterdam: Elsevier.

Hadjoudis, E., Vittorakis, M. & Mavridis, I. M. (1987).Tetrahedron,43, 1345– 1360.

Munro, O. Q. & Camp, G. L. (2003).Acta Cryst.C59, o672–o675.

Puranik, V. G., Tavale, S. S., Kumbhar, A. S., Yerande, R. G., Padhye, S. B. & Butcher, R. J. (1992).J. Crystallogr. Spectrosc. Res.22, 725–731.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany.

organic papers

o834

Linet al. C

[image:2.610.314.565.74.127.2]

24H34N4 Acta Cryst.(2006). E62, o833–o835

Figure 1

[image:2.610.328.550.191.468.2]

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operator (2x;y;z).

Figure 2

(3)

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996).SMARTandSAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

You, X.-L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2004).Acta Cryst.C60, o693– o695.

organic papers

Acta Cryst.(2006). E62, o833–o835 Linet al. C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, o833–o835

supporting information

Acta Cryst. (2006). E62, o833–o835 [https://doi.org/10.1107/S1600536806002911]

(

E

,

E

)-

N

1

,

N

6

-Bis[4-(dimethylamino)benzylidene]hexane-1,6-diamine

Zhi-Dong Lin, Zhi-Dong Lin, Li-Ming Liu and Ya-Min Huang

(E,E)—N1,N6—Bis[4-(dimethylamino)benzylidene]hexane-1,6-diamine

Crystal data

C24H34N4

Mr = 378.55 Monoclinic, P21/n Hall symbol: -P 2yn

a = 6.1695 (15) Å

b = 6.6209 (16) Å

c = 27.417 (6) Å

β = 93.212 (5)°

V = 1118.2 (5) Å3

Z = 2

F(000) = 412

Dx = 1.124 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2600 reflections

θ = 2.3–26.6°

µ = 0.07 mm−1

T = 292 K Block, yellow

0.20 × 0.10 × 0.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.992, Tmax = 0.996

7590 measured reflections 1976 independent reflections 949 reflections with I > 2σ(I)

Rint = 0.070

θmax = 25.0°, θmin = 3.0°

h = −7→6

k = −7→7

l = −32→32

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.062

wR(F2) = 0.167

S = 0.99 1976 reflections 129 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.079P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.003

Δρmax = 0.17 e Å−3 Δρmin = −0.12 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o833–o835

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.1211 (5) 1.3337 (4) 0.19274 (11) 0.0825 (9)

H1A 0.0808 1.3485 0.1586 0.124*

H1B 0.1346 1.4647 0.2076 0.124*

H1C 0.0116 1.2577 0.2082 0.124*

C2 0.4997 (5) 1.3292 (4) 0.22591 (11) 0.0844 (9)

H2A 0.5590 1.2404 0.2509 0.127*

H2B 0.4451 1.4490 0.2407 0.127*

H2C 0.6112 1.3653 0.2044 0.127*

C3 0.3636 (4) 1.0561 (4) 0.17279 (9) 0.0579 (7)

C4 0.2001 (4) 0.9644 (4) 0.14285 (9) 0.0658 (8)

H4 0.0617 1.0204 0.1407 0.079*

C5 0.5681 (4) 0.9619 (4) 0.17524 (9) 0.0629 (7)

H5 0.6803 1.0165 0.1951 0.076*

C6 0.2412 (5) 0.7941 (4) 0.11681 (9) 0.0668 (8)

H6 0.1288 0.7368 0.0975 0.080*

C7 0.6045 (4) 0.7914 (4) 0.14894 (9) 0.0627 (7)

H7 0.7413 0.7322 0.1517 0.075*

C8 0.4451 (5) 0.7027 (4) 0.11813 (9) 0.0592 (7)

C9 0.4815 (5) 0.5247 (4) 0.08944 (10) 0.0678 (8)

H9 0.3665 0.4788 0.0690 0.081*

C10 0.6622 (5) 0.2450 (4) 0.05980 (11) 0.0809 (9)

H10A 0.5458 0.2513 0.0346 0.097*

H10B 0.6371 0.1279 0.0800 0.097*

C11 0.8737 (5) 0.2195 (3) 0.03630 (9) 0.0700 (8)

H11A 0.9914 0.2312 0.0611 0.084*

H11B 0.8897 0.3274 0.0128 0.084*

C12 0.8914 (4) 0.0183 (4) 0.01053 (10) 0.0702 (8)

H12A 0.8643 −0.0889 0.0335 0.084*

H12B 0.7793 0.0111 −0.0157 0.084*

N1 0.3260 (4) 1.2289 (3) 0.19851 (8) 0.0745 (7)

N2 0.6564 (4) 0.4262 (3) 0.08979 (8) 0.0753 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.080 (2) 0.0704 (17) 0.098 (2) 0.0117 (16) 0.0184 (19) −0.0032 (16)

C2 0.077 (2) 0.0774 (18) 0.100 (2) −0.0108 (16) 0.0126 (19) −0.0229 (17)

C3 0.0544 (18) 0.0632 (16) 0.0567 (15) −0.0047 (14) 0.0086 (13) 0.0029 (13)

C4 0.0513 (18) 0.0729 (18) 0.0728 (17) 0.0039 (14) 0.0000 (14) 0.0012 (15)

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, o833–o835

C6 0.059 (2) 0.0740 (18) 0.0662 (16) −0.0067 (15) −0.0080 (14) −0.0015 (15)

C7 0.0497 (18) 0.0635 (16) 0.0744 (17) −0.0025 (13) 0.0003 (14) 0.0008 (14)

C8 0.0576 (19) 0.0589 (15) 0.0610 (15) −0.0040 (14) 0.0041 (14) 0.0032 (13)

C9 0.067 (2) 0.0677 (18) 0.0684 (18) −0.0108 (15) 0.0019 (15) −0.0082 (14)

C10 0.084 (2) 0.0689 (18) 0.091 (2) −0.0069 (16) 0.0161 (18) −0.0173 (16)

C11 0.081 (2) 0.0606 (16) 0.0684 (16) −0.0055 (14) 0.0060 (16) −0.0117 (14)

C12 0.077 (2) 0.0640 (16) 0.0691 (17) −0.0007 (15) −0.0003 (15) −0.0087 (13)

N1 0.0610 (17) 0.0747 (15) 0.0881 (16) 0.0007 (13) 0.0086 (13) −0.0193 (13)

N2 0.0805 (19) 0.0692 (14) 0.0765 (16) −0.0018 (13) 0.0065 (14) −0.0178 (12)

Geometric parameters (Å, º)

C1—N1 1.443 (3) C6—H6 0.9300

C1—H1A 0.9600 C7—C8 1.390 (3)

C1—H1B 0.9600 C7—H7 0.9300

C1—H1C 0.9600 C8—C9 1.441 (3)

C2—N1 1.436 (3) C9—N2 1.261 (3)

C2—H2A 0.9600 C9—H9 0.9300

C2—H2B 0.9600 C10—N2 1.456 (3)

C2—H2C 0.9600 C10—C11 1.496 (4)

C3—N1 1.371 (3) C10—H10A 0.9700

C3—C4 1.403 (3) C10—H10B 0.9700

C3—C5 1.405 (3) C11—C12 1.515 (3)

C4—C6 1.366 (3) C11—H11A 0.9700

C4—H4 0.9300 C11—H11B 0.9700

C5—C7 1.365 (3) C12—C12i 1.508 (5)

C5—H5 0.9300 C12—H12A 0.9700

C6—C8 1.395 (4) C12—H12B 0.9700

N1—C1—H1A 109.5 C7—C8—C9 123.4 (3)

N1—C1—H1B 109.5 C6—C8—C9 120.5 (3)

H1A—C1—H1B 109.5 N2—C9—C8 125.3 (3)

N1—C1—H1C 109.5 N2—C9—H9 117.3

H1A—C1—H1C 109.5 C8—C9—H9 117.3

H1B—C1—H1C 109.5 N2—C10—C11 112.7 (2)

N1—C2—H2A 109.5 N2—C10—H10A 109.1

N1—C2—H2B 109.5 C11—C10—H10A 109.1

H2A—C2—H2B 109.5 N2—C10—H10B 109.1

N1—C2—H2C 109.5 C11—C10—H10B 109.1

H2A—C2—H2C 109.5 H10A—C10—H10B 107.8

H2B—C2—H2C 109.5 C10—C11—C12 112.8 (2)

N1—C3—C4 121.7 (3) C10—C11—H11A 109.0

N1—C3—C5 121.5 (2) C12—C11—H11A 109.0

C4—C3—C5 116.7 (2) C10—C11—H11B 109.0

C6—C4—C3 121.0 (3) C12—C11—H11B 109.0

C6—C4—H4 119.5 H11A—C11—H11B 107.8

C3—C4—H4 119.5 C12i—C12—C11 114.1 (3)

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o833–o835

C7—C5—H5 119.5 C11—C12—H12A 108.7

C3—C5—H5 119.5 C12i—C12—H12B 108.7

C4—C6—C8 122.5 (3) C11—C12—H12B 108.7

C4—C6—H6 118.7 H12A—C12—H12B 107.6

C8—C6—H6 118.7 C3—N1—C2 120.8 (2)

C5—C7—C8 122.6 (3) C3—N1—C1 121.2 (2)

C5—C7—H7 118.7 C2—N1—C1 117.3 (2)

C8—C7—H7 118.7 C9—N2—C10 118.0 (3)

C7—C8—C6 116.0 (2)

N1—C3—C4—C6 178.9 (2) C7—C8—C9—N2 2.1 (4)

C5—C3—C4—C6 −1.3 (4) C6—C8—C9—N2 −176.6 (3)

N1—C3—C5—C7 −179.1 (2) N2—C10—C11—C12 172.5 (2)

C4—C3—C5—C7 1.1 (4) C10—C11—C12—C12i −176.0 (3)

C3—C4—C6—C8 −0.3 (4) C4—C3—N1—C2 −175.1 (2)

C3—C5—C7—C8 0.7 (4) C5—C3—N1—C2 5.1 (4)

C5—C7—C8—C6 −2.3 (4) C4—C3—N1—C1 −5.3 (4)

C5—C7—C8—C9 178.9 (2) C5—C3—N1—C1 174.9 (2)

C4—C6—C8—C7 2.1 (4) C8—C9—N2—C10 177.7 (2)

C4—C6—C8—C9 −179.1 (2) C11—C10—N2—C9 141.8 (3)

Figure

Figure 2The crystal packing of (I). Dashed lines indicate C—H� � �� interactions.

References

Related documents

We add latent variables in three hierarchies to HRED ( Serban et al. z c is used to control the whole background in which the conversation takes place, z p is for the consistency

We first test the co-integration relationships between selected variables, and then we determine the structural monetary shocks, highlighting the significant role

Our key results also use separate estimates of counties’ effects on test scores for high- and low-income children, which are constructed by further restricting this sample average

It also appears from the table that, those employees in the private sector, belonging to higher percentile of wage distribution, were able to adjust to the changed scenario

Where this was not available (e.g. in the English-Irish Dictionary, all expressions were un- der an English headword), the first word of the Irish entry was used.. As Irish is

Para ello hemos querido conocer la percepción de los estudiantes del entorno híbrido frente al exclusivamente online, así como su opinión sobre la aplicación de la

Looking at the growth rate series, we observe significant negative trends in three countries: Chad, Equatorial Guinea and Mozambique, and evidence of mean reversion,

Gate Layer : The concatenation of word representations and POS tag embeddings is used as input to a sigmoid dense layer.. The value of the sigmoid output controls the