• No results found

4 {[(1E) (3,5 Di­chloro 2 hy­droxy­phen­yl)methyl­ene]amino} 1,5 di­methyl 2 phenyl 3H pyrazol 3(2H) one

N/A
N/A
Protected

Academic year: 2020

Share "4 {[(1E) (3,5 Di­chloro 2 hy­droxy­phen­yl)methyl­ene]amino} 1,5 di­methyl 2 phenyl 3H pyrazol 3(2H) one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o757–o758 doi:10.1107/S1600536806001000 Chen and Huang C

18H15Cl2N3O2

o757

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

4-{[(1

E

)-(3,5-Dichloro-2-hydroxyphenyl)-

methylene]amino}-1,5-dimethyl-2-phenyl-3

H

-pyrazol-3(2

H

)-one

Ding-Ben Chen and Ling Huang*

Department of Chemistry, Taizhou University, Taizhou 317000, People’s Republic of China

Correspondence e-mail: huangltzu@yahoo.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.047

wRfactor = 0.135

Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 24 November 2005 Accepted 10 January 2006

#2006 International Union of Crystallography

All rights reserved

The crystal structure of the title compound, C18H15Cl2N3O2,

shows a strong intramolecular O—H N hydrogen bond [N O = 2.598 (3) A˚ , O—H = 0.81 (3) A˚, H N = 1.86 (3) A˚ and O—H N = 152 (3)], which leads to the existence of a

phenol–imine tautomer.

Comment

Great interest has been devoted to the preparation and study of the Schiff bases derived from salicylaldehyde due to their tautomeric structure (Salman et al., 1991), fluorescent (Morishige et al., 1980), and thermo- and photochromic properties (Barbaraet al., 1980; Cohenet al., 1964). In a search for new analytical reagents, we have synthesized some compounds of substituted salicylaldehyde with 4-aminoanti-pyrine (Huanget al., 2005). We report here the synthesis and crystal structure of the title compound, (I).

All the bond distances and angles are normal and agree with the corresponding values found in a similar compound,

viz. 4-[(2-hydroxy-3-methoxybenzylidene)amino]-1,5-dimeth-yl-2-phenyl-1H-pyrazol-3(2H)-one (Diaoet al., 2005). There is an intramolecular O—H N hydrogen bond (Table 2); the compound is in the phenol–imine form, as in 4-{[(1E )-(2- hydroxyphenyl)methylidene]amino}-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one [N1 O1 = 2.607 (3) A˚ , O1— H1 = 0.97 (3) A˚ , H1 N1 = 1.71 (3) A˚ and O1—H1 N1 = 153 (2); Ho¨keleket al., 2001].

Experimental

3,5-Dichlorosalicylaldehyde was prepared according to the method of Sukuzi & Takashi (1983). Ethanol solutions of 3,5-dichloro-salicylaldehyde (10 mmol, 1.70 g) and 4-aminoantipyrine (10 mmol, 2.03 g) were mixed and refluxed on a water bath for 2 h. After cooling, the separated precipate was filtered off, washed and recrys-tallized from methanol (yield: 83%; m.p. 498.6–499.1 K). IR (KBr, cm1):

max 3430.5, 1664.5, 1592.1, 1452.3, 1356.8, 1290.3, 1136.0,

766.7.1H NMR (200 MHz, CDCl3):14.25 (1H), 9.72 (1H), 7.18–7.59

(2)

Crystal data

C18H15Cl2N3O2

Mr= 376.23 Monoclinic,P21=n a= 7.0146 (6) A˚

b= 8.0466 (7) A˚

c= 30.510 (3) A˚ = 90.921 (2) V= 1721.9 (3) A˚3

Z= 4

Dx= 1.451 Mg m 3

MoKradiation Cell parameters from 3109

reflections = 1.3–25.3

= 0.39 mm1

T= 293 (2) K Block, orange 0.220.170.16 mm

Data collection

Siemens SMART CCD area-detector diffractometer !and’scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.923,Tmax= 0.939

8818 measured reflections

3109 independent reflections 2510 reflections withI> 2(I)

Rint= 0.031

max= 25.3

h=6!8

k=9!9

l=36!35

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.047

wR(F2) = 0.136

S= 1.14 3109 reflections 255 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.067P)2

+ 0.3379P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.33 e A˚

3

min=0.26 e A˚

3

Extinction correction:SHELXL97

Extinction coefficient: 0.0028 (13)

Table 1

Selected geometric parameters (A˚ ,).

Cl1—C3 1.744 (3)

Cl2—C5 1.736 (3)

O1—C6 1.340 (3)

O2—C10 1.233 (3)

N1—C8 1.395 (3)

N2—N3 1.412 (3)

N3—C10 1.403 (3)

C7—N1—C8 120.7 (2)

C2—C3—C4 121.3 (2)

O1—C6—C5 120.4 (2)

[image:2.610.46.293.73.219.2]

O1—C6—C1 121.3 (2)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1A N1 0.81 (3) 1.86 (3) 2.598 (3) 152 (3)

The hydroxy H atom (H1A) and the methyl H atom were posi-tioned from a difference map, refined several cycles then fixed at a distance of 0.80 A˚ ; the methyl H atoms on C11 and C12 were located in a Fourier synthesis and refined freely. The remaining H atoms were were positioned geometrically and treated as riding, at distances of 0.93 (CH) and 0.96 A˚ (CH3) and withUiso(H) = 1.2Ueq(C).

Data collection:SMART(Bruker, 2002); cell refinement:SAINT

(Bruker, 2002); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

The authors thank Taizhou University for research grant No. 05QN12.

References

Barbara, P. F., Rentzepis, P. M. & Brus, L. E. (1980).J. Am. Chem. Soc.102, 2786–2791.

Bruker (2002).SMART(Version 5.62),SAINT(Version 6.02) andSADABS

(Version 2.03). Bruker AXS Inc., Madison, Winsonsin, USA.

Cohen, M. D., Schmidt, G. M. J. & Flavin, S. (1964).J. Chem. Soc.pp. 2041– 2051.

Diao, C.-H., Fan, Z. & Yu, M. (2005).Acta Cryst.E61, o3271–o3272. Ho¨kelek, T., Is¸iklan, M. & Kılıc¸, Z. (2001).Acta Cryst.C57, 117–119. Huang, L. & Chen, D.-B. (2005).Acta Cryst.E61, o4169–o4170. Morishige, K. (1980).Anal. Chim. Acta,121, 301–308.

Salman, S. R., Farrant, R. D. & Lindon, J. C. (1991).Spectrosc. Lett.24, 1071– 1078.

Sheldrick, G. M. (1996).SHELXL93. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of

Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Sukuzi, Y. & Takashi, H. (1983).Chem. Pharm. Bull.31, 1751–1753. Figure 1

[image:2.610.314.561.74.184.2]

The structure of compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

[image:2.610.311.565.257.286.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o757–o758

supporting information

Acta Cryst. (2006). E62, o757–o758 [https://doi.org/10.1107/S1600536806001000]

4-{[(1

E

)-(3,5-Dichloro-2-hydroxyphenyl)methylene]amino}-1,5-dimethyl-2-phenyl-3

H

-pyrazol-3(2

H

)-one

Ding-Ben Chen and Ling Huang

4-{[(1E)-(3,5-Dichloro-2-hydroxyphenyl)methylene]amino}-1,5-dimethyl- 2-phenyl-3H-pyrazol-3(2H)-one

Crystal data

C18H15Cl2N3O2

Mr = 376.23 Monoclinic, P21/n

a = 7.0146 (6) Å b = 8.0466 (7) Å c = 30.510 (3) Å β = 90.921 (2)° V = 1721.9 (3) Å3

Z = 4 F(000) = 776

Dx = 1.451 Mg m−3

Melting point = 498.6–499.1 K Mo radiation, λ = 0.71073 Å Cell parameters from 3109 reflections θ = 1.3–25.3°

µ = 0.39 mm−1

T = 293 K Block, orange

0.22 × 0.17 × 0.16 mm

Data collection

Siemens SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 7.07 pixels mm-1

ω and φ scans

Absorption correction: empirical (using intensity measurements)

(SADABS; Sheldrick, 1996)

Tmin = 0.923, Tmax = 0.939 8818 measured reflections 3109 independent reflections 2510 reflections with I > 2σ(I) Rint = 0.031

θmax = 25.3°, θmin = 1.3°

h = −6→8 k = −9→9 l = −36→35

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.047

wR(F2) = 0.136

S = 1.14 3109 reflections 255 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.067P)2 + 0.3379P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.33 e Å−3 Δρmin = −0.26 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 1.04525 (10) 0.97152 (9) 0.59085 (2) 0.0543 (3) Cl2 0.40859 (11) 0.64875 (11) 0.63686 (2) 0.0619 (3) O1 0.3259 (3) 0.6426 (3) 0.54276 (7) 0.0511 (5) H1A 0.314 (5) 0.647 (4) 0.5164 (11) 0.064 (11)* O2 0.6109 (2) 0.8324 (3) 0.37899 (6) 0.0505 (5) N1 0.3971 (3) 0.7104 (3) 0.46139 (7) 0.0384 (5) N2 0.1761 (3) 0.6432 (3) 0.35663 (7) 0.0403 (5) N3 0.3354 (3) 0.7373 (3) 0.34370 (7) 0.0399 (5) C1 0.6055 (3) 0.7900 (3) 0.52031 (8) 0.0385 (6) C2 0.7765 (4) 0.8682 (3) 0.53280 (9) 0.0418 (6)

H2A 0.8541 0.9141 0.5115 0.050*

C3 0.8298 (4) 0.8777 (3) 0.57585 (9) 0.0418 (6) C4 0.7173 (4) 0.8118 (3) 0.60835 (9) 0.0440 (6)

H4A 0.7547 0.8191 0.6377 0.053*

C5 0.5487 (4) 0.7349 (3) 0.59637 (8) 0.0421 (6) C6 0.4894 (3) 0.7205 (3) 0.55304 (8) 0.0379 (6) C7 0.5514 (4) 0.7840 (3) 0.47445 (8) 0.0409 (6)

H7A 0.6293 0.8341 0.4539 0.049*

C8 0.3460 (3) 0.7068 (3) 0.41703 (8) 0.0359 (6) C9 0.1816 (3) 0.6376 (3) 0.40130 (8) 0.0376 (6) C10 0.4514 (3) 0.7686 (3) 0.38069 (8) 0.0383 (6) C11 0.0206 (4) 0.5663 (5) 0.42656 (11) 0.0509 (7) C12 −0.0033 (4) 0.6759 (5) 0.33272 (11) 0.0488 (7) C13 0.4074 (3) 0.7176 (3) 0.30086 (8) 0.0383 (6) C14 0.3562 (4) 0.5848 (4) 0.27448 (9) 0.0481 (7)

H14A 0.2736 0.5037 0.2848 0.058*

C15 0.4283 (4) 0.5732 (4) 0.23278 (10) 0.0608 (8)

H15A 0.3905 0.4856 0.2148 0.073*

C16 0.5546 (4) 0.6883 (5) 0.21737 (10) 0.0640 (9)

H16A 0.6030 0.6783 0.1893 0.077*

C17 0.6089 (4) 0.8186 (4) 0.24387 (9) 0.0577 (8)

H17A 0.6972 0.8954 0.2339 0.069*

C18 0.5341 (4) 0.8371 (4) 0.28513 (9) 0.0472 (7)

H18A 0.5675 0.9282 0.3024 0.057*

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o757–o758

H11B −0.015 (5) 0.462 (5) 0.4143 (12) 0.095 (13)* H11C 0.059 (5) 0.541 (4) 0.4545 (13) 0.081 (12)* H12A −0.053 (4) 0.790 (4) 0.3372 (10) 0.067 (10)* H12B −0.083 (5) 0.591 (4) 0.3370 (11) 0.071 (10)* H12C 0.014 (4) 0.670 (3) 0.3017 (11) 0.053 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0450 (4) 0.0608 (5) 0.0569 (5) −0.0141 (3) −0.0098 (3) −0.0044 (3) Cl2 0.0566 (5) 0.0841 (6) 0.0452 (4) −0.0091 (4) 0.0127 (3) 0.0115 (4) O1 0.0424 (11) 0.0652 (13) 0.0459 (13) −0.0179 (9) 0.0039 (9) −0.0012 (10) O2 0.0325 (10) 0.0753 (13) 0.0437 (11) −0.0197 (9) 0.0025 (8) −0.0043 (9) N1 0.0342 (11) 0.0429 (12) 0.0381 (12) −0.0021 (9) 0.0040 (9) −0.0048 (9) N2 0.0273 (11) 0.0515 (13) 0.0421 (13) −0.0081 (9) 0.0019 (9) −0.0025 (10) N3 0.0299 (11) 0.0502 (13) 0.0396 (12) −0.0101 (9) 0.0023 (9) −0.0019 (10) C1 0.0351 (13) 0.0402 (14) 0.0404 (14) −0.0030 (11) 0.0030 (10) −0.0019 (11) C2 0.0388 (14) 0.0444 (15) 0.0421 (15) −0.0090 (11) 0.0025 (11) 0.0014 (11) C3 0.0365 (14) 0.0392 (14) 0.0495 (16) −0.0036 (11) −0.0048 (11) −0.0042 (12) C4 0.0499 (16) 0.0450 (15) 0.0371 (14) 0.0015 (12) −0.0024 (12) −0.0039 (11) C5 0.0420 (15) 0.0438 (15) 0.0407 (15) 0.0023 (12) 0.0086 (11) 0.0019 (11) C6 0.0337 (13) 0.0381 (14) 0.0421 (15) −0.0031 (11) 0.0025 (10) −0.0021 (11) C7 0.0371 (14) 0.0459 (15) 0.0398 (14) −0.0058 (11) 0.0045 (11) −0.0007 (11) C8 0.0281 (13) 0.0411 (14) 0.0387 (14) −0.0022 (10) 0.0016 (10) −0.0023 (11) C9 0.0325 (13) 0.0386 (14) 0.0418 (15) −0.0027 (10) 0.0052 (10) −0.0038 (11) C10 0.0293 (13) 0.0461 (15) 0.0395 (14) −0.0049 (11) 0.0017 (10) −0.0060 (11) C11 0.0383 (16) 0.061 (2) 0.053 (2) −0.0129 (15) 0.0073 (14) 0.0041 (16) C12 0.0321 (15) 0.068 (2) 0.0461 (18) −0.0074 (14) −0.0039 (12) −0.0053 (15) C13 0.0290 (12) 0.0520 (15) 0.0339 (13) 0.0008 (11) −0.0009 (10) 0.0031 (11) C14 0.0429 (15) 0.0530 (17) 0.0485 (17) −0.0038 (13) 0.0046 (12) −0.0053 (13) C15 0.0602 (19) 0.075 (2) 0.0472 (18) −0.0017 (16) 0.0060 (14) −0.0159 (15) C16 0.0525 (19) 0.099 (3) 0.0409 (17) 0.0000 (18) 0.0083 (14) 0.0022 (17) C17 0.0425 (16) 0.084 (2) 0.0466 (17) −0.0107 (15) 0.0018 (13) 0.0209 (16) C18 0.0386 (15) 0.0592 (18) 0.0436 (16) −0.0069 (13) −0.0023 (12) 0.0064 (13)

Geometric parameters (Å, º)

Cl1—C3 1.744 (3) C7—H7A 0.9300

Cl2—C5 1.736 (3) C8—C9 1.361 (3)

O1—C6 1.340 (3) C8—C10 1.432 (3)

O1—H1A 0.81 (3) C9—C11 1.492 (4)

O2—C10 1.233 (3) C11—H11A 0.95 (4)

N1—C7 1.291 (3) C11—H11B 0.95 (4)

N1—C8 1.395 (3) C11—H11C 0.91 (4)

N2—C9 1.364 (3) C12—H12A 0.99 (3)

N2—N3 1.412 (3) C12—H12B 0.89 (4)

N2—C12 1.468 (3) C12—H12C 0.96 (3)

(6)

N3—C13 1.418 (3) C13—C18 1.399 (4)

C1—C2 1.402 (3) C14—C15 1.380 (4)

C1—C6 1.414 (4) C14—H14A 0.9300

C1—C7 1.445 (4) C15—C16 1.369 (5)

C2—C3 1.362 (4) C15—H15A 0.9300

C2—H2A 0.9300 C16—C17 1.375 (4)

C3—C4 1.383 (4) C16—H16A 0.9300

C4—C5 1.379 (4) C17—C18 1.380 (4)

C4—H4A 0.9300 C17—H17A 0.9300

C5—C6 1.384 (4) C18—H18A 0.9300

C6—O1—H1A 107 (2) N2—C9—C11 121.3 (2)

C7—N1—C8 120.7 (2) O2—C10—N3 123.8 (2)

C9—N2—N3 106.69 (18) O2—C10—C8 131.1 (2)

C9—N2—C12 120.9 (2) N3—C10—C8 105.1 (2)

N3—N2—C12 116.2 (2) C9—C11—H11A 109 (2)

C10—N3—N2 108.84 (19) C9—C11—H11B 109 (2) C10—N3—C13 123.4 (2) H11A—C11—H11B 102 (3) N2—N3—C13 119.54 (19) C9—C11—H11C 111 (2)

C2—C1—C6 119.0 (2) H11A—C11—H11C 120 (3)

C2—C1—C7 119.2 (2) H11B—C11—H11C 104 (3)

C6—C1—C7 121.7 (2) N2—C12—H12A 113.3 (18)

C3—C2—C1 120.5 (2) N2—C12—H12B 109 (2)

C3—C2—H2A 119.8 H12A—C12—H12B 118 (3)

C1—C2—H2A 119.8 N2—C12—H12C 111.1 (17)

C2—C3—C4 121.3 (2) H12A—C12—H12C 104 (2)

C2—C3—Cl1 120.0 (2) H12B—C12—H12C 101 (3)

C4—C3—Cl1 118.7 (2) C14—C13—C18 119.5 (2)

C5—C4—C3 118.6 (2) C14—C13—N3 122.0 (2)

C5—C4—H4A 120.7 C18—C13—N3 118.5 (2)

C3—C4—H4A 120.7 C15—C14—C13 119.6 (3)

C4—C5—C6 122.3 (2) C15—C14—H14A 120.2

C4—C5—Cl2 118.9 (2) C13—C14—H14A 120.2

C6—C5—Cl2 118.8 (2) C16—C15—C14 121.3 (3)

O1—C6—C5 120.4 (2) C16—C15—H15A 119.3

O1—C6—C1 121.3 (2) C14—C15—H15A 119.3

C5—C6—C1 118.3 (2) C15—C16—C17 119.2 (3)

N1—C7—C1 121.3 (2) C15—C16—H16A 120.4

N1—C7—H7A 119.3 C17—C16—H16A 120.4

C1—C7—H7A 119.3 C16—C17—C18 120.9 (3)

C9—C8—N1 123.6 (2) C16—C17—H17A 119.6

C9—C8—C10 108.3 (2) C18—C17—H17A 119.6

N1—C8—C10 128.0 (2) C17—C18—C13 119.5 (3)

C8—C9—N2 110.4 (2) C17—C18—H18A 120.3

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, o757–o758

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

Figure

Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical