• No results found

Di­aqua­bis­­(propane 1,2 di­amine κ2N,N′)copper(II) terephthalate dihydrate

N/A
N/A
Protected

Academic year: 2020

Share "Di­aqua­bis­­(propane 1,2 di­amine κ2N,N′)copper(II) terephthalate dihydrate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m590

Linet al. [Cu(C

3H10N2)2(H2O)2](C8H4O4)2H2O doi:10.1107/S1600536805002977 Acta Cryst.(2005). E61, m590–m592 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Diaquabis(propane-1,2-diamine-

j

2

N,N

000

)-copper(II) terephthalate dihydrate

Zhi-Dong Lin,a* Li-Ming Liu,a,b Jin-Yu Luaand Xiang-Gao Mengc

a

School of Materials Science and Technology, Wuhan Institute of Chemical Technology, Wuhan 430073, People’s Republic of China,

bSchool of Electronic Information and Control

Engineering, Beijing Polytechnic University, Beijing 100022, People’s Republic of China, andcCentral China Normal University Wuhan,

Wuhan 430073, People’s Republic of China

Correspondence e-mail: xianggao_meng@126.com

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.005 A˚ Disorder in main residue

Rfactor = 0.047

wRfactor = 0.141

Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

The title compound, [Cu(C3H10N2)2(H2O)2](C8H4O4)2H2O, is a mononuclear complex. The CuII atom is coordinated by four N atoms from two 1,2-propanediamine ligands and two O atoms from two water molecules, to form a distorted octahedral geometry. All the N atoms of the 1,2-propanedi-amine ligands, and all the O atoms in the water molecules and terephthalate anions, contribute to the formation of a hydrogen-bonded three-dimensional network.

Comment

Amine complexes with transition metal carboxylates repre-sent an important branch in the field of coordination chem-istry. Diamine complexes have higher stability than monoamine complexes. We report here the crystal structure of the title compound, (I), a new CuIIdiamine complex.

The molecular structure of (I) is shown in Fig. 1. The asymmetric unit is composed of a CuIIion, two half-tereph-thalate anions, two propane-1,2-diamine ligands, two coordi-nated water molecules and two uncoordinated water molecules. The CuIIion is six-coordinate, and the coordination geometry can best be described as distorted octahedral. The square equatorial plane is defined by four N atoms from two propane-1,2-diamine ligands, each propane-1,2-diamine

[image:1.610.205.504.360.431.2] [image:1.610.204.461.565.680.2]

Received 30 November 2004 Accepted 26 January 2005 Online 26 February 2005

Figure 1

The molecular components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms and the minor component of the disordered propane-1,2-diamine ligand have been omitted for clarity. Atoms with the suffix A are generated by the symmetry code (1

2x, 1

2y, 1z) in one of the terephthalate anions

(2)

coordinating to the central CuIIion as a bidentate ligand. The two water molecules occupy the axial positions. The Cu—N distances, ranging from 2.000 (2) to 2.018 (2) A˚ , show normal values. In similar complexes, the Cu—N bond lengths lie in the range 2.00–2.05 A˚ (Li et al., 1999; Procter et al., 1968). The Cu—O1W distance of 2.377 (2) A˚ is consistent with other copper(II) complexes with water (Amirovet al., 2003), but the Cu—O2W distance of 2.895 (3) A˚ is longer than the normal value and indicates weak coordination. N—H O and O— H O hydrogen bonds (Fig. 2) link the complex cations and anions of (I) into a three-dimensional network.

Experimental

CuO (1 mmol, 80 mg), terephthalic acid (2 mmol, 332 mg) and propane-1,2-diamine (2 mmol, 148 mg) were dissolved in aqueous ammonia (30 ml, 30%) and the mixture was stirred for 30 min at room temperature. The resulting clear blue solution was kept in air and after slow evaporation of the solvent over a period of a week, blue crystals of (I) were formed at the bottom of the vessel. The crystals were isolated and washed three times with water and dried in a vacuum desiccator using anhydrous CaCl2(yield 38%). Analysis

calculated for C14H30CuN4O7: C 39.11, H 7.03, N 13.03%; found:

C 39.36, H 7.28, N 13.31%.

Crystal data

[Cu(C3H10N2)2(H2O)2

]-(C8H4O4)2H2O Mr= 447.98

Monoclinic,C2=c a= 40.922 (6) A˚

b= 6.8025 (9) A˚

c= 15.151 (2) A˚

= 90.000 (2)

V= 4217.7 (10) A˚3 Z= 8

Dx= 1.411 Mg m 3

MoKradiation Cell parameters from 1200

reflections

= 2.3–26.5

= 1.08 mm1 T= 295 (2) K Block, blue

0.390.340.27 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.663,Tmax= 0.748

12723 measured reflections

4892 independent reflections 3976 reflections withI> 2(I)

Rint= 0.042 max= 28.3 h=53!48

k=8!8

l=19!17

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.047 wR(F2) = 0.141

S= 1.10 4892 reflections 278 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo

2

) + (0.0763P)2 + 3.3497P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.97 e A˚

3 min=0.56 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Cu1—N3 2.000 (2)

Cu1—N4 2.009 (2)

Cu1—N1 2.013 (2)

Cu1—N2 2.018 (2)

Cu1—O1W 2.377 (2) Cu1—O2W 2.895 (3)

N3—Cu1—N4 84.61 (9) N3—Cu1—N1 96.55 (10) N4—Cu1—N1 177.84 (9) N3—Cu1—N2 171.85 (10) N4—Cu1—N2 94.75 (10) N1—Cu1—N2 83.84 (10) N3—Cu1—O1W 91.75 (10) N4—Cu1—O1W 90.34 (9)

[image:2.610.73.243.71.434.2]

N1—Cu1—O1W 91.44 (9) N2—Cu1—O1W 96.38 (10) N3—Cu1—O2W 86.19 (9) N4—Cu1—O2W 92.57 (9) N1—Cu1—O2W 85.70 (9) N2—Cu1—O2W 85.72 (9) O1W—Cu1—O2W 176.26 (8)

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1W—H1WA O2Wi

0.83 (3) 2.15 (3) 2.932 (4) 156 (3) N1—H1A O3Wi

0.90 2.05 2.945 (4) 175 N1—H1B O3ii 0.90 2.15 3.039 (4) 167 O1W—H1WB O2iii

0.84 (3) 1.89 (4) 2.732 (4) 176 (4) N2—H2A O4 0.90 2.27 3.114 (4) 157 N2—H2B O3Wiii

0.90 2.10 2.996 (4) 173 O2W—H2WA O3ii

0.85 (3) 2.01 (3) 2.813 (4) 158 (4) N3—H3A O4W 0.90 2.04 2.909 (3) 163 N3—H3B O1i

0.90 2.17 3.017 (3) 156 O2W—H2WB O4 0.85 (4) 2.45 (3) 3.122 (4) 136 (4) N4—H4A O1iii

0.90 2.22 3.115 (3) 177 N4—H4B O4Wiv

0.90 2.08 2.924 (3) 155 O3W—H3WA O4 0.83 (2) 2.06 (3) 2.814 (4) 150 (4) O3W—H3WB O1 0.83 (1) 1.91 (1) 2.741 (3) 175 (5) O4W—H4WA O2ii

0.84 (3) 1.99 (3) 2.826 (3) 176 (2) O4W—H4WB O4ii

0.83 (2) 1.90 (2) 2.706 (4) 163 (4)

Symmetry codes: (i)x;1y;z1

2; (ii)x;1þy;z; (iii)x;y;z 1

2; (iv)x;y1;z.

metal-organic papers

Acta Cryst.(2005). E61, m590–m592 Linet al. [Cu(C

3H10N2)2(H2O)2](C8H4O4)2H2O

m591

Figure 2

[image:2.610.314.564.565.722.2]
(3)

One of the propane-1,2-diamine ligands was found to be disor-dered over two orientations related by a 180 rotation. The occu-pancies of the disordered positions C3 and C30 were refined to 0.528 (9) and 0.472 (9), respectively. H atoms of the water molecules were located in a difference map and their positional parameters were refined with the O—H and H H distances restrained to 0.84 (2) and 1.37 (2), respectively. The remaining H atoms were positioned geometrically and refined using a riding model, with N—H = 0.90 A˚ and C—H distances in the range 0.93–0.98 A˚. The isotropic displacement parameters were set equal to 1.5Ueq(parent atom) for

water and methyl H atoms and 1.2Ueq(parent atom) for remaining H

atoms. The monoclinicangle is very close to 90. Cell refinement and data reduction were also carried out under orthorhombic symmetry, but no suitable orthorhombic space group was found.

Data collection:SMART(Siemens, 1996); cell refinement:SAINT

(Siemens, 1996); data reduction: SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

The authors thank the Education Office of Hubei Province, People’s Republic of China, for research grant No. 2004D007.

References

Amirov, R. R., Litvinov, I. A. Gubaidullin, A. T. & Matyugicheva, U. V. (2003).

Russ. J. Gen. Chem.73, 1860–1865.

Li, B.-L., Xu, Z., Cao, Z.-B., Zhu, L.-M. & Yu, K.-B. (1999).Transition Met. Chem.24, 622–627.

Procter, I. M., Hathaway, B. J. & Nicholls, P. (1968).J. Chem. Soc. A, pp. 1678– 1682.

Sheldrick, G. M. (1996).SADABS.University of Go¨ttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996).SMARTandSAINT.Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

metal-organic papers

m592

Linet al. [Cu(C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, m590–m592

supporting information

Acta Cryst. (2005). E61, m590–m592 [https://doi.org/10.1107/S1600536805002977]

Diaquabis(propane-1,2-diamine-

κ

2

N

,

N

)copper(II) terephthalate dihydrate

Zhi-Dong Lin, Li-Ming Liu, Jin-Yu Lu and Xiang-Gao Meng

Diaquabis(propane-1,2-diamine-κ2N,N)copper(II) terephthalate dihydrate

Crystal data

[Cu(C3H10N2)2(H2O)2](C8H4O4)·2H2O

Mr = 447.98

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 40.922 (6) Å

b = 6.8025 (9) Å

c = 15.151 (2) Å

β = 90.000 (2)°

V = 4217.7 (10) Å3

Z = 8

F(000) = 1896

Dx = 1.411 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1200 reflections

θ = 2.3–26.5°

µ = 1.08 mm−1

T = 295 K Block, blue

0.39 × 0.34 × 0.27 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.663, Tmax = 0.748

12723 measured reflections 4892 independent reflections 3976 reflections with I > 2σ(I)

Rint = 0.042

θmax = 28.3°, θmin = 2.0°

h = −53→48

k = −8→8

l = −19→17

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.047

wR(F2) = 0.141

S = 1.10 4892 reflections 278 parameters 13 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0763P)2 + 3.3497P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.97 e Å−3

Δρmin = −0.56 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, m590–m592

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Cu1 0.369880 (7) 0.39061 (4) 0.24764 (2) 0.03873 (13) O1W 0.35891 (7) 0.3792 (4) 0.09367 (15) 0.0677 (7) H1WA 0.3623 (10) 0.459 (5) 0.053 (2) 0.102* H1WB 0.3431 (8) 0.307 (5) 0.079 (3) 0.102* O2W 0.38421 (7) 0.4315 (4) 0.43384 (19) 0.0720 (7) H2WA 0.3985 (8) 0.521 (4) 0.440 (3) 0.108* H2WB 0.3915 (10) 0.338 (4) 0.465 (3) 0.108* N1 0.40861 (5) 0.5678 (4) 0.22827 (17) 0.0476 (5) H1A 0.4037 0.6607 0.1881 0.057* H1B 0.4142 0.6276 0.2791 0.057* N2 0.40383 (6) 0.1755 (4) 0.24829 (17) 0.0518 (6) H2A 0.4019 0.1041 0.2980 0.062* H2B 0.4006 0.0950 0.2020 0.062* N3 0.33701 (5) 0.6044 (3) 0.26563 (16) 0.0422 (5) H3A 0.3455 0.6982 0.3007 0.051* H3B 0.3320 0.6595 0.2134 0.051* N4 0.33212 (5) 0.2090 (3) 0.27078 (16) 0.0478 (5) H4A 0.3302 0.1217 0.2264 0.057* H4B 0.3355 0.1423 0.3213 0.057* C1 0.43612 (8) 0.4437 (6) 0.1961 (3) 0.0745 (10)

H1C 0.4564 0.5121 0.2039 0.089* 0.528 (9) H1D 0.4332 0.4178 0.1344 0.089* 0.528 (9) H1E 0.4308 0.4103 0.1364 0.089* 0.472 (9) C2 0.43677 (9) 0.2594 (6) 0.2434 (3) 0.0819 (12)

H2C 0.4422 0.2949 0.3029 0.098* 0.528 (9) H2D 0.4512 0.1684 0.2146 0.098* 0.472 (9) H2E 0.4448 0.2823 0.3019 0.098* 0.472 (9) C3 0.46350 (18) 0.1288 (12) 0.2163 (6) 0.082 (3) 0.528 (9) H3C 0.4836 0.2011 0.2155 0.123* 0.528 (9) H3D 0.4591 0.0781 0.1583 0.123* 0.528 (9) H3E 0.4652 0.0217 0.2573 0.123* 0.528 (9) C3′ 0.46802 (18) 0.5412 (16) 0.1923 (7) 0.093 (3) 0.472 (9) H3′A 0.4841 0.4503 0.1710 0.140* 0.472 (9) H3′B 0.4740 0.5854 0.2503 0.140* 0.472 (9) H3′C 0.4668 0.6520 0.1532 0.140* 0.472 (9) C4 0.30729 (8) 0.5234 (5) 0.3064 (3) 0.0787 (11)

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, m590–m592

C6 0.27894 (8) 0.6596 (6) 0.3058 (3) 0.0675 (9) H6A 0.2606 0.5972 0.3336 0.101* H6B 0.2735 0.6924 0.2460 0.101* H6C 0.2845 0.7772 0.3375 0.101* O1 0.32321 (6) 0.1012 (3) 0.62145 (16) 0.0642 (6) O2 0.30783 (6) −0.1514 (3) 0.53879 (16) 0.0607 (6) C7 0.30461 (6) 0.0199 (4) 0.56629 (17) 0.0453 (6) C8 0.27638 (6) 0.1405 (4) 0.53161 (16) 0.0369 (5) C9 0.25089 (7) 0.0486 (4) 0.48721 (17) 0.0421 (5) H9 0.2514 −0.0866 0.4782 0.051* C10 0.27535 (6) 0.3420 (4) 0.54371 (17) 0.0417 (6) H10 0.2924 0.4048 0.5729 0.050* O3 0.43356 (6) −0.2875 (5) 0.4057 (2) 0.0968 (10) O4 0.41353 (6) 0.0079 (5) 0.43777 (17) 0.0802 (8) C11 0.43600 (9) −0.1175 (6) 0.4346 (2) 0.0682 (10) C12 0.46934 (7) −0.0537 (6) 0.4687 (2) 0.0598 (8) C13 0.49426 (9) −0.1917 (6) 0.4764 (3) 0.0717 (10) H13 0.4905 −0.3217 0.4603 0.086* C14 0.47519 (8) 0.1361 (6) 0.4920 (3) 0.0704 (10) H14 0.4587 0.2292 0.4867 0.084* O3W 0.38987 (6) 0.1166 (4) 0.60519 (19) 0.0687 (7) H3WA 0.3953 (10) 0.128 (7) 0.5526 (11) 0.103* H3WB 0.3696 (3) 0.119 (7) 0.611 (3) 0.103* O4W 0.35152 (6) 0.9047 (3) 0.39657 (15) 0.0556 (5) H4WA 0.3384 (7) 0.883 (6) 0.4378 (18) 0.083* H4WB 0.3704 (4) 0.917 (6) 0.416 (2) 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, m590–m592

C9 0.0515 (14) 0.0318 (11) 0.0430 (13) 0.0024 (11) −0.0084 (11) −0.0008 (10) C10 0.0434 (13) 0.0386 (13) 0.0432 (13) −0.0028 (10) −0.0109 (11) −0.0008 (10) O3 0.0631 (16) 0.122 (3) 0.105 (2) −0.0279 (17) −0.0151 (15) −0.034 (2) O4 0.0477 (13) 0.120 (2) 0.0732 (16) −0.0095 (15) −0.0165 (11) −0.0001 (16) C11 0.0495 (18) 0.107 (3) 0.0485 (17) −0.0240 (19) −0.0139 (14) −0.0034 (17) C12 0.0470 (16) 0.084 (2) 0.0482 (16) −0.0135 (15) −0.0159 (13) 0.0028 (15) C13 0.061 (2) 0.076 (2) 0.078 (2) −0.0179 (18) −0.0207 (17) −0.0041 (19) C14 0.0497 (18) 0.084 (3) 0.077 (2) −0.0069 (16) −0.0211 (16) −0.0005 (19) O3W 0.0618 (14) 0.0603 (15) 0.0841 (17) 0.0013 (11) −0.0139 (13) −0.0127 (13) O4W 0.0547 (12) 0.0603 (13) 0.0519 (12) −0.0035 (10) −0.0111 (10) 0.0037 (10)

Geometric parameters (Å, º)

Cu1—N3 2.000 (2) C3′—H3′A 0.96 Cu1—N4 2.009 (2) C3′—H3′B 0.96 Cu1—N1 2.013 (2) C3′—H3′C 0.96 Cu1—N2 2.018 (2) C4—C5 1.418 (5) Cu1—O1W 2.377 (2) C4—C6 1.485 (5) Cu1—O2W 2.895 (3) C4—H4 0.98 O1W—H1WA 0.83 (3) C5—H5A 0.97 O1W—H1WB 0.84 (3) C5—H5B 0.97 O2W—H2WA 0.85 (3) C6—H6A 0.96 O2W—H2WB 0.85 (4) C6—H6B 0.96 N1—C1 1.489 (4) C6—H6C 0.96 N1—H1A 0.90 O1—C7 1.259 (3) N1—H1B 0.90 O2—C7 1.244 (4) N2—C2 1.465 (4) C7—C8 1.511 (3) N2—H2A 0.90 C8—C10 1.384 (4) N2—H2B 0.90 C8—C9 1.390 (4) N3—C4 1.472 (4) C9—C10i 1.388 (4)

N3—H3A 0.90 C9—H9 0.93

N3—H3B 0.90 C10—C9i 1.388 (4)

N4—C5 1.475 (4) C10—H10 0.93 N4—H4A 0.90 O3—C11 1.240 (5) N4—H4B 0.90 O4—C11 1.256 (5) C1—C2 1.444 (6) C11—C12 1.522 (4) C1—C3′ 1.466 (8) C12—C14 1.359 (5) C1—H1C 0.96 C12—C13 1.391 (5) C1—H1D 0.96 C13—C14ii 1.391 (4)

C1—H1E 0.96 C13—H13 0.93 C2—C3 1.468 (7) C14—C13ii 1.391 (4)

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, m590–m592

N3—Cu1—N4 84.61 (9) C1—C2—H2E 108.9 N3—Cu1—N1 96.55 (10) N2—C2—H2E 109.4 N4—Cu1—N1 177.84 (9) C3—C2—H2E 95.8 N3—Cu1—N2 171.85 (10) H2D—C2—H2E 108.3 N4—Cu1—N2 94.75 (10) C2—C3—H3C 109.5 N1—Cu1—N2 83.84 (10) H2D—C3—H3C 120.9 N3—Cu1—O1W 91.75 (10) C2—C3—H3D 109.5 N4—Cu1—O1W 90.34 (9) H2D—C3—H3D 87.9 N1—Cu1—O1W 91.44 (9) H3C—C3—H3D 109.5 N2—Cu1—O1W 96.38 (10) C2—C3—H3E 109.5 N3—Cu1—O2W 86.19 (9) H2D—C3—H3E 116.9 N4—Cu1—O2W 92.57 (9) H3C—C3—H3E 109.5 N1—Cu1—O2W 85.70 (9) H3D—C3—H3E 109.5 N2—Cu1—O2W 85.72 (9) C1—C3′—H3′A 109.5 O1W—Cu1—O2W 176.26 (8) H1C—C3′—H3′A 118.3 Cu1—O1W—H1WA 132 (3) C1—C3′—H3′B 109.5 Cu1—O1W—H1WB 115 (3) H1C—C3′—H3′B 92.3 H1WA—O1W—H1WB 108 (2) H3′A—C3′—H3′B 109.5 Cu1—O2W—H2WA 108 (3) C1—C3′—H3′C 109.5 Cu1—O2W—H2WB 123 (3) H1C—C3′—H3′C 116.2 H2WA—O2W—H2WB 104 (2) H3′A—C3′—H3′C 109.5 C1—N1—Cu1 107.7 (2) H3′B—C3′—H3′C 109.5 C1—N1—H1A 110.2 C5—C4—N3 110.4 (3) Cu1—N1—H1A 110.2 C5—C4—C6 117.8 (4) C1—N1—H1B 110.2 N3—C4—C6 114.2 (3) Cu1—N1—H1B 110.2 C5—C4—H4 104.3 H1A—N1—H1B 108.5 N3—C4—H4 104.3 C2—N2—Cu1 110.5 (2) C6—C4—H4 104.3 C2—N2—H2A 109.5 C4—C5—N4 114.1 (3) Cu1—N2—H2A 109.5 C4—C5—H5A 108.7 C2—N2—H2B 109.5 N4—C5—H5A 108.7 Cu1—N2—H2B 109.5 C4—C5—H5B 108.7 H2A—N2—H2B 108.1 N4—C5—H5B 108.7 C4—N3—Cu1 109.93 (18) H5A—C5—H5B 107.6 C4—N3—H3A 109.7 C4—C6—H6A 109.5 Cu1—N3—H3A 109.7 C4—C6—H6B 109.5 C4—N3—H3B 109.7 H6A—C6—H6B 109.5 Cu1—N3—H3B 109.7 C4—C6—H6C 109.5 H3A—N3—H3B 108.2 H6A—C6—H6C 109.5 C5—N4—Cu1 108.56 (18) H6B—C6—H6C 109.5 C5—N4—H4A 110.0 O2—C7—O1 124.7 (2) Cu1—N4—H4A 110.0 O2—C7—C8 118.2 (2) C5—N4—H4B 110.0 O1—C7—C8 117.0 (2) Cu1—N4—H4B 110.0 C10—C8—C9 119.1 (2) H4A—N4—H4B 108.4 C10—C8—C7 121.0 (2) C2—C1—C3′ 113.4 (5) C9—C8—C7 119.9 (2) C2—C1—N1 110.1 (3) C10i—C9—C8 120.2 (2)

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, m590–m592

C2—C1—H1C 110.1 C8—C9—H9 119.9 N1—C1—H1C 109.8 C8—C10—C9i 120.7 (2)

C2—C1—H1D 109.1 C8—C10—H10 119.7 C3′—C1—H1D 98.9 C9i—C10—H10 119.7

N1—C1—H1D 109.3 O3—C11—O4 126.0 (3) H1C—C1—H1D 108.4 O3—C11—C12 117.2 (4) C2—C1—H1E 105.5 O4—C11—C12 116.7 (3) C3′—C1—H1E 105.8 C14—C12—C13 119.4 (3) N1—C1—H1E 105.7 C14—C12—C11 121.1 (3) H1C—C1—H1E 115.4 C13—C12—C11 119.5 (3) C1—C2—N2 110.3 (3) C12—C13—C14ii 120.2 (4)

C1—C2—C3 113.6 (5) C12—C13—H13 119.9 N2—C2—C3 117.6 (5) C14ii—C13—H13 119.9

C1—C2—H2C 104.6 C12—C14—C13ii 120.4 (4)

N2—C2—H2C 105.2 C12—C14—H14 119.8 C3—C2—H2C 104.1 C13ii—C14—H14 119.8

C1—C2—H2D 110.2 H3WA—O3W—H3WB 111 (3) N2—C2—H2D 109.7 H4WA—O4W—H4WB 110 (2) H2C—C2—H2D 116.6

C3′—C1—C2—N2 177.2 (6) C9—C8—C10—C9i 0.6 (4)

N1—C1—C2—N2 46.1 (5) C7—C8—C10—C9i −179.0 (2)

N1—C1—C2—C3 −179.3 (5) O3—C11—C12—C14 172.3 (4) N3—C4—C5—N4 39.8 (5) O4—C11—C12—C14 −7.2 (5) C6—C4—C5—N4 173.4 (3) O3—C11—C12—C13 −7.7 (5) O2—C7—C8—C10 −165.6 (3) O4—C11—C12—C13 172.7 (3) O1—C7—C8—C10 14.5 (4) C14—C12—C13—C14ii 0.3 (6)

O2—C7—C8—C9 14.7 (4) C11—C12—C13—C14ii −179.6 (3)

O1—C7—C8—C9 −165.2 (3) C13—C12—C14—C13ii −0.3 (6)

C10—C8—C9—C10i −0.6 (4) C11—C12—C14—C13ii 179.6 (3)

C7—C8—C9—C10i 179.1 (2)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1W—H1WA···O2Wiii 0.83 (3) 2.15 (3) 2.932 (4) 156 (3)

N1—H1A···O3Wiii 0.90 2.05 2.945 (4) 175

N1—H1B···O3iv 0.90 2.15 3.039 (4) 167

O1W—H1WB···O2v 0.84 (3) 1.89 (4) 2.732 (4) 176 (4)

N2—H2A···O4 0.90 2.27 3.114 (4) 157 N2—H2B···O3Wv 0.90 2.10 2.996 (4) 173

O2W—H2WA···O3iv 0.85 (3) 2.01 (3) 2.813 (4) 158 (4)

N3—H3A···O4W 0.90 2.04 2.909 (3) 163 N3—H3B···O1iii 0.90 2.17 3.017 (3) 156

(10)

supporting information

sup-7 Acta Cryst. (2005). E61, m590–m592

N4—H4B···O4Wvi 0.90 2.08 2.924 (3) 155

O3W—H3WA···O4 0.83 (2) 2.06 (3) 2.814 (4) 150 (4) O3W—H3WB···O1 0.83 (1) 1.91 (1) 2.741 (3) 175 (5) O4W—H4WA···O2iv 0.84 (3) 1.99 (3) 2.826 (3) 176 (2)

O4W—H4WB···O4iv 0.83 (2) 1.90 (2) 2.706 (4) 163 (4)

Figure

Figure 1
Figure 2The crystal packing of (I) viewing along theN—H b axis. The O—H� � �O and� � �O hydrogen-bonding interactions are shown as dashed lines.

References

Related documents

The first EKC estimation study for CO 2 emissions using time series data was carried out.. by Roca

Outputs on the ‘Move Description’ subset of data from our final model were judged by hu- mans to be as good as human written ground truth commentaries on measures of fluency

1. 2002 yılında sürükleyici endüstrilerden biri olan “k imyasal madde ve ürünlerin imal atı” endüstrisi, orta -yüksek teknoloji ler kapsamında olup, her iki dönemin

The objective of this research is to empirically examine if both credit and business cycle affect the ex-post credit risk (i.e. non-performing loans) in the banking system of

We show that a layer-wise pretraining scheme for recur- rent attention models gives over 1% BLEU improvement absolute and it allows to train deeper recurrent encoder

In this paper, we tackle the task of economic event detection by means of a supervised machine learning approach, which we expect will be able to detect a wider variety

Chinese grammatical error diagnosis task has been developed for a long time. From the initial statisti- cal methods to the current machine learning, more and more attention has

In this study, we presented a novel encoder-decoder model to automatically generate market comments from numerical time-series data of stock prices, using the Nikkei Stock Average as