• No results found

Benzoyl­methyl­tri­phenyl­phospho­nium hydrogen maleate: supramolecular layer formation due to C—H⋯O interactions

N/A
N/A
Protected

Academic year: 2020

Share "Benzoyl­methyl­tri­phenyl­phospho­nium hydrogen maleate: supramolecular layer formation due to C—H⋯O interactions"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o162

Mahimaidoss Baby Mariyatraet al. C26H22OP+C4H3O4ÿ DOI: 10.1107/S1600536803029404 Acta Cryst.(2004). E60, o162±o164

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Benzoylmethyltriphenylphosphonium

hydrogen maleate: supramolecular layer

formation due to CÐH

O interactions

Mahimaidoss Baby Mariyatra,a

Elinor C. Spencer,b

Krishanaswamy

Panchanatheswarana* and

Judith A. K. Howardb

aDepartment of Chemistry, Bharathidasan

University, Tiruchirappalli 620 024, Tamil Nadu, India, andbDepartment of Chemistry,

Durham University, Durham DH1 3LE, England Correspondence e-mail:

panch_45@yahoo.co.in

Key indicators

Single-crystal X-ray study

T= 120 K

Mean(C±C) = 0.003 AÊ

Rfactor = 0.041

wRfactor = 0.106

Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The molecule of the title salt, C26H22OP+.C4H3O4ÿ, consists of

a benzoylmethyltriphenylphosphonium cation (HBPPY) and

a hydrogen maleate anion. Owing to a strong OÐH O

intraionic hydrogen bond, each hydrogen maleate ion forms a ring, described by the graph-set notation S11(7). Several CÐ

H O interactions are present between the cations and

anions and contribute to the stabilization of the crystal structure.

Comment

Resonance-stabilized ketophosphorus ylides containing basic carbon and oxygen sites undergo C-protonation readily with mineral acids (Antipin & Struchkov, 1984; Baby Mariyatraet

al., 2002a). The proton af®nity values of

benzoylmethyl-enetriphenylphosphorane (BPPY) have been determined using PM3 calculations and reveal that C-protonation is energetically more favourable than O-protonation by only

13 kJ molÿ1 (Laavanya, 2002). By varying the anionic

component of this salt we have attempted to obtain the O-protonated form of the benzoylmethyltriphenylphospho-nium cation. Mineral acids and some hydrated metal salts are known to C-protonate the ylide, BPPY, forming the corres-ponding phosphonium salts and the phosphonium metalates respectively (Baby Mariyatraet al., 2002a,b, 2003; Albaneseet

al., 1989). To investigate the in¯uence of some dicarboxylic

acids on the mode of protonation, the reaction of maleic acid with BPPY has been performed. The formation of benzoyl-methyltriphenylphosphonium hydrogen maleate, (I), was con®rmed by single-crystal X-ray diffraction.

The solid-state structure of the title salt, (I) (Fig. 1), comprises of benzoylmethyltriphenylphosphonium cations and hydrogen maleate anions. The presence of COOH and

COOÿgroups in the hydrogen maleate ion is indicated by a

pair of CÐO bond lengths (C27ÐO2 and C27ÐO3) which differ by 0.078 (2) AÊ and by the corresponding bond lengths at C30 with a difference of 0.055 (2) AÊ (Table 1). The stability of the hydrogen maleate ion is ascribed to the presence of a

strong O2ÐH1 O5 hydrogen bond (Table 2). The location

of two H atoms, H8A and H8B, and the angle H8AÐC8Ð

H8Bof 106.4 (16)con®rms C8 as the site of protonation. The

P1ÐC8, C7ÐO1 and C8ÐC7 distances of 1.8020 (16),

(2)

1.2198 (19) and 1.516 (2) AÊ, respectively, are comparable with those of the previously reported phosphonium salts (Baby

Mariyatraet al., 2002a,b, 2003). The O1ÐC7ÐC8ÐP1 torsion

angle ofÿ11.78 (19)shows the near-coplanarity of the P and

O centres.

In the crystal structure, the phosphonium cations are

interlinked through CÐH O interactions between one of

the methylene H atoms and the benzoyl O atom of the

neighbouring phosphonium cation at (xÿ1

2, y, 12ÿz). The

HBPPY cations and the hydrogen maleate anions are

connected through CÐH O interactions, forming

close-packed zigzag layers in thebcplane (Table 2 and Fig. 2). Both

the methylene H8A and H8B atoms are involved in the

interionic CÐH O interactions (Fig. 3). Atom H8Bforms a

bifurcated hydrogen bond with O4 and O5 of the hydro-genmaleate ion at (1ÿx,ÿy, 1ÿz). A CÐH interaction

of 2.79 (2) AÊ between H25 and Cg1(ÿx, 1ÿy, ÿz) also

contributes to the intermolecular interactions,Cg1 being the

centroid of the aromatic ring of the benzoyl group (C1±C6).

Experimental

The title compound, (I), was prepared by warming BPPY (0.40 g, 1.05 mmol) and maleic acid (0.12 g, 1.03 mmol) in methanol. Diffraction-quality crystals were obtained by slow evaporation of the solvent.

Crystal data

C26H22OP+C4H3O4ÿ

Mr= 496.47

Orthorhombic,Pbca a= 10.5582 (5) AÊ b= 19.5961 (8) AÊ c= 24.0030 (11) AÊ V= 4966.2 (4) AÊ3

Z= 8

Dx= 1.328 Mg mÿ3

MoKradiation Cell parameters from 973

re¯ections = 2.2±27.0 = 0.15 mmÿ1

T= 120 (2) K Block, colourless 0.340.290.17 mm

Data collection

Bruker SMART 6K CCD area-detector diffractometer !scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1998a) Tmin= 0.820,Tmax= 0.975

36772 measured re¯ections

5704 independent re¯ections 4255 re¯ections withI> 2(I) Rint= 0.051

max= 27.5

h=ÿ13!11 k=ÿ25!23 l=ÿ31!30

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.041

wR(F2) = 0.106

S= 1.01 5704 re¯ections 425 parameters

All H-atom parameters re®ned

w= 1/[2(F

o2) + (0.0326P)2

+ 2.7423P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.34 e AÊÿ3

min=ÿ0.26 e AÊÿ3

Acta Cryst.(2004). E60, o162±o164 Mahimaidoss Baby Mariyatraet al. C26H22OP+C4H3O4ÿ

o163

organic papers

Figure 2

The crystal structure of (I), projected along theaaxis.

Figure 3

Diagram showing the intermolecular interactions in the structure of (I). [Symmetry codes: (i)3

2ÿx,ÿy,12+z; (ii) 1ÿx, yÿ12,32ÿz; (iii)xÿ12,y, 3

2ÿz; (iv) 1ÿx,ÿy, 1ÿz; (v)xÿ12,12ÿy, 1ÿz.] Figure 1

(3)

organic papers

o164

Mahimaidoss Baby Mariyatraet al. C26H22OP+C4H3O4ÿ Acta Cryst.(2004). E60, o162±o164

Table 1

Selected geometric parameters (AÊ,).

P1ÐC8 1.8020 (16) C7ÐO1 1.2198 (19) C7ÐC8 1.516 (2) C27ÐO3 1.221 (2)

C27ÐO2 1.299 (2) C30ÐO4 1.233 (2) C30ÐO5 1.288 (2)

C7ÐC8ÐP1 112.26 (11) O3ÐC27ÐO2 121.51 (19) O3ÐC27ÐC28 119.36 (17) O2ÐC27ÐC28 119.13 (17)

O4ÐC30ÐO5 122.85 (17) O4ÐC30ÐC29 118.13 (17) O5ÐC30ÐC29 119.02 (16)

O1ÐC7ÐC8ÐP1 ÿ11.78 (19) C27ÐC28ÐC29ÐC30 2.7 (3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C3ÐH3 O2i 0.94 (2) 2.44 (2) 3.243 (2) 143.0 (16)

C4ÐH4 O3ii 0.98 (2) 2.36 (2) 3.277 (2) 156.8 (16)

C8ÐH8A O1iii 0.984 (19) 2.397 (19) 3.371 (2) 170.3 (15)

C8ÐH8B O4iv 1.00 (2) 2.42 (2) 3.184 (2) 132.9 (16)

C8ÐH8B O5iv 1.00 (2) 2.28 (2) 3.270 (2) 171.0 (17)

C26ÐH26 O4iv 0.98 (2) 2.494 (19) 3.267 (2) 135.4 (15)

C19ÐH19 O4v 0.93 (2) 2.49 (2) 3.210 (2) 134.8 (19)

C26ÐH26 O1 0.98 (2) 2.47 (2) 3.042 (2) 117.1 (14) O2ÐH1 O5 1.07 (3) 1.35 (3) 2.4197 (19) 176 (3) Symmetry codes: (i) 3

2ÿx;ÿy;21‡z; (ii) 1ÿx;yÿ21;32ÿz; (iii) xÿ12;y;32ÿz; (iv)

1ÿx;ÿy;1ÿz; (v)xÿ1

2;12ÿy;1ÿz.

All H atoms were located in difference Fourier maps, and their positional andUisoparameters were re®ned. The CÐH bond lengths

are in the range 0.92 (2)±1.00 (2) AÊ.

Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure:SHELXTL(Sheldrick, 1998b); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

ECS thanks the EPSRC for support.

References

Albanese, J. A., Staley, D. L., Rheingold, A. L. & Burmeister, J. L. (1989).Acta Cryst.C45, 1128±1131.

Antipin, M. Yu. & Struchkov, Yu. T. (1984).Zh. Strukt. Khim.25, 122±131. Baby Mariyatra, M., Panchanatheswaran, K. & Goeta, A. E. (2002a).Acta

Cryst.E58, o807±o809.

Baby Mariyatra, M., Panchanatheswaran, K. & Goeta, A. E. (2002b).Acta Cryst.E58, m694±m696.

Baby Mariyatra, M., Panchanatheswaran, K. & Goeta, A. E. (2003).Acta Cryst.E59, o255±o257.

Bruker (1998).SMART-NTandSAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Laavanya, P. (2002). PhD Thesis, Bharathidasan University, India. Sheldrick, G. M. (1998a).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1998b).SHELXTL.Bruker AXS Inc., Madison, Wisconsin,

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, o162–o164

supporting information

Acta Cryst. (2004). E60, o162–o164 [https://doi.org/10.1107/S1600536803029404]

Benzoylmethyltriphenylphosphonium hydrogen maleate: supramolecular layer

formation due to C

H

···

O interactions

Mahimaidoss Baby Mariyatra, Elinor C. Spencer, Krishanaswamy Panchanatheswaran and Judith

A. K. Howard

Benzoylmethyltriphenylphosphonium hydrogenmaleate

Crystal data

C26H22OP+·C4H3O4− Mr = 496.47

Orthorhombic, Pbca Hall symbol: -P 2ac 2ab a = 10.5582 (5) Å b = 19.5961 (8) Å c = 24.0030 (11) Å V = 4966.2 (4) Å3 Z = 8

F(000) = 2080

Dx = 1.328 Mg m−3 Melting point: 413 K

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 973 reflections θ = 2.3–27.0°

µ = 0.15 mm−1 T = 120 K Block, colourless 0.34 × 0.29 × 0.17 mm

Data collection

Bruker SMART CCD 6K area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8 pixels mm-1 ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1998) Tmin = 0.820, Tmax = 0.975

36772 measured reflections 5704 independent reflections 4255 reflections with I > 2σ(I) Rint = 0.051

θmax = 27.5°, θmin = 1.7° h = −13→11

k = −25→23 l = −31→30

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.041 wR(F2) = 0.106 S = 1.01 5704 reflections 425 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map All H-atom parameters refined

w = 1/[σ2(F

o2) + (0.0326P)2 + 2.7423P] where P = (Fo2 + 2Fc2)/3

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, o162–o164 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

P1 0.07926 (4) 0.08182 (2) 0.668013 (17) 0.02209 (11)

C1 0.12537 (15) −0.05703 (8) 0.79639 (7) 0.0244 (3)

C2 0.20776 (17) −0.05985 (10) 0.84150 (8) 0.0346 (4)

H2 0.277 (2) −0.0297 (11) 0.8435 (9) 0.051 (6)*

C3 0.18939 (18) −0.10682 (11) 0.88364 (8) 0.0387 (4)

H3 0.246 (2) −0.1095 (10) 0.9141 (9) 0.041 (6)*

C4 0.08858 (19) −0.15212 (9) 0.88077 (8) 0.0367 (4)

H4 0.0750 (18) −0.1864 (9) 0.9096 (8) 0.034 (5)*

C5 0.0062 (2) −0.14953 (10) 0.83594 (8) 0.0382 (4)

H5 −0.067 (2) −0.1793 (11) 0.8332 (10) 0.052 (6)*

C6 0.02354 (17) −0.10196 (9) 0.79383 (8) 0.0316 (4)

H6 −0.0353 (18) −0.1012 (9) 0.7623 (8) 0.032 (5)*

C7 0.14983 (14) −0.00508 (8) 0.75298 (7) 0.0233 (3)

C8 0.05025 (15) 0.00587 (8) 0.70838 (7) 0.0225 (3)

H8A −0.0353 (18) 0.0105 (9) 0.7243 (8) 0.030 (5)*

H8B 0.047 (2) −0.0345 (11) 0.6831 (9) 0.046 (6)*

C9 −0.05591 (15) 0.09462 (8) 0.62374 (7) 0.0272 (4)

C10 −0.0781 (2) 0.04718 (10) 0.58145 (8) 0.0390 (4)

H10 −0.023 (2) 0.0102 (11) 0.5773 (9) 0.043 (6)*

C11 −0.1790 (2) 0.05661 (12) 0.54539 (10) 0.0482 (5)

H11 −0.192 (2) 0.0248 (12) 0.5178 (10) 0.053 (7)*

C12 −0.25651 (19) 0.11300 (12) 0.55126 (9) 0.0484 (6)

H12 −0.325 (2) 0.1194 (11) 0.5241 (10) 0.050 (6)*

C13 −0.2350 (2) 0.15959 (13) 0.59294 (10) 0.0508 (6)

H13 −0.290 (2) 0.1981 (12) 0.5972 (11) 0.065 (7)*

C14 −0.13463 (18) 0.15106 (11) 0.62964 (8) 0.0386 (4)

H14 −0.119 (2) 0.1856 (12) 0.6584 (10) 0.055 (7)*

C15 0.09654 (15) 0.15199 (8) 0.71576 (7) 0.0259 (3)

C16 0.01554 (18) 0.15627 (10) 0.76133 (9) 0.0378 (4)

H16 −0.051 (2) 0.1243 (10) 0.7644 (9) 0.044 (6)*

C17 0.03165 (19) 0.20852 (11) 0.79980 (10) 0.0444 (5)

H17 −0.023 (2) 0.2102 (12) 0.8326 (11) 0.061 (7)*

C18 0.12595 (19) 0.25625 (10) 0.79270 (9) 0.0388 (4)

H18 0.1354 (19) 0.2917 (10) 0.8194 (9) 0.041 (6)*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, o162–o164

H19 0.269 (2) 0.2850 (11) 0.7412 (10) 0.056 (7)*

C20 0.19149 (17) 0.20035 (9) 0.70861 (8) 0.0311 (4)

H20 0.249 (2) 0.1979 (10) 0.6772 (9) 0.036 (5)*

C21 0.21235 (14) 0.07272 (8) 0.62209 (7) 0.0249 (3)

C22 0.22264 (18) 0.11835 (9) 0.57764 (7) 0.0314 (4)

H22 0.1616 (19) 0.1536 (10) 0.5732 (8) 0.038 (5)*

C23 0.3218 (2) 0.11160 (9) 0.53999 (8) 0.0376 (4)

H23 0.326 (2) 0.1429 (11) 0.5081 (9) 0.048 (6)*

C24 0.40862 (18) 0.05970 (10) 0.54626 (8) 0.0379 (4)

H24 0.477 (2) 0.0556 (11) 0.5197 (10) 0.048 (6)*

C25 0.39807 (18) 0.01380 (11) 0.58970 (8) 0.0390 (4)

H25 0.458 (2) −0.0218 (11) 0.5930 (9) 0.046 (6)*

C26 0.29967 (16) 0.01984 (9) 0.62795 (8) 0.0328 (4)

H26 0.2923 (18) −0.0142 (10) 0.6578 (8) 0.034 (5)*

C27 1.00604 (18) 0.21784 (9) 0.48101 (8) 0.0376 (4)

C28 0.87176 (18) 0.21626 (9) 0.46199 (8) 0.0326 (4)

H28 0.8221 (18) 0.2422 (10) 0.4850 (9) 0.038 (5)*

C29 0.81817 (18) 0.18673 (9) 0.41798 (8) 0.0325 (4)

H29 0.729 (2) 0.1930 (10) 0.4135 (9) 0.042 (6)*

C30 0.87435 (17) 0.14243 (9) 0.37351 (8) 0.0314 (4)

O1 0.24667 (11) 0.02886 (6) 0.75232 (5) 0.0298 (3)

O2 1.08911 (13) 0.18012 (8) 0.45561 (7) 0.0507 (4)

H1 1.043 (3) 0.1521 (16) 0.4232 (14) 0.097 (10)*

O3 1.03557 (14) 0.25455 (8) 0.51998 (7) 0.0559 (4)

O4 0.80859 (13) 0.12865 (7) 0.33260 (6) 0.0406 (3)

O5 0.98781 (12) 0.11955 (7) 0.37990 (6) 0.0417 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

P1 0.01906 (19) 0.0239 (2) 0.0233 (2) 0.00029 (15) −0.00039 (15) 0.00196 (16)

C1 0.0225 (8) 0.0283 (8) 0.0222 (8) 0.0032 (6) 0.0021 (6) 0.0011 (6)

C2 0.0220 (8) 0.0507 (11) 0.0312 (10) −0.0017 (8) −0.0007 (7) 0.0101 (8)

C3 0.0275 (9) 0.0593 (12) 0.0293 (10) 0.0064 (8) −0.0013 (8) 0.0140 (9)

C4 0.0443 (11) 0.0348 (9) 0.0308 (10) 0.0081 (8) 0.0082 (8) 0.0100 (8)

C5 0.0470 (11) 0.0340 (9) 0.0336 (10) −0.0104 (8) 0.0032 (9) 0.0030 (8)

C6 0.0349 (10) 0.0330 (9) 0.0268 (9) −0.0054 (7) −0.0026 (7) 0.0011 (7)

C7 0.0210 (8) 0.0266 (8) 0.0225 (8) 0.0026 (6) 0.0010 (6) −0.0001 (6)

C8 0.0214 (8) 0.0247 (8) 0.0215 (8) −0.0005 (6) −0.0003 (6) 0.0026 (6)

C9 0.0217 (8) 0.0327 (8) 0.0271 (9) −0.0035 (6) −0.0025 (6) 0.0081 (7)

C10 0.0409 (11) 0.0348 (10) 0.0413 (11) −0.0043 (8) −0.0135 (9) 0.0052 (8)

C11 0.0517 (13) 0.0474 (12) 0.0453 (13) −0.0188 (10) −0.0207 (10) 0.0093 (10)

C12 0.0281 (10) 0.0718 (15) 0.0453 (13) −0.0107 (10) −0.0102 (9) 0.0245 (11)

C13 0.0311 (11) 0.0746 (15) 0.0465 (13) 0.0174 (11) −0.0031 (9) 0.0132 (11)

C14 0.0308 (10) 0.0502 (11) 0.0347 (10) 0.0111 (8) −0.0017 (8) 0.0032 (9)

C15 0.0234 (8) 0.0247 (8) 0.0298 (9) 0.0038 (6) −0.0023 (6) −0.0001 (6)

C16 0.0277 (9) 0.0428 (10) 0.0430 (11) −0.0047 (8) 0.0067 (8) −0.0121 (9)

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, o162–o164

C18 0.0402 (11) 0.0329 (9) 0.0432 (11) 0.0053 (8) −0.0106 (9) −0.0099 (9)

C19 0.0431 (11) 0.0286 (9) 0.0411 (11) −0.0060 (8) −0.0111 (9) 0.0033 (8)

C20 0.0304 (9) 0.0316 (9) 0.0313 (10) −0.0016 (7) −0.0034 (7) 0.0043 (7)

C21 0.0228 (8) 0.0290 (8) 0.0229 (8) −0.0032 (6) 0.0015 (6) −0.0007 (6)

C22 0.0396 (10) 0.0276 (8) 0.0270 (9) −0.0007 (7) 0.0025 (7) 0.0010 (7)

C23 0.0525 (12) 0.0304 (9) 0.0298 (10) −0.0083 (8) 0.0121 (8) −0.0004 (8)

C24 0.0358 (10) 0.0434 (10) 0.0344 (10) −0.0098 (8) 0.0135 (8) −0.0096 (8)

C25 0.0288 (10) 0.0477 (11) 0.0405 (11) 0.0071 (8) 0.0049 (8) −0.0027 (9)

C26 0.0275 (9) 0.0381 (10) 0.0328 (10) 0.0054 (7) 0.0034 (7) 0.0046 (8)

C27 0.0376 (10) 0.0373 (10) 0.0378 (10) 0.0019 (8) 0.0044 (8) −0.0075 (8)

C28 0.0341 (9) 0.0279 (9) 0.0358 (10) 0.0047 (7) 0.0089 (8) −0.0015 (7)

C29 0.0293 (9) 0.0313 (9) 0.0369 (10) 0.0054 (7) 0.0071 (7) 0.0024 (7)

C30 0.0352 (9) 0.0275 (8) 0.0316 (10) 0.0017 (7) 0.0051 (8) 0.0033 (7)

O1 0.0219 (6) 0.0354 (6) 0.0320 (6) −0.0043 (5) −0.0018 (5) 0.0051 (5)

O2 0.0348 (8) 0.0650 (10) 0.0525 (9) 0.0128 (7) −0.0034 (6) −0.0270 (8)

O3 0.0452 (9) 0.0655 (10) 0.0571 (10) 0.0014 (7) 0.0001 (7) −0.0298 (8)

O4 0.0445 (8) 0.0421 (7) 0.0353 (8) 0.0059 (6) −0.0030 (6) −0.0025 (6)

O5 0.0350 (7) 0.0455 (8) 0.0446 (8) 0.0121 (6) −0.0007 (6) −0.0152 (6)

Geometric parameters (Å, º)

P1—C21 1.7949 (16) C15—C16 1.391 (3)

P1—C9 1.7970 (16) C16—C17 1.389 (3)

P1—C15 1.7993 (17) C16—H16 0.95 (2)

P1—C8 1.8020 (16) C17—C18 1.377 (3)

C1—C2 1.390 (2) C17—H17 0.98 (3)

C1—C6 1.391 (2) C18—C19 1.375 (3)

C1—C7 1.480 (2) C18—H18 0.95 (2)

C2—C3 1.381 (3) C19—C20 1.394 (3)

C2—H2 0.94 (2) C19—H19 0.93 (2)

C3—C4 1.388 (3) C20—H20 0.97 (2)

C3—H3 0.94 (2) C21—C26 1.394 (2)

C4—C5 1.385 (3) C21—C22 1.396 (2)

C4—H4 0.98 (2) C22—C23 1.389 (3)

C5—C6 1.387 (3) C22—H22 0.95 (2)

C5—H5 0.97 (2) C23—C24 1.378 (3)

C6—H6 0.98 (2) C23—H23 0.98 (2)

C7—O1 1.2198 (19) C24—C25 1.382 (3)

C7—C8 1.516 (2) C24—H24 0.96 (2)

C8—H8A 0.984 (19) C25—C26 1.391 (3)

C8—H8B 1.00 (2) C25—H25 0.95 (2)

C9—C14 1.391 (3) C26—H26 0.98 (2)

C9—C10 1.396 (3) C27—O3 1.221 (2)

C10—C11 1.385 (3) C27—O2 1.299 (2)

C10—H10 0.93 (2) C27—C28 1.490 (3)

C11—C12 1.382 (3) C28—C29 1.331 (3)

C11—H11 0.92 (2) C28—H28 0.92 (2)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, o162–o164

C12—H12 0.98 (2) C29—H29 0.96 (2)

C13—C14 1.388 (3) C30—O4 1.233 (2)

C13—H13 0.96 (2) C30—O5 1.288 (2)

C14—H14 0.98 (2) O2—H1 1.07 (3)

C15—C20 1.390 (2)

C21—P1—C9 105.81 (8) C9—C14—H14 121.4 (14)

C21—P1—C15 112.81 (8) C20—C15—C16 119.96 (16)

C9—P1—C15 110.52 (8) C20—C15—P1 121.03 (13)

C21—P1—C8 112.41 (8) C16—C15—P1 118.98 (13)

C9—P1—C8 107.36 (7) C17—C16—C15 119.46 (18)

C15—P1—C8 107.81 (8) C17—C16—H16 121.8 (13)

C2—C1—C6 119.54 (16) C15—C16—H16 118.7 (13)

C2—C1—C7 117.82 (15) C18—C17—C16 120.46 (19)

C6—C1—C7 122.64 (15) C18—C17—H17 120.3 (14)

C3—C2—C1 120.60 (18) C16—C17—H17 119.2 (14)

C3—C2—H2 119.4 (14) C19—C18—C17 120.33 (18)

C1—C2—H2 120.0 (14) C19—C18—H18 120.4 (13)

C2—C3—C4 119.84 (18) C17—C18—H18 119.3 (13)

C2—C3—H3 121.1 (13) C18—C19—C20 120.07 (18)

C4—C3—H3 119.1 (13) C18—C19—H19 122.0 (14)

C5—C4—C3 119.81 (17) C20—C19—H19 117.9 (15)

C5—C4—H4 119.0 (12) C15—C20—C19 119.71 (18)

C3—C4—H4 121.2 (12) C15—C20—H20 120.8 (12)

C4—C5—C6 120.52 (18) C19—C20—H20 119.5 (12)

C4—C5—H5 122.0 (14) C26—C21—C22 120.11 (16)

C6—C5—H5 117.4 (14) C26—C21—P1 121.98 (13)

C5—C6—C1 119.69 (17) C22—C21—P1 117.81 (13)

C5—C6—H6 119.3 (11) C23—C22—C21 119.65 (17)

C1—C6—H6 121.0 (11) C23—C22—H22 120.4 (12)

O1—C7—C1 122.05 (14) C21—C22—H22 119.9 (12)

O1—C7—C8 119.67 (14) C24—C23—C22 120.05 (18)

C1—C7—C8 118.28 (13) C24—C23—H23 121.0 (13)

C7—C8—P1 112.26 (11) C22—C23—H23 118.9 (13)

C7—C8—H8A 112.1 (11) C23—C24—C25 120.63 (17)

P1—C8—H8A 106.7 (10) C23—C24—H24 119.1 (13)

C7—C8—H8B 109.8 (12) C25—C24—H24 120.3 (13)

P1—C8—H8B 109.4 (12) C24—C25—C26 120.18 (18)

H8A—C8—H8B 106.4 (16) C24—C25—H25 119.3 (13)

C14—C9—C10 120.22 (17) C26—C25—H25 120.5 (13)

C14—C9—P1 121.70 (14) C25—C26—C21 119.37 (17)

C10—C9—P1 118.05 (13) C25—C26—H26 118.9 (11)

C11—C10—C9 119.6 (2) C21—C26—H26 121.7 (11)

C11—C10—H10 120.9 (13) O3—C27—O2 121.51 (19)

C9—C10—H10 119.5 (13) O3—C27—C28 119.36 (17)

C12—C11—C10 119.9 (2) O2—C27—C28 119.13 (17)

C12—C11—H11 122.0 (14) C29—C28—C27 131.07 (17)

(9)

supporting information

sup-6

Acta Cryst. (2004). E60, o162–o164

C13—C12—C11 120.54 (19) C27—C28—H28 110.4 (12)

C13—C12—H12 121.4 (13) C28—C29—C30 130.47 (18)

C11—C12—H12 118.0 (13) C28—C29—H29 116.8 (12)

C12—C13—C14 120.5 (2) C30—C29—H29 112.7 (12)

C12—C13—H13 120.1 (15) O4—C30—O5 122.85 (17)

C14—C13—H13 119.3 (16) O4—C30—C29 118.13 (17)

C13—C14—C9 119.2 (2) O5—C30—C29 119.02 (16)

C13—C14—H14 119.4 (14) C27—O2—H1 109.1 (17)

C6—C1—C2—C3 0.1 (3) C9—P1—C15—C20 −106.19 (14)

C7—C1—C2—C3 179.44 (17) C8—P1—C15—C20 136.75 (14)

C1—C2—C3—C4 0.6 (3) C21—P1—C15—C16 −166.01 (14)

C2—C3—C4—C5 −0.6 (3) C9—P1—C15—C16 75.76 (16)

C3—C4—C5—C6 0.0 (3) C8—P1—C15—C16 −41.29 (16)

C4—C5—C6—C1 0.7 (3) C20—C15—C16—C17 −0.9 (3)

C2—C1—C6—C5 −0.7 (3) P1—C15—C16—C17 177.15 (16)

C7—C1—C6—C5 179.92 (16) C15—C16—C17—C18 0.8 (3)

C2—C1—C7—O1 9.0 (2) C16—C17—C18—C19 −0.4 (3)

C6—C1—C7—O1 −171.66 (16) C17—C18—C19—C20 0.2 (3)

C2—C1—C7—C8 −170.76 (15) C16—C15—C20—C19 0.7 (3)

C6—C1—C7—C8 8.6 (2) P1—C15—C20—C19 −177.30 (14)

O1—C7—C8—P1 −11.78 (19) C18—C19—C20—C15 −0.4 (3)

C1—C7—C8—P1 167.98 (11) C9—P1—C21—C26 −131.84 (15)

C21—P1—C8—C7 71.77 (13) C15—P1—C21—C26 107.21 (15)

C9—P1—C8—C7 −172.28 (11) C8—P1—C21—C26 −14.96 (17)

C15—P1—C8—C7 −53.19 (13) C9—P1—C21—C22 44.54 (15)

C21—P1—C9—C14 −124.73 (15) C15—P1—C21—C22 −76.41 (15)

C15—P1—C9—C14 −2.30 (17) C8—P1—C21—C22 161.42 (13)

C8—P1—C9—C14 115.04 (15) C26—C21—C22—C23 −1.3 (3)

C21—P1—C9—C10 53.15 (16) P1—C21—C22—C23 −177.76 (14)

C15—P1—C9—C10 175.57 (14) C21—C22—C23—C24 0.6 (3)

C8—P1—C9—C10 −67.09 (16) C22—C23—C24—C25 0.2 (3)

C14—C9—C10—C11 0.0 (3) C23—C24—C25—C26 −0.4 (3)

P1—C9—C10—C11 −177.92 (16) C24—C25—C26—C21 −0.2 (3)

C9—C10—C11—C12 0.4 (3) C22—C21—C26—C25 1.1 (3)

C10—C11—C12—C13 −0.6 (3) P1—C21—C26—C25 177.40 (14)

C11—C12—C13—C14 0.4 (3) O3—C27—C28—C29 172.3 (2)

C12—C13—C14—C9 −0.1 (3) O2—C27—C28—C29 −7.6 (3)

C10—C9—C14—C13 −0.1 (3) C27—C28—C29—C30 2.7 (3)

P1—C9—C14—C13 177.68 (16) C28—C29—C30—O4 −170.25 (19)

C21—P1—C15—C20 12.04 (16) C28—C29—C30—O5 10.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C3—H3···O2i 0.94 (2) 2.44 (2) 3.243 (2) 143.0 (16)

C4—H4···O3ii 0.98 (2) 2.36 (2) 3.277 (2) 156.8 (16)

(10)

supporting information

sup-7

Acta Cryst. (2004). E60, o162–o164

C8—H8B···O4iv 1.00 (2) 2.42 (2) 3.184 (2) 132.9 (16)

C8—H8B···O5iv 1.00 (2) 2.28 (2) 3.270 (2) 171.0 (17)

C26—H26···O4iv 0.98 (2) 2.494 (19) 3.267 (2) 135.4 (15)

C19—H19···O4v 0.93 (2) 2.49 (2) 3.210 (2) 134.8 (19)

C26—H26···O1 0.98 (2) 2.47 (2) 3.042 (2) 117.1 (14)

O2—H1···O5 1.07 (3) 1.35 (3) 2.4197 (19) 176 (3)

References

Related documents

We stemmed the reference translations, pre- dicted the inflection for each stem, and measured the accuracy of prediction, using a set of sentences that were not part of the

These dynamic responses also help to understand why, under recursive preferences, volatility shocks induce consumption fluctuations that are perfectly negatively

Next we review the well-known Rényi’s axioms for symmetric measures and show how to modify the conditions for nonsymmetric measures. Rényi’s condition b) specifies symmetry but is

3. Bankers pays the interest rate for ZMDs that households deposit at time t − 1. The loan market between bankers and households open... The final good market and housing market

The present study was conducted to quantify and compare reflectivity (gloss or shine) of tooth surfaces treated with different cleanup protocols in which tungsten carbide

and migration rates on the age-sex structure of the population in the regions of

in langerhans cells of the epithelium, fibroblasts and endothelial cells of the connective tissue (arrows denote positive staining in Langerhans cells, fibroblasts and endothelial

In order to increase the robustness of our study we employ two empirical frameworks for our analysis; the first being the linear cointegration framework of Engle and