• No results found

Tetra­butyl­ammonium tetra­chloro­ferrate(III)

N/A
N/A
Protected

Academic year: 2020

Share "Tetra­butyl­ammonium tetra­chloro­ferrate(III)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m190

Hay and Geib (C16H36N)[FeCl4] doi:10.1107/S1600536804031824 Acta Cryst.(2005). E61, m190±m191 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Tetrabutylammonium tetrachloroferrate(III)

Michael T. Hayaand Steven J. Geibb*

aPenn State Beaver, 100 University Drive,

Monaca, PA 15061, USA, andbDepartment of Chemistry, University of Pittsburgh, PA 15260, USA

Correspondence e-mail: geib@pitt.edu

Key indicators Single-crystal X-ray study

T= 295 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.053

wRfactor = 0.173

Data-to-parameter ratio = 27.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, [(C4H9)4N][FeCl4], the central FeIII

atom in the anion is tetrahedrally coordinated by four Cl atoms, while the cation exists as a central N atom bonded to fourn-butyl groups, also in a tetrahedral arrangement. Both the cation and anion lie on crystallographic twofold axes.

Comment

Iron-containing compounds are ubiquitous throughout the ®eld of coordination chemistry. Recently, a variety of iron-containing silsesquioxane compounds have been added to the list of iron coordination complexes (Liuet al., 2000; Lorenzet al., 2000; Hay et al., 2003; Shapley et al., 2003). Some of the published iron silsesquioxane compounds are synthesized from tetrabutylammonium tetrachlorferrate(III), [(C4H9)4

N]-[FeCl4] (Hayet al., 2003; Shapleyet al., 2003). For reasons of

completeness, the structural characterization of this useful iron(III) starting material is reported here.

In the title compound (I), (Fig. 1) both cation and anion reside on crystallographic twofold axes. The FeIIIatom in the

anion, [FeCl4]ÿ, is four-coordinate, with a tetrahedral

Received 24 November 2004 Accepted 1 December 2004 Online 24 December 2004

Figure 1

(2)

arrangement of the four chlorides. The ClÐFeÐCl bond angles are 107.35 (5)±112.19 (10), while the FeÐCl bond

lengths are in the range 2.1808 (9)±2.1835 (12) AÊ. The tetrabutylammonium cation, (C4H9)4N+, also has a tetrahedral

arrangement around the central N atom, with CÐNÐC bond angles in the range 108.46 (12)±111.6 (3) and independent

NÐC bond lengths of 1.507 (3) and 1.524 (3) AÊ. These values are consistent with the structure previously reported for tetraethylammonium tetrachloroferrate(III) (Evans et al., 1990).

Experimental

A solution of FeCl36H2O (7.4 mmol, 2.0 g) was dissolved in 9M

aqueous HCl (100.0 ml). To this yellow solution, one equivalent of (C16H36N)ClH2O (7.4 mmol, 2.2 g) was added with stirring.

Imme-diately, a yellow precipitate formed. The yellow precipitate was collected by ®ltration, and rinsed with diethyl ether. The yellow precipitate was then recrystallized from a mixture of dichlor-omethane/diethyl ether at 243 K to afford yellow crystals. The yellow crystals were recrystallized a second time from dichloromethane/ diethyl ether before they were analyzed.

Crystal data

(C16H36N)[FeCl4]

Mr= 440.11 Orthorhombic,Pnna a= 18.4522 (9) AÊ b= 11.5264 (6) AÊ c= 11.4079 (6) AÊ V= 2426.3 (2) AÊ3

Z= 4

Dx= 1.205 Mg mÿ3 MoKradiation

Cell parameters from 999 re¯ections

= 5±15

= 1.06 mmÿ1

T= 295 (2) K Prism, yellow 0.370.200.18 mm

Data collection

Bruker SMART APEX CCD diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.695,Tmax= 0.832

22 329 measured re¯ections

2784 independent re¯ections 1684 re¯ections withI> 2(I) Rint= 0.026

max= 27.5

h=ÿ23!23 k=ÿ14!14 l=ÿ14!14

Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.053

wR(F2) = 0.173

S= 1.33 2784 re¯ections 103 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.078P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002

max= 0.36 e AÊÿ1

min=ÿ0.30 e AÊÿ1

Table 1

Selected geometric parameters (AÊ,).

FeÐCl2 2.1808 (9) FeÐCl1 2.1835 (12)

Cl2iÐFeÐCl2 111.00 (6)

Cl2iÐFeÐCl1 109.49 (4)

Cl2ÐFeÐCl1 107.35 (5)

Cl1ÐFeÐCl1i 112.19 (10)

C1iÐNÐC1 111.6 (3)

C1ÐNÐC5i 108.46 (12)

C1ÐNÐC5 108.51 (13)

C5iÐNÐC5 111.3 (3)

Symmetry code: (i)x;ÿy‡1 2;ÿz‡32.

All H atoms were placed in calculated positions (CÐH = 0.96 and 0.97 AÊ) and re®ned with riding-model constraints, withUiso(H) set to 1.2Ueq(C) [1.5Ueq(C) for methyl groups].

Data collection:SMART(Bruker, 1997); cell re®nement:SAINT

(Bruker, 1997); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

We thank the Commonwealth College of the Pennsylvania State University for ®nancial support.

References

Bruker (1997).SMART(Version 5.629) andSAINT(Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

Evans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990).Acta Cryst.C46, 1818±1821.

Hay, M. T., Hainaut, B. J. & Geib, S. J. (2003).Inorg. Chem. Commun.6, 431± 434.

Liu, F., John, K. D., Scott, B. L., Baker, T. R., Ott, K. C. & Tumas, W. (2000). Angew. Chem. Int. Ed.39, 3127±3130.

Lorenz, V., Fischer, A. & Edelmann, F. T. (2000).Z. Anorg. Allg. Chem.626, 1728±1730.

Shapley, P. A., Bigham, W. S. & Hay, M. T. (2003).Inorg. Chim. Acta,345, 255± 260.

Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (2001).SHELXTL. Version 6.12. Bruker AXS Inc., Madison,

Wisconsin, USA.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, m190–m191

supporting information

Acta Cryst. (2005). E61, m190–m191 [https://doi.org/10.1107/S1600536804031824]

Tetrabutylammonium tetrachloroferrate(III)

Michael T. Hay and Steven J. Geib

Tetrabutylammonium tetrachloroferrate(III)

Crystal data (C16H36N)[FeCl4] Mr = 440.11

Orthorhombic, Pnna Hall symbol: -P 2a 2bc a = 18.4522 (9) Å b = 11.5264 (6) Å c = 11.4079 (6) Å V = 2426.3 (2) Å3 Z = 4

F(000) = 932 Dx = 1.205 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 999 reflections θ = 5–15°

µ = 1.06 mm−1 T = 295 K Prism, yellow

0.37 × 0.20 × 0.18 mm

Data collection

Bruker SMART Apex CCD diffractometer

Radiation source: fine-focus sealed tube, Bruker Smart Apex CCD

Graphite monochromator ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.695, Tmax = 0.832

22329 measured reflections 2784 independent reflections 1684 reflections with I > 2σ(I) Rint = 0.026

θmax = 27.5°, θmin = 2.1° h = −23→23

k = −14→14 l = −14→14

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.053 wR(F2) = 0.173 S = 1.33 2784 reflections 103 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.078P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.36 e Å−3

Δρmin = −0.30 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Fe 0.40812 (3) 0.2500 0.7500 0.0928 (3)

Cl1 0.47412 (9) 0.18206 (14) 0.60674 (11) 0.1909 (8)

Cl2 0.34118 (5) 0.10769 (6) 0.81439 (8) 0.1216 (4)

N 0.06422 (17) 0.2500 0.7500 0.0642 (6)

C1 0.11012 (15) 0.17464 (19) 0.67157 (18) 0.0730 (6)

H1A 0.1380 0.1228 0.7211 0.088*

H1B 0.0778 0.1268 0.6250 0.088*

C2 0.16149 (16) 0.2337 (2) 0.5899 (2) 0.0858 (7)

H2A 0.1344 0.2820 0.5358 0.103*

H2B 0.1936 0.2837 0.6345 0.103*

C3 0.2055 (2) 0.1482 (3) 0.5223 (3) 0.1187 (11)

H3A 0.1726 0.0975 0.4803 0.142*

H3B 0.2321 0.1007 0.5777 0.142*

C4 0.2582 (2) 0.1976 (4) 0.4363 (3) 0.1371 (13)

H4A 0.2325 0.2403 0.3773 0.206*

H4B 0.2849 0.1357 0.4001 0.206*

H4C 0.2912 0.2485 0.4763 0.206*

C5 0.01762 (14) 0.1717 (2) 0.8269 (2) 0.0766 (7)

H5A 0.0495 0.1187 0.8680 0.092*

H5B −0.0057 0.2198 0.8855 0.092*

C6 −0.03966 (17) 0.1017 (3) 0.7671 (3) 0.0939 (8)

H6A −0.0176 0.0514 0.7090 0.113*

H6B −0.0733 0.1529 0.7273 0.113*

C7 −0.0802 (2) 0.0288 (4) 0.8571 (3) 0.1315 (13)

H7A −0.0464 −0.0260 0.8915 0.158*

H7B −0.0968 0.0796 0.9194 0.158*

C8 −0.1415 (2) −0.0349 (5) 0.8129 (4) 0.175 (2)

H8A −0.1742 0.0175 0.7745 0.262*

H8B −0.1660 −0.0724 0.8768 0.262*

H8C −0.1252 −0.0923 0.7580 0.262*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Fe 0.1044 (5) 0.0969 (5) 0.0769 (4) 0.000 0.000 0.0130 (3)

Cl1 0.2213 (14) 0.2242 (14) 0.1272 (8) 0.0965 (12) 0.0847 (9) 0.0677 (9) Cl2 0.1509 (8) 0.0760 (5) 0.1378 (8) −0.0076 (4) 0.0301 (6) −0.0098 (4)

N 0.0841 (16) 0.0528 (13) 0.0556 (13) 0.000 0.000 0.0008 (10)

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, m190–m191

C3 0.135 (3) 0.123 (2) 0.098 (2) 0.030 (2) 0.025 (2) −0.0156 (19)

C4 0.132 (3) 0.167 (3) 0.112 (2) 0.022 (3) 0.042 (2) −0.020 (3)

C5 0.0960 (17) 0.0713 (14) 0.0626 (13) −0.0078 (12) 0.0026 (12) 0.0064 (10) C6 0.104 (2) 0.0821 (17) 0.0957 (19) −0.0172 (15) −0.0051 (16) 0.0105 (14) C7 0.124 (3) 0.141 (3) 0.129 (3) −0.050 (2) −0.014 (2) 0.030 (2) C8 0.141 (3) 0.194 (5) 0.190 (5) −0.073 (4) −0.036 (3) 0.071 (4)

Geometric parameters (Å, º)

Fe—Cl2i 2.1808 (9) C3—H3B 0.9700

Fe—Cl2 2.1808 (9) C4—H4A 0.9600

Fe—Cl1 2.1835 (12) C4—H4B 0.9600

Fe—Cl1i 2.1835 (12) C4—H4C 0.9600

N—C1i 1.507 (3) C5—C6 1.495 (4)

N—C1 1.507 (3) C5—H5A 0.9700

N—C5i 1.524 (3) C5—H5B 0.9700

N—C5 1.524 (3) C6—C7 1.523 (4)

C1—C2 1.493 (3) C6—H6A 0.9700

C1—H1A 0.9700 C6—H6B 0.9700

C1—H1B 0.9700 C7—C8 1.440 (5)

C2—C3 1.492 (4) C7—H7A 0.9700

C2—H2A 0.9700 C7—H7B 0.9700

C2—H2B 0.9700 C8—H8A 0.9600

C3—C4 1.495 (5) C8—H8B 0.9600

C3—H3A 0.9700 C8—H8C 0.9600

Cl2i—Fe—Cl2 111.00 (6) C3—C4—H4A 109.5

Cl2i—Fe—Cl1 109.49 (4) C3—C4—H4B 109.5

Cl2—Fe—Cl1 107.35 (5) H4A—C4—H4B 109.5

Cl2i—Fe—Cl1i 107.35 (5) C3—C4—H4C 109.5

Cl2—Fe—Cl1i 109.49 (4) H4A—C4—H4C 109.5

Cl1—Fe—Cl1i 112.19 (10) H4B—C4—H4C 109.5

C1i—N—C1 111.6 (3) C6—C5—N 117.2 (2)

C1i—N—C5i 108.51 (13) C6—C5—H5A 108.0

C1—N—C5i 108.46 (12) N—C5—H5A 108.0

C1i—N—C5 108.46 (12) C6—C5—H5B 108.0

C1—N—C5 108.51 (13) N—C5—H5B 108.0

C5i—N—C5 111.3 (3) H5A—C5—H5B 107.3

C2—C1—N 117.65 (19) C5—C6—C7 109.7 (2)

C2—C1—H1A 107.9 C5—C6—H6A 109.7

N—C1—H1A 107.9 C7—C6—H6A 109.7

C2—C1—H1B 107.9 C5—C6—H6B 109.7

N—C1—H1B 107.9 C7—C6—H6B 109.7

H1A—C1—H1B 107.2 H6A—C6—H6B 108.2

C3—C2—C1 111.5 (2) C8—C7—C6 115.5 (3)

C3—C2—H2A 109.3 C8—C7—H7A 108.4

C1—C2—H2A 109.3 C6—C7—H7A 108.4

(6)

C1—C2—H2B 109.3 C6—C7—H7B 108.4

H2A—C2—H2B 108.0 H7A—C7—H7B 107.5

C2—C3—C4 116.2 (3) C7—C8—H8A 109.5

C2—C3—H3A 108.2 C7—C8—H8B 109.5

C4—C3—H3A 108.2 H8A—C8—H8B 109.5

C2—C3—H3B 108.2 C7—C8—H8C 109.5

C4—C3—H3B 108.2 H8A—C8—H8C 109.5

H3A—C3—H3B 107.4 H8B—C8—H8C 109.5

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical