• No results found

(Z) Ethyl 4 chloro 2 [2 (2 chloro­phen­yl)hydrazono] 3 oxo­butanoate

N/A
N/A
Protected

Academic year: 2020

Share "(Z) Ethyl 4 chloro 2 [2 (2 chloro­phen­yl)hydrazono] 3 oxo­butanoate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o3648

Alpaslanet al. C

12H12Cl2N2O3 doi:10.1107/S1600536805032022 Acta Cryst.(2005). E61, o3648–o3650 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(

Z

)-Ethyl

4-chloro-2-[2-(2-chlorophenyl)hydrazono]-3-oxobutanoate

Go¨khan Alpaslan,aO¨ zgu¨r O¨ zdamar,bMustafa

Odabas¸og˘lu,bCem Cu¨neyt Ersanlı,aAhmet Erdo¨nmezaand Nazan Ocak I´skelelia*

aDepartment of Physics, Faculty of Arts and

Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey, andbDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit Samsun, Turkey

Correspondence e-mail: ccersan@omu.edu.tr

Key indicators

Single-crystal X-ray study

T= 296 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.046

wRfactor = 0.128

Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C12H12Cl2N2O3, adopts a keto–hydrazo

tautomeric form stabilized by an intramolecular hydrogen bond. The molecule can be considered as consisting of two connected fragments, viz. a chlorophenylhydrazone group, with a Z configuration, and an oxobutanoate group. The molecule is roughly planar, the dihedral angle between the benzene ring and the plane including the aliphatic chain being 4.7 (2).

Comment

As part of our project to study the crystal structures of a series of phenylhydrazones and their stereochemistry, the crystal structure of the title compound, (I), has been determined. The chemistry of hydrazones has been intensively investigated in recent years, owing to their coordinating capability, pharma-cological activity, and antibacterial and antifungal properties, and to their use in analytical chemistry as highly selective extractants (Domianoet al., 1984; Sakamotoet al., 1993; Liet al., 1988). These compounds can exist either in the normal hydrazone form (Ph—NH—N C<) or in the azo form (Ph— N NH—CH<) and have been extensively investigated by both chemical and instrumental methods (Prasad & Sahay, 1993).

The crystal structure determination of the title compound, (I), was carried out to determine the strength of the hydrogen-bonding capabilities of the aliphatic chain and hydrazone (HN—N C) groups, as well as to establish the molecular arrangement; the aim also was to compare the geometry of the aliphatic chain and hydrazone groups with those found in ethyl 4-chloro-3-oxo-2-(phenylhydrazono)butyrate, (II) (Alpaslan et al., 2005a), (E)-ethyl 4-chloro-3-[2-(2-fluoro-phenyl)hydrazono]butanoate, (III) (Alpaslan et al., 2005b), and (Z)-ethyl 4-chloro-2-[2-(2-methoxyphenyl)hydrazono]-3-oxobutanoate, (IV) (Alpaslanet al., 2005c).

(2)

Compound (I) consists of an aromatic ring and an aliphatic chain linked through a hydrazone group (Fig. 1). The molecule adopt a trans conformation about the N1—N2 bond, as

evidenced by the C1—N1—N2—C7 torsion angle of

178.2 (3). The molecule is roughly planar, the dihedral angle between the phenyl ring and the mean plane defined by the C7–C12/O1–O3/Cl2 aliphatic chain being 4.7 (2).

The present X-ray investigation shows that (I) prefers the keto–hydrazo tautomeric form rather than the phenylhydrazo tautomeric form. The results obtained in this study indicate that there are slight differences when comparing the geometry of (I) with the geometries of other aliphatic chain and phenylhydrazone groups, such as those in (II), (III) and (IV) (Table 2).

A moderately strong N1—H1 O1 intramolecular

hydrogen bond (Fig.1 and Table 1) is observed in the mol-ecular structure. It is a common feature for related systems {N—H O = 2.06 (4) A˚ in ethyl 4-chloro-2-[(2-nitrophenyl)-hydrazono]-3-oxobutyrate (Odabas¸og˘lu et al., 2005a); N— H O = 2.02 (2) A˚ in ethyl 4-chloro-2-[(4-nitrophenyl)-hydrazono]-3-oxobutyrate (Odabas¸og˘lu et al., 2005b)}. In addition, atom C12 is involved in an intermolecular hydrogen-bond interaction which stabilizes the molecular packing (Table 1 and Fig. 2).

Experimental

A mixture ofo-chloroaniline (10 mmol), water (50 ml) and concen-trated hydrochloric acid (30 mmol) was heated with stirring until a clear solution was obtained. This solution was cooled to 273–278 K and a solution of sodium nitrite (14 mmol) in water was added dropwise while the temperature was maintained below 278 K. The resulting mixture was stirred for 30 min in an ice bath. The pH was raised to 8–9 by adding dilute NaOH solution. An ethyl 4-chloro-acetoacetate (10 mmol) solution in ethanol was gradually added to a cooled solution of theo-chlorobenzenediazonium chloride, prepared as described above. The resulting mixture was stirred at 273–278 K

for 60 min in an ice bath and the pH was lowered to 5 with dilute HCl. The product was recrystallized from glacial acetic acid to obtain well shaped crystals of (I) (yield 92%, m.p. 426–429 K).

Crystal data

C12H12Cl2N2O3 Mr= 303.14 Triclinic,P1

a= 4.466 (5) A˚

b= 9.248 (5) A˚

c= 17.078 (5) A˚

= 95.000 (5)

= 94.336 (5)

= 102.054 (5)

V= 684.0 (9) A˚3

Z= 2

Dx= 1.472 Mg m 3

MoKradiation

Cell parameters from 10737 reflections

= 2.3–27.1

= 0.48 mm1 T= 296 (2) K Prism, colourless 0.480.210.14 mm

Data collection

Stoe IPDS-II diffractometer

!scans

Absorption correction: none 12555 measured reflections 2986 independent reflections 1545 reflections withI> 2(I)

Rint= 0.091

max= 27.2

h=5!5

k=11!11

l=21!21

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.046

wR(F2) = 0.128 S= 0.91 2986 reflections 173 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.059P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.18 e A˚

3 min=0.22 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1 O1 0.86 1.95 2.608 (3) 132 C12—H12B O3i

0.97 2.56 3.426 (5) 148

Symmetry code: (i)xþ1;y;z.

organic papers

Acta Cryst.(2005). E61, o3648–o3650 Alpaslanet al. C

[image:2.610.46.297.66.254.2]

12H12Cl2N2O3

o3649

Figure 1

[image:2.610.346.508.70.279.2]

A molecular view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. The intramolecular hydrogen bond is shown as a dashed line.

Figure 2

(3)
[image:3.610.45.297.129.246.2]

Table 2

Comparison of geometric parameters (A˚ , ) in the phenylhydrazone

group and aliphatic chain of (I) with those in the related compounds (II), (III) and (IV) (seeComment).

(I) (II) (III) (IV)

N1—N2 1.300 (3) 1.300 (2) 1.306 (2) 1.300 (2) C1—N1 1.405 (3) 1.407 (2) 1.400 (2) 1.408 (2) C7—N2 1.313 (3) 1.314 (2) 1.308 (2) 1.311 (2) C8—O1 1.219 (3) 1.214 (2) 1.216 (2) 1.215 (2) C8—O2 1.315 (3) 1.320 (2) 1.308 (2) 1.321 (2) C12—Cl1 1.765 (3) 1.759 (2) 1.760 (2) 1.766 (2)

C1—N1—N2 120.0 (2) 119.4 (2) 119.7 (1) 118.9 (2) C7—N2—N1 122.5 (2) 123.8 (2) 122.1 (1) 123.0 (2)

C1—N1—N2—C7 178.1 (3) 176.9 (2) 178.7 (2) 174.2 (2)

All H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 A˚ and N—H = 0.86 A˚ , and withUiso(H) = 1.2Ueq(C,N) (for Cphenyl, CH2and NH)

andUiso(H) = 1.5Ueq(C) (for CH3).

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement:

X-AREA; data reduction:X-RED32(Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEPIII(Burnett & Johnson, 1996) andORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

Alpaslan, G., O¨ zdamar, O¨., Odabas¸og˘lu, M., Ersanlı, C. C., Bu¨yu¨kgu¨ngo¨r, O. & Erdo¨nmez, A. (2005a).Acta Cryst.E61, o2428–o2430.

Alpaslan, G., O¨ zdamar, O¨., Odabas¸og˘lu, M., Ersanlı, C. C., Bu¨yu¨kgu¨ngo¨r, O. & Erdo¨nmez, A. (2005b).Acta Cryst.E61, o2823–o2825.

Alpaslan, G., O¨ zdamar, O¨., Odabas¸og˘lu, M., Ersanlı, C. C., Bu¨yu¨kgu¨ngo¨r, O. & Erdo¨nmez, A. (2005c).Acta Cryst.E61, o3442–o3444.

Burnett, M. N. & Johnson, C. K. (1996).ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Domiano, P., Pelizzi, C. & Predieri, G. (1984).Polyhedron,3, 281–286. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Li, X. R., Sun, Z. M. & Chang, J. C. (1988).Synth. React. Inorg. Met.-Org. Chem.18, 657–665.

Odabas¸og˘lu, M., O¨ zdamar, O¨. & Bu¨yu¨kgu¨ngo¨r, O. (2005a).Acta Cryst.E61, o2065–o2067.

Odabas¸og˘lu, M., O¨ zdamar, O¨. & Bu¨yu¨kgu¨ngo¨r, O. (2005b).Acta Cryst.E61, o2068–o2070.

Prasad, N. & Sahay, A. (1993).Asian J. Chem. Rev.4, 23–32.

Sakamoto, H., Goto, H., Yokoshima, M., Dobashi, M., Ishikawa, J., Doi, K. & Otomo, M. (1993).Bull. Chem. Soc. Jpn,66, 2907–2914.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Stoe & Cie (2002).X-AREA(Version 1.18) andX-RED32(Version 1.04). Stoe & Cie, Darmstadt, Germany.

organic papers

o3650

Alpaslanet al. C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o3648–o3650

supporting information

Acta Cryst. (2005). E61, o3648–o3650 [https://doi.org/10.1107/S1600536805032022]

(

Z

)-Ethyl 4-chloro-2-[2-(2-chlorophenyl)hydrazono]-3-oxobutanoate

G

ö

khan Alpaslan,

Ö

zg

ü

r

Ö

zdamar, Mustafa Odaba

ş

o

ğ

lu, Cem C

ü

neyt Ersanl

ı

, Ahmet Erd

ö

nmez

and Nazan Ocak

Í

skeleli

(Z)-Ethyl 4-chloro-2-[2-(2-chlorophenyl)hydrazono]-3-oxobutanoate

Crystal data

C12H12Cl2N2O3

Mr = 303.14

Triclinic, P1 Hall symbol: -P 1

a = 4.466 (5) Å

b = 9.248 (5) Å

c = 17.078 (5) Å

α = 95.000 (5)°

β = 94.336 (5)°

γ = 102.054 (5)°

V = 684.0 (9) Å3

Z = 2

F(000) = 312

Dx = 1.472 Mg m−3

Mo radiation, λ = 0.71069 Å Cell parameters from 10737 reflections

θ = 2.3–27.1°

µ = 0.48 mm−1

T = 296 K Prism, colourless 0.48 × 0.21 × 0.14 mm

Data collection

Stoe IPDS-II diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 6.67 pixels mm-1

ω scans

12555 measured reflections

2986 independent reflections 1545 reflections with I > 2σ(I)

Rint = 0.091

θmax = 27.2°, θmin = 2.3°

h = −5→5

k = −11→11

l = −21→21

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.046

wR(F2) = 0.128

S = 0.91 2986 reflections 173 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.059P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.18 e Å−3 Δρmin = −0.22 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o3648–o3650

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.9839 (6) 0.7823 (3) 0.77560 (15) 0.0515 (6)

C2 1.1347 (6) 0.8924 (3) 0.73342 (17) 0.0603 (7)

C3 1.3874 (6) 0.9969 (3) 0.76799 (19) 0.0673 (8)

H3 1.4859 1.0703 0.7391 0.081*

C4 1.4924 (7) 0.9926 (4) 0.8442 (2) 0.0751 (9)

H4 1.6641 1.0624 0.8674 0.090*

C5 1.3426 (7) 0.8831 (4) 0.88768 (18) 0.0707 (9)

H5 1.4142 0.8806 0.9400 0.085*

C6 1.0906 (7) 0.7792 (3) 0.85378 (16) 0.0624 (7)

H6 0.9912 0.7068 0.8831 0.075*

C7 0.3283 (6) 0.4805 (3) 0.74887 (14) 0.0507 (6)

C8 0.2037 (6) 0.4731 (3) 0.66561 (15) 0.0558 (7)

C9 −0.1599 (7) 0.3485 (4) 0.56098 (16) 0.0684 (8)

H9A 0.0001 0.3462 0.5258 0.082*

H9B −0.2525 0.4321 0.5514 0.082*

C10 −0.3954 (8) 0.2076 (4) 0.5475 (2) 0.0867 (11)

H10A −0.3000 0.1258 0.5564 0.130*

H10B −0.4885 0.1949 0.4941 0.130*

H10C −0.5503 0.2107 0.5833 0.130*

C11 0.1857 (6) 0.3839 (3) 0.80598 (15) 0.0563 (7) C12 0.3633 (7) 0.4045 (4) 0.88698 (16) 0.0716 (9)

H12A 0.4077 0.5090 0.9070 0.086*

H12B 0.5578 0.3751 0.8822 0.086*

N1 0.7262 (5) 0.6773 (2) 0.73902 (13) 0.0563 (6)

H1 0.6685 0.6785 0.6899 0.068*

N2 0.5752 (5) 0.5785 (2) 0.77951 (12) 0.0529 (6)

O1 0.3132 (5) 0.5626 (2) 0.62157 (11) 0.0729 (6)

O2 −0.0319 (4) 0.3621 (2) 0.64287 (10) 0.0672 (6) O3 −0.0582 (5) 0.2969 (3) 0.79184 (11) 0.0814 (7) Cl1 1.0007 (2) 0.89767 (10) 0.63575 (5) 0.0843 (3) Cl2 0.1590 (2) 0.29945 (11) 0.95506 (4) 0.0862 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o3648–o3650

C6 0.0606 (17) 0.0631 (18) 0.0578 (16) 0.0024 (14) 0.0004 (13) 0.0056 (14) C7 0.0461 (14) 0.0536 (16) 0.0464 (13) 0.0002 (12) −0.0025 (11) 0.0035 (11) C8 0.0519 (15) 0.0603 (17) 0.0513 (15) 0.0057 (13) −0.0020 (12) 0.0065 (13) C9 0.0686 (18) 0.079 (2) 0.0475 (15) −0.0016 (16) −0.0105 (13) 0.0088 (14) C10 0.085 (2) 0.088 (2) 0.070 (2) −0.0092 (19) −0.0237 (17) 0.0053 (17) C11 0.0544 (16) 0.0601 (18) 0.0485 (14) 0.0014 (14) −0.0015 (12) 0.0056 (12) C12 0.0640 (18) 0.089 (2) 0.0515 (16) −0.0090 (16) −0.0026 (13) 0.0173 (15) N1 0.0523 (13) 0.0586 (14) 0.0521 (12) −0.0016 (11) 0.0002 (10) 0.0110 (11) N2 0.0486 (12) 0.0570 (14) 0.0508 (12) 0.0044 (11) 0.0037 (10) 0.0101 (10) O1 0.0770 (13) 0.0761 (14) 0.0527 (11) −0.0111 (11) −0.0092 (9) 0.0173 (10) O2 0.0673 (12) 0.0734 (14) 0.0475 (10) −0.0106 (10) −0.0094 (9) 0.0080 (9) O3 0.0691 (13) 0.0949 (17) 0.0607 (12) −0.0257 (12) −0.0089 (10) 0.0189 (11) Cl1 0.0843 (6) 0.0919 (6) 0.0685 (5) −0.0045 (5) −0.0028 (4) 0.0287 (4) Cl2 0.0856 (6) 0.1055 (7) 0.0529 (4) −0.0156 (5) 0.0006 (4) 0.0212 (4)

Geometric parameters (Å, º)

C1—C2 1.387 (4) C8—O2 1.315 (3)

C1—C6 1.388 (4) C9—O2 1.455 (3)

C1—N1 1.405 (3) C9—C10 1.482 (4)

C2—C3 1.379 (4) C9—H9A 0.9700

C2—Cl1 1.737 (3) C9—H9B 0.9700

C3—C4 1.356 (4) C10—H10A 0.9600

C3—H3 0.9300 C10—H10B 0.9600

C4—C5 1.396 (4) C10—H10C 0.9600

C4—H4 0.9300 C11—O3 1.205 (3)

C5—C6 1.370 (4) C11—C12 1.518 (3)

C5—H5 0.9300 C12—Cl2 1.765 (3)

C6—H6 0.9300 C12—H12A 0.9700

C7—N2 1.313 (3) C12—H12B 0.9700

C7—C11 1.470 (4) N1—N2 1.301 (3)

C7—C8 1.478 (3) N1—H1 0.8600

C8—O1 1.218 (3)

C2—C1—C6 118.8 (2) O2—C9—H9A 110.4

C2—C1—N1 119.8 (2) C10—C9—H9A 110.4

C6—C1—N1 121.4 (2) O2—C9—H9B 110.4

C3—C2—C1 120.9 (3) C10—C9—H9B 110.4

C3—C2—Cl1 120.0 (2) H9A—C9—H9B 108.6

C1—C2—Cl1 119.1 (2) C9—C10—H10A 109.5

C4—C3—C2 120.0 (3) C9—C10—H10B 109.5

C4—C3—H3 120.0 H10A—C10—H10B 109.5

C2—C3—H3 120.0 C9—C10—H10C 109.5

C3—C4—C5 119.9 (3) H10A—C10—H10C 109.5

C3—C4—H4 120.0 H10B—C10—H10C 109.5

C5—C4—H4 120.0 O3—C11—C7 123.8 (2)

C6—C5—C4 120.4 (3) O3—C11—C12 121.1 (3)

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o3648–o3650

C4—C5—H5 119.8 C11—C12—Cl2 112.4 (2)

C5—C6—C1 119.9 (3) C11—C12—H12A 109.1

C5—C6—H6 120.0 Cl2—C12—H12A 109.1

C1—C6—H6 120.0 C11—C12—H12B 109.1

N2—C7—C11 113.4 (2) Cl2—C12—H12B 109.1

N2—C7—C8 122.5 (2) H12A—C12—H12B 107.9

C11—C7—C8 124.1 (2) N2—N1—C1 119.9 (2)

O1—C8—O2 122.9 (2) N2—N1—H1 120.0

O1—C8—C7 122.4 (2) C1—N1—H1 120.0

O2—C8—C7 114.8 (2) N1—N2—C7 122.5 (2)

O2—C9—C10 106.7 (2) C8—O2—C9 116.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1···O1 0.86 1.95 2.608 (3) 132

C12—H12B···O3i 0.97 2.56 3.426 (5) 148

Figure

Figure 2
Table 2

References

Related documents

Diabetes, high blood pressure, and reproductive disorders may also be the side effects of chronic arsenic exposure ( [6] [7] [8] ). Groundwater is the basic sources of water

COLOlmIA OTBER CO'OllTRIES. COLOMBD:

All this aims at demonstrating that the thermal water flowing from the Llixha springs is usable for direct utili- zation and the borehole heat exchangers heating systems

of a ‘ central fiscal capacity ’ to the euro area (EA), whereby its risk-sharing function is set.. in contrast to the disciplinary function of the existing fiscal

Our strategy for the shared task was to take advantage of four main optimization tech- niques: (a) sequence-level distillation , in particu- lar cross-class distillation from

Using data from the Spanish Time- Use Survey (STUS) 2009-10, I estimate a simultaneous SUR model with data from the 4,036 individuals aged 65 years and over (inclusive), finding

Table 8 shows the results from OLS regressions (for Afriat’s CCEI, HMI, MCI) and an interval regression model (for the MPI which comes in interval form). The specifications control

majority of firms engaged in decentralized bargaining operate in the private sector and the incidence of firm-level contracting in firms affiliated with the government or local