• No results found

catena Poly[[(2,2′ bi­pyridine)nickel(II)] μ 4,4′ oxydibenzoato]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly[[(2,2′ bi­pyridine)nickel(II)] μ 4,4′ oxydibenzoato]"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m469–m470 doi:10.1107/S1600536805003405 Xiaoet al. [Ni(C

14H8O5)(C10H8N2)]

m469

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

catena

-Poly[[(2,2

000

-bipyridine)nickel(II)]-l

-4,4

000

-oxydibenzoato]

Hong-Ping Xiao,* Ya-Qian Cheng and Xin-Hua Li

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou 325027, People’s Republic of China

Correspondence e-mail: hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.046

wRfactor = 0.098

Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, [Ni(C14H8O5)(C10H8N2)]n, the Ni

II

atom is coordinated by four O atoms of two 4,40

-oxydi-benzoate (oba) dianions and two N atoms of a chelate 2,20

-bipyridine ligand to furnish a distorted octahedral coordina-tion environment. The V-shaped oba dianion acts as a bridge between two Ni atoms to form a zigzag chain coordination polymer.

Comment

The versatility of the flexible ligand H2oba (H2oba is 4,40

-oxydibenzoic acid) is manifested by the interesting polymeric structures that it forms (Liu et al., 2002; Skakle et al., 2001; Wang et al., 2004). In our previous work, the reaction of nickel(II) acetate, H2oba and phen (phen is

1,10-phenan-throline) afforded polymeric {[Ni(phen)(oba)]0.25H2O}n

(Xiaoet al., 2005). We used 2,20-bipyridine (2,20-bipy) in place

of phen and obtained the title compound, (I).

In (I), the NiIIatom is coordinated by four O atoms of two oba ligands and two N atoms of a chelate 2,20-bipy ligand to

furnish a distorted octahedral coordination environment (Fig. 1). The NiIIatoms are linked by the oba ligands to form zigzag chains running along [201]. The 2,20-bipy ligands

protrude on both sides of the zigzag chain (Fig. 2). The dihedral angle between the planes of the two benzene rings of the oba dianion is 82.7 (1). The mean plane of the 2,20-bipy

ligand forms dihedral angles of 87.7 (1) and 94.1 (1),

respectively, with the C12–C17 and C18–C23 benzene rings, indicating that the 2,20-bipy plane is perpendicular to the two

benzene rings of the oba ligand.

(2)

Experimental

The title compound was synthesized by the hydrothermal method from a mixture of 4,40-oxybis(benzoic acid) (0.5 mmol), Ni(CH3COO)24H2O (0.5 mmol), 2,2’-bipyridine (0.5 mmol) and

water (8.0 ml) in a 15.0 ml Teflon-lined stainless steel reactor. The solution was heated at 423 K for four days. On completion of the reaction, the system was cooled slowly to room temperature, and green crystals were collected.

Crystal data

[Ni(C14H8O5)(C10H8N2)]

Mr= 471.10 Monoclinic,P21=c a= 12.2223 (18) A˚

b= 15.017 (2) A˚

c= 11.3182 (16) A˚

= 92.026 (3) V= 2076.1 (5) A˚3

Z= 4

Dx= 1.507 Mg m

3

MoKradiation Cell parameters from 2159

reflections

= 2.3–22.3 = 0.97 mm1

T= 298 (2) K Block, green

0.190.160.14 mm

Data collection

Bruker APEX area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.837,Tmax= 0.876

11 073 measured reflections

3792 independent reflections 3075 reflections withI> 2(I)

Rint= 0.036

max= 25.3

h=13!14

k=13!18

l=13!13

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.046

wR(F2) = 0.098

S= 1.06 3792 reflections 289 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0372P)2

+ 0.4839P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.29 e A˚

3

min=0.24 e A˚ 3

Extinction correction: none

Table 1

Selected geometric parameters (A˚ ,).

Ni1—N1 1.990 (2) Ni1—N2 2.000 (2) Ni1—O1 1.993 (2)

Ni1—O2 2.389 (2) Ni1—O4i 1.9885 (19) Ni1—O5i

2.418 (2)

N1—Ni1—N2 80.93 (10) N1—Ni1—O1 91.67 (9) N1—Ni1—O2 92.49 (8) N2—Ni1—O1 155.03 (8) N2—Ni1—O2 96.46 (8) O1—Ni1—O2 59.85 (8) O1—Ni1—O5i

106.95 (8) O2—Ni1—O5i

158.81 (7) O4i

—Ni1—N1 163.29 (9) O4i

—Ni1—N2 97.19 (9) O4i

—Ni1—O1 96.44 (8) O4i—Ni1—O2 104.22 (8) O5i

—Ni1—N1 105.02 (9) O5i

—Ni1—N2 98.02 (9) O4i

—Ni1—O5i

58.63 (8)

Symmetry code: (i)xþ1;yþ1

2;zþ 1 2.

H atoms were included in the refinement in calculated positions in the riding-model approximation [C—H = 0.93 A˚ and Uiso(H) =

1.2Ueq(C)].

Data collection:SMART(Bruker, 2002); cell refinement:SAINT

(Bruker, 2002); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP

(Bruker, 2002); software used to prepare material for publication:

SHELXL97.

We acknowledge financial support by the Wenzhou Science and Technology Project of China (No. S2003A008) and Zhejiang Provincial Natural Science Foundation of China (No. 202137).

References

Bruker (2002). SMART, SAINT, SADABS and XP. Bruker AXS Inc., Madison, Wisconsin, USA.

Liu, G. F., Qiao, Z. P., Wang, H. Z., Chen, X. M. & Yang, G. (2002).New J. Chem.26, 791–795.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Skakle, J. M. S., Foreman, M. R. St J. & Plater, M. J. (2001).Acta Cryst.E57, m169–m171.

Wang, Y. B., Wang, Z. M., Yan, C. H. & Jin, L. P. (2004).J. Mol. Struct.692, 177–186.

[image:2.610.317.566.72.202.2]

Xiao, H.-P., Wang, J.-G., Li, X.-H., Hu, M. L. & Zhang, W.-B. (2005).Acta Cryst.E61, m257–m259.

Figure 2

The zigzag chain of (I). Figure 1

[image:2.610.314.565.247.375.2]
(3)

supporting information

sup-1 Acta Cryst. (2005). E61, m469–m470

supporting information

Acta Cryst. (2005). E61, m469–m470 [https://doi.org/10.1107/S1600536805003405]

catena

-Poly[[(2,2

-bipyridine)nickel(II)]-

µ

-4,4

-oxydibenzoato]

Hong-Ping Xiao, Ya-Qian Cheng and Xin-Hua Li

catena-Poly[[(2,2′-bipyridine)nickel(II)]-µ-4,4′-oxydibenzoato]

Crystal data

[Ni(C14H8O5)(C10H8N2)] Mr = 471.10

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 12.2223 (18) Å b = 15.017 (2) Å c = 11.3182 (16) Å β = 92.026 (3)° V = 2076.1 (5) Å3 Z = 4

F(000) = 968 Dx = 1.507 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2159 reflections θ = 2.3–22.3°

µ = 0.97 mm−1 T = 298 K Block, green

0.19 × 0.16 × 0.14 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scan

Absorption correction: integration (SADABS; Bruker, 2002) Tmin = 0.837, Tmax = 0.876

11073 measured reflections 3792 independent reflections 3075 reflections with I > 2σ(I) Rint = 0.036

θmax = 25.3°, θmin = 1.7° h = −13→14

k = −13→18 l = −13→13

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.046 wR(F2) = 0.098 S = 1.06 3792 reflections 289 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0372P)2 + 0.4839P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.29 e Å−3

Δρmin = −0.24 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Ni1 0.61514 (3) 0.05986 (2) 0.79313 (3) 0.04012 (14)

O1 0.49510 (16) 0.11844 (13) 0.87899 (17) 0.0490 (5)

O2 0.50408 (16) 0.17099 (14) 0.69694 (18) 0.0537 (5)

O3 0.04701 (17) 0.33318 (16) 0.83212 (18) 0.0646 (7)

O4 −0.26269 (16) 0.37183 (13) 0.37038 (18) 0.0542 (6)

O5 −0.26358 (19) 0.50757 (15) 0.4409 (2) 0.0677 (7)

N1 0.51615 (19) −0.03797 (15) 0.7379 (2) 0.0437 (6)

N2 0.69440 (18) 0.02205 (16) 0.6498 (2) 0.0436 (6)

C1 0.4289 (3) −0.0678 (2) 0.7939 (3) 0.0579 (9)

H1 0.4126 −0.0428 0.8664 0.069*

C2 0.3623 (3) −0.1342 (2) 0.7481 (3) 0.0630 (9)

H2 0.3028 −0.1546 0.7894 0.076*

C3 0.3858 (3) −0.1697 (2) 0.6396 (3) 0.0570 (9)

H3 0.3415 −0.2140 0.6061 0.068*

C4 0.4750 (2) −0.13938 (18) 0.5811 (3) 0.0474 (8)

H4 0.4910 −0.1622 0.5073 0.057*

C5 0.5404 (2) −0.07461 (18) 0.6335 (2) 0.0396 (7)

C6 0.6424 (2) −0.04008 (18) 0.5833 (2) 0.0403 (7)

C7 0.6831 (3) −0.0687 (2) 0.4780 (3) 0.0554 (8)

H7 0.6466 −0.1120 0.4331 0.067*

C8 0.7787 (3) −0.0320 (3) 0.4408 (3) 0.0685 (10)

H8 0.8079 −0.0508 0.3702 0.082*

C9 0.8316 (3) 0.0323 (3) 0.5073 (3) 0.0696 (10)

H9 0.8959 0.0582 0.4823 0.084*

C10 0.7871 (3) 0.0573 (2) 0.6115 (3) 0.0577 (9)

H10 0.8227 0.1005 0.6574 0.069*

C11 0.4562 (2) 0.16481 (19) 0.7923 (3) 0.0433 (7)

C12 0.3479 (2) 0.20919 (17) 0.8047 (2) 0.0378 (6)

C13 0.3142 (2) 0.27215 (19) 0.7210 (2) 0.0437 (7)

H13 0.3597 0.2864 0.6597 0.052*

C14 0.2140 (2) 0.31377 (18) 0.7279 (3) 0.0447 (7)

H14 0.1922 0.3564 0.6723 0.054*

C15 0.1471 (2) 0.2913 (2) 0.8182 (3) 0.0451 (7)

C16 0.1788 (2) 0.2292 (2) 0.9026 (3) 0.0513 (8)

H16 0.1328 0.2148 0.9634 0.062*

C17 0.2801 (2) 0.18895 (19) 0.8954 (2) 0.0456 (7)

H17 0.3027 0.1477 0.9525 0.055*

C18 −0.0122 (2) 0.3562 (2) 0.7287 (3) 0.0503 (8)

C19 −0.0481 (3) 0.2923 (2) 0.6506 (3) 0.0612 (9)

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, m469–m470

C20 −0.1148 (2) 0.3169 (2) 0.5544 (3) 0.0542 (8)

H20 −0.1384 0.2739 0.5002 0.065*

C21 −0.1466 (2) 0.4038 (2) 0.5380 (3) 0.0419 (7)

C22 −0.1068 (3) 0.4672 (2) 0.6169 (3) 0.0567 (8)

H22 −0.1259 0.5266 0.6057 0.068*

C23 −0.0391 (3) 0.4435 (2) 0.7120 (3) 0.0594 (9)

H23 −0.0121 0.4868 0.7642 0.071*

C24 −0.2286 (2) 0.4309 (2) 0.4434 (3) 0.0435 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ni1 0.0342 (2) 0.0425 (2) 0.0428 (2) 0.00222 (16) −0.00895 (15) −0.00669 (17) O1 0.0492 (12) 0.0514 (13) 0.0456 (12) 0.0120 (10) −0.0106 (10) −0.0020 (10) O2 0.0496 (13) 0.0640 (14) 0.0474 (13) 0.0063 (10) −0.0004 (10) −0.0025 (11) O3 0.0532 (14) 0.0984 (18) 0.0417 (12) 0.0317 (12) −0.0061 (10) 0.0022 (12) O4 0.0540 (13) 0.0462 (12) 0.0607 (14) −0.0017 (10) −0.0222 (11) 0.0033 (11) O5 0.0834 (17) 0.0537 (15) 0.0636 (15) 0.0180 (12) −0.0307 (13) −0.0059 (12) N1 0.0401 (14) 0.0443 (14) 0.0466 (15) 0.0023 (11) −0.0015 (12) −0.0044 (11) N2 0.0343 (14) 0.0471 (14) 0.0490 (15) 0.0022 (11) −0.0063 (11) 0.0008 (12)

C1 0.055 (2) 0.060 (2) 0.059 (2) −0.0054 (16) 0.0078 (17) −0.0044 (17)

C2 0.053 (2) 0.057 (2) 0.080 (3) −0.0101 (16) 0.0111 (18) 0.0019 (19)

C3 0.049 (2) 0.0444 (19) 0.076 (2) −0.0050 (15) −0.0102 (18) 0.0000 (17)

C4 0.052 (2) 0.0415 (17) 0.0478 (18) 0.0049 (14) −0.0131 (15) −0.0023 (14)

C5 0.0401 (16) 0.0364 (16) 0.0415 (16) 0.0078 (12) −0.0104 (13) 0.0009 (13) C6 0.0395 (16) 0.0397 (16) 0.0407 (16) 0.0082 (12) −0.0104 (13) 0.0008 (13)

C7 0.056 (2) 0.060 (2) 0.050 (2) 0.0036 (16) −0.0029 (16) −0.0052 (16)

C8 0.063 (2) 0.086 (3) 0.057 (2) 0.004 (2) 0.0131 (19) −0.005 (2)

C9 0.049 (2) 0.088 (3) 0.073 (3) −0.0057 (19) 0.0108 (19) 0.001 (2)

C10 0.0443 (19) 0.064 (2) 0.065 (2) −0.0031 (16) −0.0059 (17) −0.0002 (17)

C11 0.0429 (17) 0.0393 (17) 0.0469 (18) −0.0004 (13) −0.0096 (15) −0.0080 (14) C12 0.0401 (16) 0.0363 (15) 0.0363 (16) −0.0015 (12) −0.0115 (13) −0.0052 (12) C13 0.0433 (18) 0.0488 (18) 0.0383 (16) −0.0031 (14) −0.0064 (13) 0.0015 (13) C14 0.0479 (18) 0.0444 (17) 0.0407 (17) 0.0040 (14) −0.0125 (14) 0.0045 (13) C15 0.0406 (17) 0.0555 (19) 0.0384 (17) 0.0070 (14) −0.0102 (14) −0.0048 (14) C16 0.0447 (18) 0.069 (2) 0.0403 (17) 0.0043 (15) −0.0007 (14) 0.0080 (15) C17 0.0492 (18) 0.0483 (18) 0.0385 (17) 0.0030 (14) −0.0087 (14) 0.0050 (14) C18 0.0381 (17) 0.071 (2) 0.0408 (17) 0.0167 (15) −0.0050 (13) 0.0029 (16)

C19 0.061 (2) 0.057 (2) 0.065 (2) 0.0120 (17) −0.0162 (18) 0.0044 (18)

C20 0.0491 (19) 0.050 (2) 0.062 (2) 0.0022 (15) −0.0184 (16) −0.0023 (16)

C21 0.0309 (15) 0.0506 (18) 0.0439 (17) −0.0004 (13) −0.0034 (13) 0.0047 (14)

C22 0.059 (2) 0.054 (2) 0.056 (2) 0.0076 (16) −0.0126 (17) 0.0032 (16)

C23 0.056 (2) 0.067 (2) 0.054 (2) 0.0085 (16) −0.0142 (16) −0.0086 (17)

(6)

Geometric parameters (Å, º)

Ni1—N1 1.990 (2) C7—H7 0.9300

Ni1—N2 2.000 (2) C8—C9 1.372 (5)

Ni1—O1 1.993 (2) C8—H8 0.9300

Ni1—O2 2.389 (2) C9—C10 1.368 (5)

Ni1—O4i 1.9885 (19) C9—H9 0.9300

Ni1—O5i 2.418 (2) C10—H10 0.9300

O1—C11 1.281 (3) C11—C12 1.493 (4)

O2—C11 1.249 (3) C12—C17 1.376 (4)

O3—C15 1.389 (3) C12—C13 1.390 (4)

O3—C18 1.397 (3) C13—C14 1.379 (4)

O4—C24 1.272 (3) C13—H13 0.9300

O4—Ni1ii 1.9885 (19) C14—C15 1.374 (4)

O5—C24 1.229 (3) C14—H14 0.9300

N1—C1 1.336 (4) C15—C16 1.380 (4)

N1—C5 1.347 (4) C16—C17 1.383 (4)

N2—C10 1.336 (4) C16—H16 0.9300

N2—C6 1.345 (3) C17—H17 0.9300

C1—C2 1.377 (4) C18—C23 1.364 (4)

C1—H1 0.9300 C18—C19 1.367 (4)

C2—C3 1.379 (5) C19—C20 1.387 (4)

C2—H2 0.9300 C19—H19 0.9300

C3—C4 1.373 (4) C20—C21 1.372 (4)

C3—H3 0.9300 C20—H20 0.9300

C4—C5 1.380 (4) C21—C22 1.382 (4)

C4—H4 0.9300 C21—C24 1.497 (4)

C5—C6 1.482 (4) C22—C23 1.381 (4)

C6—C7 1.375 (4) C22—H22 0.9300

C7—C8 1.372 (5) C23—H23 0.9300

N1—Ni1—N2 80.93 (10) C10—C9—H9 120.9

N1—Ni1—O1 91.67 (9) C8—C9—H9 120.9

N1—Ni1—O2 92.49 (8) N2—C10—C9 122.6 (3)

N2—Ni1—O1 155.03 (8) N2—C10—H10 118.7

N2—Ni1—O2 96.46 (8) C9—C10—H10 118.7

O1—Ni1—O2 59.85 (8) O2—C11—O1 122.0 (3)

O1—Ni1—O5i 106.95 (8) O2—C11—C12 119.5 (3)

O2—Ni1—O5i 158.81 (7) O1—C11—C12 118.5 (3)

O4i—Ni1—N1 163.29 (9) C17—C12—C13 119.1 (3)

O4i—Ni1—N2 97.19 (9) C17—C12—C11 122.1 (3)

O4i—Ni1—O1 96.44 (8) C13—C12—C11 118.8 (3)

O4i—Ni1—O2 104.22 (8) C14—C13—C12 120.8 (3)

O5i—Ni1—N1 105.02 (9) C14—C13—H13 119.6

O5i—Ni1—N2 98.02 (9) C12—C13—H13 119.6

O4i—Ni1—O5i 58.63 (8) C15—C14—C13 118.9 (3)

C15—O3—C18 116.7 (2) C15—C14—H14 120.5

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, m469–m470

C1—N1—C5 118.9 (3) C14—C15—C16 121.4 (3)

C1—N1—Ni1 125.8 (2) C14—C15—O3 121.5 (3)

C5—N1—Ni1 115.3 (2) C16—C15—O3 117.0 (3)

C10—N2—C6 118.8 (3) C15—C16—C17 119.0 (3)

C10—N2—Ni1 126.3 (2) C15—C16—H16 120.5

C6—N2—Ni1 114.74 (19) C17—C16—H16 120.5

N1—C1—C2 122.4 (3) C12—C17—C16 120.7 (3)

N1—C1—H1 118.8 C12—C17—H17 119.6

C2—C1—H1 118.8 C16—C17—H17 119.6

C1—C2—C3 118.4 (3) C23—C18—C19 121.0 (3)

C1—C2—H2 120.8 C23—C18—O3 118.0 (3)

C3—C2—H2 120.8 C19—C18—O3 120.9 (3)

C4—C3—C2 119.7 (3) C18—C19—C20 119.1 (3)

C4—C3—H3 120.2 C18—C19—H19 120.4

C2—C3—H3 120.2 C20—C19—H19 120.4

C3—C4—C5 119.0 (3) C21—C20—C19 121.1 (3)

C3—C4—H4 120.5 C21—C20—H20 119.5

C5—C4—H4 120.5 C19—C20—H20 119.5

N1—C5—C4 121.5 (3) C20—C21—C22 118.4 (3)

N1—C5—C6 114.1 (2) C20—C21—C24 122.3 (3)

C4—C5—C6 124.4 (3) C22—C21—C24 119.1 (3)

N2—C6—C7 121.6 (3) C23—C22—C21 120.9 (3)

N2—C6—C5 114.5 (2) C23—C22—H22 119.5

C7—C6—C5 123.9 (3) C21—C22—H22 119.5

C8—C7—C6 118.6 (3) C18—C23—C22 119.4 (3)

C8—C7—H7 120.7 C18—C23—H23 120.3

C6—C7—H7 120.7 C22—C23—H23 120.3

C9—C8—C7 120.2 (3) O5—C24—O4 122.2 (3)

C9—C8—H8 119.9 O5—C24—C21 119.6 (3)

C7—C8—H8 119.9 O4—C24—C21 118.1 (3)

C10—C9—C8 118.2 (3)

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical