• No results found

catena Poly­[[[tetra­aqua­zinc(II)] μ [(2E) N,N′ bis­­(pyridin 4 yl­methyl)­but 2 enedi­amide]] dinitrate]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly­[[[tetra­aqua­zinc(II)] μ [(2E) N,N′ bis­­(pyridin 4 yl­methyl)­but 2 enedi­amide]] dinitrate]"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1204

G. O. Lloyd [Zn(C

16H16N4O2)(H2O)4](NO3)2 doi:10.1107/S1600536805015291 Acta Cryst.(2005). E61, m1204–m1206 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena

-Poly[[[tetraaquazinc(II)]-

l

-[(2

E

)-

N,N

000

-bis-(pyridin-4-ylmethyl)but-2-enediamide]] dinitrate]

Gareth O. Lloyd

Department of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, South Africa

Correspondence e-mail: gol@sun.ac.za

Key indicators

Single-crystal X-ray study

T= 100 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.031

wRfactor = 0.081

Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, {[Zn(C16H16N4O2)(H2O)4](NO3)2}n, the bidentate ligand (2E)-N,N0 -bis(pyridin-4-ylmethyl)but-2-enediamide coordinates in the axial positions of the octahe-dral zinc centres to form infinite one-dimensional coordina-tion polymeric chains. In the crystal structure, O—H O and N—H O hydrogen bonds link these chains into a three-dimensional framework.

Comment

The foremost goal of crystal engineering is to tailor chemical and/or physical properties of crystalline solids, using known motifs or synthons at the molecular level. The hydrogen bond is without doubt the most used non-covalent interaction in crystal engineering. Amide groups and water are extensively used by nature to assemble small molecules into larger aggregates (Atwoodet al., 2001; Barbouret al., 1998; Kannan et al., 2003; Lloydet al., 2005; Orret al., 1998). In our pursuit of hydrogen-bonded networks that include water, the ligand (2E)-N,N0-bis(pyridin-4-ylmethyl)but-2-enediamide (Lloyd, 2005), which has dipyridyl functionality and amide groups available for hydrogen bonding, has been coordinated to metal centres and the title zinc complex, (I), was prepared.

In compound (I) (Fig. 1), this results in the formation of a one-dimensional coordination polymer (Fig. 2). The zinc metal

[image:1.610.206.532.433.563.2]

Received 9 May 2005 Accepted 13 May 2005 Online 28 May 2005

Figure 1

(2)

centres are in a very slightly distorted octahedral environment, with two ligands coordinated via pyridyl groups in the two axial positions and the equatorial positions occupied by four water molecules. The two nitrate ions are each hydrogen bonded by a pair of coordinated water molecules (Figs. 2 and 3a). The amide groups of the ligand are also hydrogen bonded to the nitrate ionsviathe NH group (Fig. 3a). The last set of hydrogen bonds binds the metal centres to one another. This is accomplished by two coordinated water molecules hydrogen bonding to the C O groups of the ligand (Fig. 3a) to form membered rings. Fig. 3(b) shows how the eight-membered rings consist of two zinc ions, four coordinated water molecules and two amide groups. Adjacent strands of coordination polymer are bonded together via amide hydrogen bonding links and all these hydrogen bonds link the one-dimensional coordination polymer strands together to form the three-dimensional framework (Fig. 4).

Experimental

(2E)-N,N0-Bis(pyridin-4-ylmethyl)but-2-enediamide dihydrate was

synthesized by the reaction of 4-aminomethylpyridine with fumaryl dichloride in a 2:1 molar ratio. Crystals suitable for single-crystal X-ray diffraction analysis were grown from an equimolar solution of (2E)-N,N0-bis(pyridin-4-ylmethyl)but-2-enediamide dihydrate and

zinc nitrate hexahydrate in dimethylformamide–water (5:1).

Crystal data

[Zn(C16H16N4O2)(H2O)4](NO3)2

Mr= 557.80

Monoclinic,P21=n a= 6.506 (3) A˚

b= 9.294 (4) A˚

c= 18.822 (8) A˚ = 94.781 (6)

V= 1134.2 (9) A˚3

Z= 2

Dx= 1.633 Mg m

3

MoKradiation Cell parameters from 4749

reflections = 2.4–28.0 = 1.16 mm1

T= 100 (2) K Plate, colourless 0.190.170.08 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer !scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1997)

Tmin= 0.810,Tmax= 0.913

12176 measured reflections

2656 independent reflections 2273 reflections withI> 2(I)

Rint= 0.032

max= 28.2

h=8!8

k=12!12

l=24!24

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.031

wR(F2) = 0.081

S= 1.03 2656 reflections 176 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0482P)2

+ 0.3941P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.53 e A˚ 3

min=0.31 e A˚ 3

Table 1

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1W—H1W O3A 0.85 (3) 1.93 (3) 2.787 (1) 176 (3) O1W—H2W O11i

0.79 (3) 1.93 (3) 2.719 (1) 171 (3) N8—H7 O3Aii

0.88 2.12 2.921 (1) 151

O2W—H3W O2Aiii

0.81 (3) 1.91 (3) 2.719 (1) 172 (3) O2W—H4W O11iv 0.81 (3) 2.09 (3) 2.853 (1) 154 (3)

Symmetry codes: (i)1

2x;12þy;12z; (ii)12þx;32y;12þz; (iii)x;1y;z; (iv)

x1 2;

1 2y;z

1 2.

metal-organic papers

Acta Cryst.(2005). E61, m1204–m1206 G. O. Lloyd [Zn(C

[image:2.610.306.568.67.264.2]

16H16N4O2)(H2O)4](NO3)2

m1205

Figure 2

The one-dimensional coordination polymer strand, showing the octahe-dral zinc metal centres and hydrogen bonding to the nitrate anions. The red dashed lines indicate hydrogen bonds.

Figure 3

(a) All the hydrogen-bonding modes found in compound (I) between the amide groups, coordinated water molecules and nitrate anions. Groups not associated with hydrogen bonding have been removed for clarity. Red dashed lines represent hydrogen bonds. (b) Eight-membered hydrogen-bonded rings found in compound (I). Red dashed lines represent O O contacts of the O—H O(amide) hydrogen bonds.

Figure 4

[image:2.610.45.292.173.361.2]
(3)

All non-water H atoms were positioned geometrically (C—H = 0.95 and 0.99 A˚ , and N—H = 0.88 A˚) and constrained to ride on their parent atoms;Uiso(H) values were set at 1.2 timesUeq(C,N). Water H atoms were refined independently.

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

X-SEED(Barbour, 2001; Atwood & Barbour, 2003); software used to

prepare material for publication:X-SEED.

The author thanks the National Research Foundation of South Africa for financial support.

References

Atwood, J. L. & Barbour, L. J. (2003).Cryst. Growth Des.3, 3–8.

Atwood, J. L., Barbour, L. J., Ness, T. J., Raston, P. L. & Raston, C. L. (2001).J. Am. Chem. Soc.123, 7192–7193.

Barbour, L. J. (2001).J. Supramol.Chem.1, 189–191.

Barbour, L. J., Orr, G. W. & Atwood, J. L. (1998).Chem. Commun.393, 671– 672.

Bruker (2001).SMART. Version 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2002).SAINT.Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.

Kannan, R., Katti, K. K., Barbour, L. J., Barnes, C. L. & Katti, K. V. (2003).J. Am. Chem. Soc.125, 6955–6961.

Lloyd, G. O. (2005).Acta Cryst.E61, o1218–o1220.

Lloyd, G. O., Atwood, J. L. & Barbour, L. J. (2005).Chem. Commun.14, 1845– 1847.

Orr, G. W., Barbour, L. J. & Atwood, J. L. (1998).Nature(London),10, 859– 860.

Sheldrick, G. M. (1997). SADABS (Version 2.05), SHELXS97 and

SHELXL97. University of Go¨ttingen, Germany.

metal-organic papers

m1206

G. O. Lloyd [Zn(C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1204–m1206

supporting information

Acta Cryst. (2005). E61, m1204–m1206 [https://doi.org/10.1107/S1600536805015291]

catena

-Poly[[[tetraaquazinc(II)]-

µ

-[(2

E

)-

N,N

-bis(pyridin-4-ylmethyl)but-2-enediamide]] dinitrate]

Gareth O. Lloyd

catena-Poly[[[tetraaquazinc(II)]-µ-[(2E)-N,N′-bis(pyridin-4-ylmethyl)but-2- enediamide]] dinitrate]

Crystal data

[Zn(C16H16N4O2)(H2O)4](NO3)2 Mr = 557.80

Monoclinic, P21/n Hall symbol: -P 2yn a = 6.506 (3) Å b = 9.294 (4) Å c = 18.822 (8) Å β = 94.781 (6)° V = 1134.2 (9) Å3 Z = 2

F(000) = 576 Dx = 1.633 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 4749 reflections θ = 2.5–28.0°

µ = 1.16 mm−1 T = 100 K Plate, colorless 0.19 × 0.17 × 0.08 mm

Data collection

Bruker APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1997) Tmin = 0.810, Tmax = 0.913

12176 measured reflections 2656 independent reflections 2273 reflections with I > 2σ(I) Rint = 0.032

θmax = 28.2°, θmin = 2.2° h = −8→8

k = −12→12 l = −24→24

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.031 wR(F2) = 0.081 S = 1.03 2656 reflections 176 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.0482P)2 + 0.3941P] where P = (Fo2 + 2Fc2)/3

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1204–m1206 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Zn1 0.0000 0.5000 0.0000 0.01278 (10)

N1 0.0937 (2) 0.44789 (16) 0.10732 (8) 0.0140 (3)

C2 0.2688 (3) 0.3753 (2) 0.12470 (9) 0.0166 (4)

H1 0.3574 0.3559 0.0882 0.020*

C3 0.3271 (3) 0.3273 (2) 0.19277 (9) 0.0170 (4)

H2 0.4535 0.2772 0.2026 0.020*

C4 0.1985 (3) 0.35319 (19) 0.24705 (9) 0.0151 (3)

C5 0.0183 (3) 0.43114 (19) 0.22980 (9) 0.0161 (4)

H3 −0.0716 0.4538 0.2655 0.019*

C6 −0.0281 (3) 0.47514 (18) 0.16024 (10) 0.0160 (4)

H4 −0.1522 0.5273 0.1491 0.019*

C7 0.2524 (3) 0.29424 (19) 0.32083 (9) 0.0170 (4)

H6 0.1706 0.2062 0.3274 0.020*

H5 0.4001 0.2673 0.3258 0.020*

N8 0.2126 (2) 0.39790 (16) 0.37597 (8) 0.0145 (3)

H7 0.2861 0.4775 0.3786 0.017*

C9 0.0720 (3) 0.37992 (19) 0.42266 (9) 0.0142 (3)

C10 0.0614 (3) 0.50073 (18) 0.47362 (9) 0.0150 (3)

H8 0.1461 0.5826 0.4682 0.018*

O11 −0.03874 (19) 0.27043 (13) 0.42419 (7) 0.0171 (3)

O1A 0.1152 (2) 0.96608 (17) −0.17459 (8) 0.0326 (4)

O2A 0.28750 (19) 0.79493 (14) −0.11875 (7) 0.0203 (3)

O3A 0.0281 (2) 0.89557 (15) −0.07172 (7) 0.0222 (3)

N4A 0.1440 (2) 0.88572 (16) −0.12238 (8) 0.0178 (3)

O1W −0.0804 (2) 0.70838 (14) 0.03464 (7) 0.0165 (3)

H1W −0.047 (4) 0.769 (3) 0.0039 (15) 0.041 (8)*

O2W −0.2952 (2) 0.41514 (14) 0.01803 (8) 0.0169 (3)

H2W −0.189 (4) 0.736 (3) 0.0454 (13) 0.030 (7)*

H3W −0.283 (3) 0.349 (3) 0.0465 (13) 0.024 (6)*

H4W −0.370 (4) 0.386 (3) −0.0163 (14) 0.028 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Zn1 0.01175 (15) 0.01575 (16) 0.01106 (15) 0.00190 (10) 0.00234 (10) −0.00025 (11)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1204–m1206

C2 0.0152 (8) 0.0206 (9) 0.0149 (8) 0.0020 (7) 0.0060 (7) −0.0020 (7)

C3 0.0140 (8) 0.0204 (9) 0.0168 (9) 0.0041 (7) 0.0031 (7) −0.0015 (7)

C4 0.0151 (8) 0.0159 (8) 0.0147 (8) −0.0023 (6) 0.0026 (7) −0.0021 (7)

C5 0.0163 (8) 0.0181 (9) 0.0147 (8) −0.0002 (7) 0.0054 (7) −0.0021 (7)

C6 0.0149 (8) 0.0153 (9) 0.0180 (9) 0.0016 (6) 0.0028 (7) −0.0021 (7)

C7 0.0196 (9) 0.0173 (9) 0.0146 (9) 0.0043 (7) 0.0052 (7) −0.0003 (7)

N8 0.0164 (7) 0.0155 (7) 0.0120 (7) −0.0012 (6) 0.0035 (6) −0.0005 (6)

C9 0.0143 (8) 0.0177 (8) 0.0106 (8) 0.0020 (7) 0.0005 (6) 0.0022 (7)

C10 0.0157 (8) 0.0148 (8) 0.0144 (8) −0.0003 (6) 0.0000 (7) 0.0015 (7)

O11 0.0179 (6) 0.0165 (6) 0.0176 (6) −0.0022 (5) 0.0058 (5) −0.0014 (5)

O1A 0.0347 (8) 0.0358 (8) 0.0292 (8) 0.0116 (7) 0.0147 (7) 0.0166 (7)

O2A 0.0179 (6) 0.0206 (7) 0.0232 (7) 0.0039 (5) 0.0057 (5) −0.0016 (5)

O3A 0.0195 (6) 0.0253 (7) 0.0234 (7) 0.0052 (5) 0.0112 (5) 0.0043 (6)

N4A 0.0149 (7) 0.0184 (7) 0.0205 (8) −0.0008 (6) 0.0044 (6) 0.0000 (6)

O1W 0.0154 (6) 0.0176 (6) 0.0173 (7) 0.0037 (5) 0.0056 (5) 0.0006 (5)

O2W 0.0142 (6) 0.0208 (7) 0.0157 (7) −0.0004 (5) 0.0017 (5) 0.0003 (6)

Geometric parameters (Å, º)

Zn1—N1 2.1169 (16) C7—N8 1.455 (2)

Zn1—N1i 2.1169 (16) C7—H6 0.9900

Zn1—O1W 2.1228 (15) C7—H5 0.9900

Zn1—O1Wi 2.1228 (15) N8—C9 1.331 (2)

Zn1—O2W 2.1298 (15) N8—H7 0.8800

Zn1—O2Wi 2.1298 (15) C9—O11 1.249 (2)

N1—C2 1.341 (2) C9—C10 1.482 (2)

N1—C6 1.347 (2) C10—C10ii 1.326 (4)

C2—C3 1.380 (3) C10—H8 0.9500

C2—H1 0.9500 O1A—N4A 1.236 (2)

C3—C4 1.394 (2) O2A—N4A 1.256 (2)

C3—H2 0.9500 O3A—N4A 1.2674 (19)

C4—C5 1.393 (2) O1W—H1W 0.85 (3)

C4—C7 1.507 (3) O1W—H2W 0.79 (3)

C5—C6 1.381 (3) O2W—H3W 0.81 (3)

C5—H3 0.9500 O2W—H4W 0.82 (3)

C6—H4 0.9500

N1—Zn1—N1i 180.0 C4—C5—H3 120.4

N1—Zn1—O1W 88.54 (6) N1—C6—C5 123.36 (16)

N1i—Zn1—O1W 91.46 (6) N1—C6—H4 118.3

N1—Zn1—O1Wi 91.46 (6) C5—C6—H4 118.3

N1i—Zn1—O1Wi 88.54 (6) N8—C7—C4 112.02 (14)

O1W—Zn1—O1Wi 180.00 (7) N8—C7—H6 109.2

N1—Zn1—O2W 87.43 (6) C4—C7—H6 109.2

N1i—Zn1—O2W 92.57 (6) N8—C7—H5 109.2

O1W—Zn1—O2W 92.31 (6) C4—C7—H5 109.2

O1Wi—Zn1—O2W 87.69 (6) H6—C7—H5 107.9

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m1204–m1206

N1i—Zn1—O2Wi 87.43 (6) C9—N8—H7 117.9

O1W—Zn1—O2Wi 87.69 (6) C7—N8—H7 117.9

O1Wi—Zn1—O2Wi 92.31 (6) O11—C9—N8 123.19 (16)

O2W—Zn1—O2Wi 180.00 (8) O11—C9—C10 122.98 (15)

C2—N1—C6 117.02 (15) N8—C9—C10 113.82 (15)

C2—N1—Zn1 121.28 (11) C10ii—C10—C9 122.7 (2)

C6—N1—Zn1 121.46 (12) C10ii—C10—H8 118.6

N1—C2—C3 123.47 (16) C9—C10—H8 118.6

N1—C2—H1 118.3 O1A—N4A—O2A 120.78 (15)

C3—C2—H1 118.3 O1A—N4A—O3A 119.62 (15)

C2—C3—C4 119.30 (17) O2A—N4A—O3A 119.60 (15)

C2—C3—H2 120.4 Zn1—O1W—H1W 108.4 (18)

C4—C3—H2 120.4 Zn1—O1W—H2W 128.1 (18)

C5—C4—C3 117.62 (17) H1W—O1W—H2W 104 (2)

C5—C4—C7 122.06 (15) Zn1—O2W—H3W 110.0 (16)

C3—C4—C7 120.30 (16) Zn1—O2W—H4W 118.5 (17)

C6—C5—C4 119.21 (16) H3W—O2W—H4W 107 (2)

C6—C5—H3 120.4

O1W—Zn1—N1—C2 −136.85 (14) C3—C4—C5—C6 1.9 (3)

O1Wi—Zn1—N1—C2 43.15 (14) C7—C4—C5—C6 −176.31 (16)

O2W—Zn1—N1—C2 130.76 (14) C2—N1—C6—C5 −0.6 (3)

O2Wi—Zn1—N1—C2 −49.24 (14) Zn1—N1—C6—C5 173.83 (13)

O1W—Zn1—N1—C6 48.93 (14) C4—C5—C6—N1 −0.7 (3)

O1Wi—Zn1—N1—C6 −131.07 (14) C5—C4—C7—N8 −43.1 (2)

O2W—Zn1—N1—C6 −43.46 (14) C3—C4—C7—N8 138.67 (17)

O2Wi—Zn1—N1—C6 136.54 (14) C4—C7—N8—C9 114.95 (18)

C6—N1—C2—C3 0.6 (3) C7—N8—C9—O11 0.9 (3)

Zn1—N1—C2—C3 −173.83 (14) C7—N8—C9—C10 179.84 (15)

N1—C2—C3—C4 0.7 (3) O11—C9—C10—C10ii 2.6 (3)

C2—C3—C4—C5 −1.9 (3) N8—C9—C10—C10ii −176.4 (2)

C2—C3—C4—C7 176.35 (17)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1W—H1W···O3A 0.85 (3) 1.93 (3) 2.787 (1) 176 (3)

O1W—H2W···O11iii 0.79 (3) 1.93 (3) 2.719 (1) 171 (3)

N8—H7···O3Aiv 0.88 2.12 2.921 (1) 151

O2W—H3W···O2Ai 0.81 (3) 1.91 (3) 2.719 (1) 172 (3)

O2W—H4W···O11v 0.81 (3) 2.09 (3) 2.853 (1) 154 (3)

Figure

Figure 1
Figure 2The one-dimensional coordination polymer strand, showing the octahe-dral zinc metal centres and hydrogen bonding to the nitrate anions

References

Related documents

From table 3, model summary of dependent and internal factors, this tell us that 100.0% of the variance in the dependent variable is explained by the STDV., Operation ratio,

Anindya Ayu 8 discussing Chapra's thoughts on economics in general, Ayu gives an explanation of the basic concepts of falah and tayyibatan life, the economic challenges

example scenarios 5 and the distribution of scenario labels: the number of documents that refer to the given scenario, the number of gold sentences and segments referring to the

CHAPTER 10 Curtis Jr, James “Economic and Social Linkages to the African Slave

One important finding of this work is that, even without POS tags, our architecture outperforms recurrent ap- proaches that build custom word representations using character-based

Additionally, household assets play an important role in reducing the number of child labor and increase school attendance but do not affect the child labor hour

As an alternative to the WordNet approach, the distributional tradition allows for implicit sense handling given that contexts from all senses of the word are represented together

This paper focuses on an exact implementation of the linearised form of lattice minimum Bayes- risk (LMBR) decoding using general purpose weighted finite state transducer (WFST)