• No results found

5 (N,N Di­ethyl­amino) 4,6 di­phenyl 1,2,3 triazine

N/A
N/A
Protected

Academic year: 2020

Share "5 (N,N Di­ethyl­amino) 4,6 di­phenyl 1,2,3 triazine"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o93±o95 doi:10.1107/S1600536804032003 Rozycka-Sokolowskaet al. C19H20N4

o93

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

5-(

N

,

N

-Diethylamino)-4,6-diphenyl-1,2,3-triazine

Ewa Rozycka-Sokolowska,a

Tomasz Girek,aBernard

Marciniak,a* Volodymyr

Pavlyuk,aJozef Drabowicza,b

and Kyoshi Matsumotoc

aInstitute of Chemistry and Environment

Protec-tion, Pedagogical University of Czestochowa, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland,bCentre of Molecular and

Macromol-ecular Studies, Polish Academy of Sciences, Department of Heteroorganic Chemistry, ul. Sienkiewicza 112, 90-363 Lodz, Poland, and

cGraduate School of Human and Environmental

Studies, Kyoto University, Nihonmatsu-cho Yoshida Sakyo-ku, Kyoto 606-8501, Japan

Correspondence e-mail: crystal@cz.onet.pl

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.035

wRfactor = 0.087 Data-to-parameter ratio = 8.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, C19H20N4, the dihedral angles formed

by the planes of the triazine ring and the two phenyl substituents are 51.54 (1) and 49.27 (1). The phenyl rings form a dihedral angle of 80.81 (1). All bond lengths and angles are normal. The structure is stabilized by van der Waals interactions.

Comment

The derivatives of 1,2,3-triazine are an important class of heterocyclic compounds useful in organic synthesis and as insecticides, pharmaceuticals and dyestuffs. Their chemistry has been reviewed several times since 1956 (Erickson, 1956; Neunhoeffer & Wiley, 1978; Kobylecki & Mckillop, 1976). Their importance in organic synthesis is due to the fact that they can react as dienes on inverse-demand Diels±Alder cycloadditions with electron-rich dienophiles (Prieto et al., 2002). The many applications of these compounds as phar-maceuticals and selective herbicides, which are usually applied as pre- and post-emergent weed control agents to improve the quality of agricultural products (Masquelinet al., 1998), are a result of the wide range of biological activity associated with this interesting heteroaromatic ring system (Tsaiet al., 1998). The Cambridge Structural Database (CSD; Version 5.25 and updates; Allen, 2002) contains eight different derivatives of 1,2,3-triazine [refcodes KOTCIF (Yamaguchi et al., 1992), PIKDAO (Eichhornet al., 1993), PINWEO (Boppet al., 1994), TMPTAZ (Oeser & Schiele, 1972), VOBNAB and VOBNAB01 (Yamaguchi, Itoh, Okada, Ohsawa & Matsu-mura, 1991), VOBPAD, VOBPEH and VOBPEH01 (Yama-guchi, Itoh, Okada & Ohsawa, 1991), and UHUJIQ (Bauet al., 1998)]. Recently, we also published the structure of 5-(N,N-diethylamino)-4,6-tris(4-¯uorophenyl)-1,2,3-triazine (Matsumoto et al., 2002) and we report here the crystal structure of 5-(N,N-diethylamino)-4,6-diphenyl-1,2,3-triazine, (I).

A perspective view of the 4,6-diphenyl-5-(N,N -diethyl-amin)-1,2,3-triazine molecule is shown in Fig. 1. This molecule is built up from an essentially planar triazine ring, two

(2)

attached phenyl rings (I and II) and one diethylamino group, which are not coplanar with the triazine ring. The N atom of the diethylamino group lies 0.073 (2) AÊ above the plane formed by the triazine and the phenyl ring C atoms; C16 (ring I) and C17 (ring II) lie 0.094 (2) AÊ above and 0.186 (2) AÊ below this plane, respectively. The angle between the mean plane of phenyl ring I and the triazine mean plane is 51.54 (1), while the angle between the plane of ring II and the triazine plane is 49.27 (1). The angle between the two phenyl rings is 80.81 (1). The values of the bond lengths and valence angles lie in the usual ranges for similar structures included in the CSD.

Molecules pack in the cell, forming sheets parallel to theac

plane (Fig. 2). The crystal structure is stabilized by van der Waals interactions.

Experimental

Diphenylcyclopropenone, used as a starting material, was prepared according to the procedure of Breslow & Posner (1973). To a solution of diphenylcyclopropenone (0.606 g, 3 mmol) in dry dichloromethane (15 ml) under a nitrogen atmosphere was added triethyloxonium tetra¯uoroborate (0.624 g, 3.3 mmol). The resulting solution was stirred for 1 h at room temperature. A solution of diethylamine (0.22 g, 3 mmol) in dichloromethane (10 ml) was then added via

syringe. The reaction mixture was kept at room temperature for another 1 h, diethyl ether (70 ml) was added and the mixture was concentrated to 20 ml. The precipitated white solid was collected on a funnel and dried, giving 1-(N,N -diethylamino)-2,3-diphenylcyclo-propenium tetra¯uoroborate (0.78 g, 72%). To a suspension of this salt (0.69 g, 2 mmol) in dichloromethane (30 ml) was added sodium azide (0.39 g, 6 mmol), and the mixture was further stirred at room temperature for 24 h. The solvent was then evaporated, leaving a yellow solid which was shaken with benzene; a white solid which remained after shaking was ®ltered off and the benzene solution was evaporated again, leaving the crude product. Crystallization from chloroform/ethanol (1:1) afforded yellow crystals (0.4 g, 65%). Analysis calculated for C19H20N4: C 74.97, H 6.62, N 18.41%; found: C

74.92, H 6.64, N 18.19%. M.p. 481±482 K. IR (KBr disk): 2971, 2842, 2776, 2467, 2036, 1468, 1440, 1053;1H NMR (CDCl

3, 200 MHz):0.93

(t,J= 7 Hz, 6H), 2.79 (q,J= 7 Hz, 4H), 7.47±7.51 (m, 6H), 7.67±7.72 (m, 4H);13C NMR (CDCl

3, 54.6z):12.7, 46.0, 128.2, 128.7, 129.5,

136.7, 138.0, 152.6; MS (70 eV) m/z: 304 (100) (M+), 276 (43), 173 (59), 158 (5), 104 (5).

Crystal data C19H20N4

Mr= 304.39

Orthorhombic,Pca21

a= 12.535 (3) AÊ

b= 7.856 (2) AÊ

c= 16.253 (3) AÊ

V= 1600.5 (6) AÊ3

Z= 4

Dx= 1.263 Mg mÿ3

MoKradiation Cell parameters from 20

re¯ections = 10±16

= 0.08 mmÿ1

T= 293 (2) K

Needle, clear pale yellow 0.500.060.02 mm

Data collection Burevestnik DARCH-1

diffractometer !±2scans

Absorption correction: part of the re®nement model (F) (DIFABS; Walker & Stuart, 1983)

Tmin= 0.957,Tmax= 0.998

3080 measured re¯ections 1894 independent re¯ections

1563 re¯ections withI> 2(I)

Rint= 0.020

max= 27.4

h= 0!16

k= 0!10

l=ÿ10!20 3 standard re¯ections every 100 re¯ections intensity decay: 2.3%

Refinement Re®nement onF2

R[F2> 2(F2)] = 0.035

wR(F2) = 0.088

S= 1.06 1894 re¯ections 213 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0374P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.006 max= 0.11 e AÊÿ3 min=ÿ0.14 e AÊÿ3

H atoms were treated as riding (CÐH = 0.93±0.97 AÊ). The two free variables forUiso(H) were re®ned according to SHELXL97 (Shel-drick, 1997). In the absence of signi®cant anomalous dispersion effects, Friedel pairs were merged.

Data collection: DARCH software; cell re®nement: DARCH software; data reduction: DARCH software; program(s) used to solve structure:SHELXS97(Sheldrick, 1990); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2000); software used to prepare material for publication:SHELXL97.

organic papers

o94

Rozycka-Sokolowskaet al. C19H20N4 Acta Cryst.(2005). E61, o93±o95

Figure 2

The crystal packing, viewed along thebaxis.

Figure 1

(3)

References

Allen, F. H. (2002).Acta Cryst.B58, 380±388.

Bau, B., Hofmann, T., Kloss, J. & Neunhoeffer, H. (1998).Sci. Pharm.66, 119± 136.

Bopp, R., Foro, S., Neunhoeffer, H. & Lindner, H. J. (1994).Z. Kristallogr.209, 196.

Breslow, R. & Posner, J. (1973).Org. Synth.5, 514±517.

Eichhorn, S., Foro, S., Neunhoeffer, H. & Lindner, H. J. (1993).Z. Kristallogr. 208, 310±312.

Erickson, J. G. (1956).The Chemistry of Heterocyclic Compounds, Vol. 10. New York: Wiley Interscience.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Kobylecki, R. & Mckillop, A. (1976). Adv. Heterocycl. Chem. 19, 215± 278.

Masquelin, T., Delgado, Y. & Baumie, V. (1998).Tetrahedron Lett.39, 5725± 5726.

Matsumoto, K, Okada, A, Girek, T, Ikemi, Y, Kim., J. C., Hayashi, N, Yoshida, H. & Kakehi, A. (2002).Heteroycl. Commun.8, 325±328.

Neunhoeffer, H. & Wiley, P. F. (1978). InChemistry of 1,2,3-Triazines and 1,2,4-Triazines, Tetrazines, and Pentazines.New York: John Wiley. Oeser, E. & Schiele, L. (1972).Chem. Ber.105, 3704±3708.

Prieto, P., Cossio, F. P., Carrillo, J. R., Hoz, A., Diaz-Ortiz, A. & Moreno, A. (2002).J. Chem. Soc. Perkin Trans.2, pp. 1257±1263.

Sheldrick, G. M. (1990).Acta. Cryst.A46, 467±473.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (2000).PLATON. University of Utrecht, The Netherlands. Tsai, Ch.-Y., Chen, Y.-R. & Her, G.-R. (1998).J. Chromatogr. A,813, 379±386. Walker, N. & Stuart, D. (1983).Acta Cryst.A39, 158±166.

Yamaguchi, K., Itoh, T., Okada, M. & Ohsawa, A. (1991).Acta Cryst.C47, 2193±2196.

Yamaguchi, K., Itoh, T., Okada, M. & Ohsawa, A. (1992).Acta Cryst.C48, 964±965.

Yamaguchi, K., Itoh, T., Okada, M., Ohsawa, A. & Matsumura, G. (1991).Acta Cryst.C47, 2256±2258.

organic papers

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o93–o95

supporting information

Acta Cryst. (2005). E61, o93–o95 [https://doi.org/10.1107/S1600536804032003]

5-(

N

,

N

-Diethylamino)-4,6-diphenyl-1,2,3-triazine

Ewa Rozycka-Sokolowska, Tomasz Girek, Bernard Marciniak, Volodymyr Pavlyuk, Jozef

Drabowicz and Kyoshi Matsumoto

5-(N,N-Diethylamino)-4,6-diphenyl-1,2,3-triazine

Crystal data

C19H20N4

Mr = 304.39

Orthorhombic, Pca21

Hall symbol: P 2c -2ac

a = 12.535 (3) Å

b = 7.856 (2) Å

c = 16.253 (3) Å

V = 1600.5 (6) Å3

Z = 4

F(000) = 648

Dx = 1.263 Mg m−3

Mo radiation, λ = 0.71069 Å Cell parameters from 20 reflections

θ = 10–16°

µ = 0.08 mm−1

T = 293 K

Needle, clear pale yellow 0.50 × 0.06 × 0.02 mm

Data collection

DARCH-1 diffractometer

Radiation source: BSW x-ray tube Graphite monochromator

ω–2θ scans

Absorption correction: part of the refinement model (ΔF)

(DIFABS; Walker & Stuart, 1983)

Tmin = 0.957, Tmax = 0.998

3080 measured reflections

1894 independent reflections 1563 reflections with I > 2σ(I)

Rint = 0.020

θmax = 27.4°, θmin = 2.5°

h = 0→16

k = 0→10

l = −10→20

3 standard reflections every 100 reflections intensity decay: 2.3%

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.035

wR(F2) = 0.088

S = 1.06 1895 reflections 213 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0374P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.006

Δρmax = 0.11 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o93–o95

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

N1 0.59182 (17) 0.0192 (2) 0.00777 (13) 0.0810 (5)

N2 0.66218 (18) 0.0129 (3) −0.05176 (15) 0.0885 (6)

N3 0.73609 (18) 0.1380 (3) −0.05968 (14) 0.0887 (5)

N4 0.67108 (14) 0.4116 (2) 0.11396 (12) 0.0761 (5)

C1 0.5380 (2) 0.1223 (3) 0.21012 (14) 0.0816 (6)

H1 0.6071 0.1496 0.2262 0.091 (2)*

C2 0.4612 (2) 0.0825 (3) 0.26871 (17) 0.0898 (7)

H2 0.4798 0.0832 0.3241 0.091 (2)*

C3 0.3605 (2) 0.0430 (3) 0.24700 (19) 0.0933 (7)

H3 0.3101 0.0179 0.2872 0.091 (2)*

C4 0.3328 (2) 0.0398 (3) 0.16653 (18) 0.0896 (7)

H4 0.2634 0.0129 0.1511 0.091 (2)*

C5 0.40901 (18) 0.0770 (3) 0.10711 (17) 0.0809 (6)

H5 0.3900 0.0717 0.0519 0.091 (2)*

C6 0.51085 (18) 0.1210 (3) 0.12755 (16) 0.0774 (6)

C7 0.59099 (17) 0.1478 (3) 0.06241 (14) 0.0706 (5)

C8 0.66612 (16) 0.2824 (3) 0.05852 (13) 0.0700 (5)

C9 0.73699 (16) 0.2707 (3) −0.00903 (14) 0.0704 (5)

C10 0.81407 (17) 0.4004 (3) −0.03567 (14) 0.0740 (5)

C11 0.9153 (2) 0.3544 (4) −0.06073 (17) 0.0891 (7)

H11 0.9372 0.2422 −0.0539 0.091 (2)*

C12 0.9838 (2) 0.4682 (5) −0.09500 (18) 0.1002 (9)

H12 1.0512 0.4329 −0.1118 0.091 (2)*

C13 0.9543 (2) 0.6324 (4) −0.10476 (19) 0.0940 (7)

H13 1.0012 0.7104 −0.1281 0.091 (2)*

C14 0.8530 (2) 0.6841 (4) −0.07967 (16) 0.0924 (7)

H14 0.8316 0.7966 −0.0862 0.091 (2)*

C15 0.78562 (19) 0.5672 (3) −0.04542 (15) 0.0794 (6)

H15 0.7183 0.6022 −0.0282 0.091 (2)*

C16 0.57540 (17) 0.4903 (3) 0.14752 (19) 0.0774 (6)

H16A 0.5668 0.4543 0.2042 0.072 (3)*

H16B 0.5139 0.4500 0.1169 0.072 (3)*

C17 0.77252 (17) 0.4671 (3) 0.14785 (17) 0.0773 (6)

H17A 0.8290 0.4021 0.1218 0.072 (3)*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o93–o95

C18 0.5775 (2) 0.6783 (3) 0.1446 (2) 0.0992 (8)

H18A 0.6394 0.7192 0.1732 0.107 (4)*

H18B 0.5144 0.7226 0.1703 0.107 (4)*

H18C 0.5801 0.7152 0.0883 0.107 (4)*

C19 0.7836 (2) 0.4505 (5) 0.23671 (19) 0.1035 (9)

H19A 0.7336 0.5244 0.2635 0.107 (4)*

H19B 0.8548 0.4812 0.2526 0.107 (4)*

H19C 0.7698 0.3348 0.2525 0.107 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

N1 0.0980 (13) 0.0732 (11) 0.0716 (12) −0.0083 (9) 0.0038 (10) −0.0026 (9) N2 0.0922 (15) 0.0815 (12) 0.0719 (12) −0.0058 (11) 0.0047 (12) −0.0078 (10) N3 0.0907 (13) 0.0771 (12) 0.0782 (13) −0.0063 (11) −0.0001 (10) −0.0082 (11) N4 0.0759 (10) 0.0794 (10) 0.0730 (12) 0.0009 (8) −0.0014 (9) −0.0038 (9) C1 0.0862 (16) 0.0812 (14) 0.0694 (13) −0.0105 (11) −0.0051 (12) 0.0069 (11) C2 0.1099 (19) 0.0897 (16) 0.0698 (15) −0.0139 (14) −0.0016 (13) −0.0002 (13) C3 0.0941 (18) 0.0821 (15) 0.083 (2) −0.0160 (14) 0.0096 (16) 0.0040 (13) C4 0.0875 (14) 0.0892 (15) 0.0798 (2) −0.0088 (11) −0.0011 (14) −0.0086 (14) C5 0.0801 (13) 0.0835 (14) 0.0753 (15) 0.0043 (11) 0.0053 (11) 0.0016 (12) C6 0.0840 (13) 0.0765 (10) 0.0757 (16) 0.0063 (10) 0.0075 (12) 0.0045 (11) C7 0.0744 (12) 0.0748 (11) 0.0625 (12) 0.0085 (9) −0.0067 (9) 0.0018 (10) C8 0.0727 (12) 0.0697 (11) 0.0676 (13) 0.0095 (9) −0.0033 (10) −0.0049 (10) C9 0.0833 (12) 0.0677 (11) 0.0702 (13) −0.0035 (9) −0.0009 (10) −0.0067 (10) C10 0.0803 (12) 0.0844 (13) 0.0724 (13) −0.0018 (10) 0.0050 (10) −0.0018 (10) C11 0.0903 (16) 0.0950 (16) 0.0820 (16) −0.0093 (13) 0.0058 (12) −0.0072 (13) C12 0.0905 (12) 0.0951 (3) 0.0843 (19) −0.0107 (15) 0.0055 (12) −0.0024 (17) C13 0.1012 (19) 0.0966 (18) 0.0842 (17) −0.0174 (14) 0.0009 (14) 0.0062 (14) C14 0.1143 (19) 0.0897 (15) 0.0732 (15) −0.0100 (14) 0.0084 (14) −0.0047 (12) C15 0.0769 (13) 0.0967 (15) 0.0644 (13) −0.0011 (11) 0.0057 (11) 0.0017 (12) C16 0.0694 (11) 0.0812 (12) 0.0816 (15) −0.0013 (9) 0.0081 (11) 0.0034 (11) C17 0.0746 (12) 0.0766 (12) 0.0806 (16) −0.0035 (9) −0.0064 (11) −0.0056 (11) C18 0.0956 (16) 0.0722 (13) 0.130 (2) 0.0086 (11) −0.0009 (17) −0.0041 (15) C19 0.0866 (16) 0.138 (2) 0.0857 (19) 0.0025 (15) −0.0099 (14) −0.0179 (17)

Geometric parameters (Å, º)

N1—N2 1.310 (3) C10—C11 1.381 (3)

N1—C7 1.345 (3) C11—C12 1.359 (4)

N2—N3 1.357 (3) C11—H11 0.9300

N3—C9 1.329 (3) C12—C13 1.351 (4)

N4—C8 1.359 (3) C12—H12 0.9300

N4—C17 1.453 (3) C13—C14 1.394 (4)

N4—C16 1.455 (3) C13—H13 0.9300

C1—C6 1.384 (3) C14—C15 1.366 (4)

C1—C2 1.389 (4) C14—H14 0.9300

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, o93–o95

C2—C3 1.348 (4) C16—C18 1.478 (3)

C2—H2 0.9300 C16—H16A 0.9700

C3—C4 1.353 (4) C16—H16B 0.9700

C3—H3 0.9300 C17—C19 1.457 (4)

C4—C5 1.389 (4) C17—H17A 0.9700

C4—H4 0.9300 C17—H17B 0.9700

C5—C6 1.364 (3) C18—H18A 0.9600

C5—H5 0.9300 C18—H18B 0.9600

C6—C7 1.475 (3) C18—H18C 0.9600

C7—C8 1.417 (3) C19—H19A 0.9600

C8—C9 1.415 (3) C19—H19B 0.9600

C9—C10 1.470 (3) C19—H19C 0.9600

C10—C15 1.367 (3)

N2—N1—C7 121.39 (19) C10—C11—H11 119.0

N1—N2—N3 120.17 (19) C13—C12—C11 120.2 (3)

C9—N3—N2 121.0 (2) C13—C12—H12 119.9

C8—N4—C17 121.06 (18) C11—C12—H12 119.9

C8—N4—C16 121.89 (18) C12—C13—C14 119.6 (3)

C17—N4—C16 116.84 (19) C12—C13—H13 120.2

C6—C1—C2 119.5 (2) C14—C13—H13 120.2

C6—C1—H1 120.2 C15—C14—C13 119.1 (3)

C2—C1—H1 120.2 C15—C14—H14 120.4

C3—C2—C1 121.4 (3) C13—C14—H14 120.4

C3—C2—H2 119.3 C14—C15—C10 122.0 (2)

C1—C2—H2 119.3 C14—C15—H15 119.0

C2—C3—C4 119.8 (3) C10—C15—H15 119.0

C2—C3—H3 120.1 N4—C16—C18 113.4 (2)

C4—C3—H3 120.1 N4—C16—H16A 108.9

C3—C4—C5 119.5 (3) C18—C16—H16A 108.9

C3—C4—H4 120.3 N4—C16—H16B 108.9

C5—C4—H4 120.3 C18—C16—H16B 108.9

C6—C5—C4 121.8 (3) H16A—C16—H16B 107.7

C6—C5—H5 119.1 C19—C17—N4 115.6 (2)

C4—C5—H5 119.1 C19—C17—H17A 108.4

C5—C6—C1 117.9 (2) N4—C17—H17A 108.4

C5—C6—C7 119.9 (2) C19—C17—H17B 108.4

C1—C6—C7 121.9 (2) N4—C17—H17B 108.4

N1—C7—C8 121.7 (2) H17A—C17—H17B 107.4

N1—C7—C6 111.83 (19) C16—C18—H18A 109.5

C8—C7—C6 126.2 (2) C16—C18—H18B 109.5

N4—C8—C9 122.27 (19) H18A—C18—H18B 109.5

N4—C8—C7 123.93 (19) C16—C18—H18C 109.5

C9—C8—C7 113.80 (19) H18A—C18—H18C 109.5

N3—C9—C8 121.7 (2) H18B—C18—H18C 109.5

N3—C9—C10 111.5 (2) C17—C19—H19A 109.5

C8—C9—C10 126.62 (19) C17—C19—H19B 109.5

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, o93–o95

C15—C10—C9 121.8 (2) C17—C19—H19C 109.5

C11—C10—C9 120.6 (2) H19A—C19—H19C 109.5

C12—C11—C10 122.0 (3) H19B—C19—H19C 109.5

C12—C11—H11 119.0

C7—N1—N2—N3 −0.3 (4) C6—C7—C8—C9 176.9 (2)

N1—N2—N3—C9 −1.8 (4) N2—N3—C9—C8 4.3 (3)

C6—C1—C2—C3 −0.2 (4) N2—N3—C9—C10 −172.4 (2)

C1—C2—C3—C4 0.7 (4) N4—C8—C9—N3 175.4 (2)

C2—C3—C4—C5 0.2 (4) C7—C8—C9—N3 −4.5 (3)

C3—C4—C5—C6 −1.7 (4) N4—C8—C9—C10 −8.4 (3)

C4—C5—C6—C1 2.1 (4) C7—C8—C9—C10 171.7 (2)

C4—C5—C6—C7 175.8 (2) N3—C9—C10—C15 127.8 (2)

C2—C1—C6—C5 −1.2 (3) C8—C9—C10—C15 −48.7 (3)

C2—C1—C6—C7 −174.7 (2) N3—C9—C10—C11 −44.8 (3)

N2—N1—C7—C8 −0.2 (3) C8—C9—C10—C11 138.7 (2)

N2—N1—C7—C6 −175.3 (2) C15—C10—C11—C12 −1.1 (4)

C5—C6—C7—N1 −48.8 (3) C9—C10—C11—C12 171.9 (3)

C1—C6—C7—N1 124.5 (2) C10—C11—C12—C13 0.7 (5)

C5—C6—C7—C8 136.3 (2) C11—C12—C13—C14 −0.2 (5)

C1—C6—C7—C8 −50.3 (3) C12—C13—C14—C15 0.2 (4)

C17—N4—C8—C9 −45.1 (3) C13—C14—C15—C10 −0.6 (4)

C16—N4—C8—C9 140.4 (2) C11—C10—C15—C14 1.1 (4)

C17—N4—C8—C7 134.8 (2) C9—C10—C15—C14 −171.8 (2)

C16—N4—C8—C7 −39.7 (3) C8—N4—C16—C18 −131.5 (3)

N1—C7—C8—N4 −177.5 (2) C17—N4—C16—C18 53.8 (3)

C6—C7—C8—N4 −3.1 (3) C8—N4—C17—C19 −118.7 (3)

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical