metal-organic papers
m8
Filipe A. Almeida Pazet al. C20H24CoN4O4C12H6O42H2O DOI: 10.1107/S1600536802022122 Acta Cryst.(2003). E59, m8±m10 Acta Crystallographica Section EStructure Reports Online
ISSN 1600-5368
Bis(4,4
000-bipyridine)tetraaquacobalt(II)
2,6-naphathalenedicarboxylate dihydrate
Filipe A. Almeida Paz,
Yaroslav Z. Khimyak and Jacek Klinowski*
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
Correspondence e-mail: jk18@cam.ac.uk
Key indicators
Single-crystal X-ray study T= 180 K
Mean(C±C) = 0.005 AÊ Rfactor = 0.046 wRfactor = 0.121
Data-to-parameter ratio = 11.0
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved
The title compound, [Co(C10H8N2)2(H2O)4](C12H6O4)2H2O
(where C10H8N2 is 4,40-bipyridine, BPY, and C12H6O4 is
2,6-naphthalenedicarboxylate, NDC2ÿ), (CUmof-6), was
synthe-sized under mild hydrothermal conditions. The structure contains [Co(BPY)2(H2O)4]2+ complex cations, which stack
along theaaxis through close face-to-face contacts. Uncoord-inated NDC2ÿ anions are strongly hydrogen bonded to the
complex cations. The Co2+cation and the centre of gravity of
NDC2ÿare located on crystallographic centres of symmetry.
Comment
The construction of inorganic±organic hybrid frameworks containing d-block transition metal ions and ligands with 4-pyridyl donor groups has developed signi®cantly in recent years (see, for example, Batten & Robson, 1998; Moulton & Zaworotko, 2001). We are interested in the synthesis of novel hybrid compounds which contain not only 4-pyridyl but also carboxylate groups in the crystal structure (Almeida Paz, Khimyaket al., 2002). Recently, we also reported a novel one-dimensional Co2+coordination polymer containing
1,2-bis(4-pyridyl)ethane (BPE), CUmof-4 (Almeida Paz, Bond et al., 2002).
Just as for CUmof-4, the title compound, [Co(BPY)2
-(H2O)4](NDC).2H2O, CUmof-6, (I), was synthesized under
mild hydrothermal conditions and contains only one crystal-lographically unique Co2+ centre, occupying a centre of
symmetry in P1. The metal ion shows an almost regular octahedral chemical environment, composed of four water molecules (forming the equatorial plane) and two trans -coordinated 4-pyridyl N atoms (from BPY) at the apical positions (Table 1 and Fig. 1). Individual [Co(BPY)2(H2O)4]2+
complex cations stack in an offset manner along thea direc-tion through close BPY contacts. The average distance between adjacent aromatic rings is ca 3.5 AÊ (Fig. 2). Inter-estingly, and unlike the situation in CUmof-4, the NDC2ÿions
do not participate in these interactions. This is explained by the fact that the metal-to-metal distance imposed by a BPY spacer is not suf®cient to accommodate the NDC2ÿ anions.
This may also account for the presence of extra water of crystallization. Compound (I) can be further described by the alternation along the b direction of layers of the complex cations with layers of NDC2ÿ (Fig. 2). OÐH Oÿ and OÐ
H N hydrogen bonds between the NDC2ÿ ions and the
uncoordinated 4-pyridyl group with the water molecules give rise to a three-dimensional network (Table 2 and Fig. 3).
Experimental
All chemicals were obtained from commercial sources and were used as received. To a solution of Co(NO3)26H2O (0.243 g, Aldrich) in distilled water (6.41 g), 4,40-bipyridyl (BPY, 0.164 g, Aldrich), 2,6-naphthalenedicarboxylic acid (H2NDC, 0.218 g, Aldrich) and triethylamine (TEA, 0208 g, Avocado) were added and the mixture was stirred thoroughly for 1 h at ambient temperature. The suspen-sion, with a H2NDC:Co2+:BPY:TEA:H2O composition ratio of 1.00:1.01:1.04:2.04:353, was placed inside a Parr stainless steel Te¯on-lined reaction vessel (8 ml, 70% full). The reaction was performed under autogeneous pressure and static conditions in a pre-heated oven at 418 K for 3 h. The vessel was then cooled slowly inside the oven to 298 K at a rate of 5 K hÿ1before opening. The crystalline product was collected by vacuum ®ltration and crystals of (I) were manually separated and preserved in a portion of the reaction vessel solution.
Crystal data
C20H24CoN4O4C12H6O42H2O
Mr= 693.56
Triclinic,P1 a= 6.9856 (5) AÊ b= 9.2926 (11) AÊ c= 12.3538 (14) AÊ = 78.585 (5)
= 84.015 (7)
= 73.740 (7)
V= 753.62 (13) AÊ3
Z= 1
Dx= 1.528 Mg mÿ3
MoKradiation Cell parameters from 5738
re¯ections = 1.0±25.0
= 0.64 mmÿ1
T= 180 (2) K Needle, colourless 0.100.050.05 mm
Data collection
Nonius KappaCCD diffractometer Thin-slice!and'scans Absorption correction: multi-scan
(SORTAV; Blessing, 1995) Tmin= 0.839,Tmax= 0.955
5657 measured re¯ections 2574 independent re¯ections
2083 re¯ections withI> 2(I) Rint= 0.059
max= 24.9
h=ÿ7!8 k=ÿ10!10 l=ÿ13!14
Re®nement
Re®nement onF2
R[F2> 2(F2)] = 0.046
wR(F2) = 0.121
S= 1.10 2574 re¯ections 234 parameters
H atoms treated by a mixture of independent and constrained re®nement
w= 1/[2(F
o2) + (0.0493P)2
+ 0.2073P]
whereP= (Fo2+ 2Fc2)/3
(/)max= 0.009
max= 0.34 e AÊÿ3
min=ÿ0.64 e AÊÿ3
Table 1
Selected geometric parameters (AÊ,). Co1ÐO12 2.070 (2)
Co1ÐO11 2.124 (2) Co1ÐN21 2.153 (3) O12ÐCo1ÐO11 91.04 (9)
O12iÐCo1ÐO11 88.96 (9)
O12ÐCo1ÐN21 89.34 (9)
O12iÐCo1ÐN21 90.66 (9)
O11ÐCo1ÐN21 87.41 (9) O11iÐCo1ÐN21 92.59 (9) Symmetry code: (i)ÿx;ÿy;ÿz.
Acta Cryst.(2003). E59, m8±m10 Filipe A. Almeida Pazet al. C20H24CoN4O4C12H6O42H2O
m9
metal-organic papers
Figure 1
The asymmetric unit of (I), CUmof-6, represented with displacement ellipsoids at the 50% probability level and showing the labelling scheme for non-H atoms. Unlabelled ball-and-stick atoms were generated by symmetry [Symmetry codes: (for BPY)ÿx,ÿy,ÿzand (for NDC2ÿ)ÿx,
1ÿy, 1ÿz].
Figure 2
Perspective view of CUmof-6 along the adirection. Co2+ centres are represented as octahedra, BPY ligands with hollow bonds, NDC2ÿwith
®lled bonds, and water of crystallization in blue.
Figure 3
metal-organic papers
m10
Filipe A. Almeida Pazet al. C20H24CoN4O4C12H6O42H2O Acta Cryst.(2003). E59, m8±m10 Table 2Hydrogen-bonding geometry (AÊ,).
DÐH A DÐH H A D A DÐH A
O11ÐH11A O4W 0.837 (17) 1.958 (19) 2.785 (3) 169 (3) O11ÐH11B O311ii 0.835 (17) 1.920 (18) 2.754 (3) 175 (4)
O12ÐH12A O4Wiii 0.832 (17) 2.00 (2) 2.798 (3) 162 (3)
O12ÐH12B N22iv 0.829 (18) 1.951 (19) 2.772 (4) 170 (4)
O4WÐH4A O312v 0.833 (18) 1.946 (19) 2.767 (3) 169 (4)
O4WÐH4B O311 0.828 (18) 1.932 (19) 2.750 (3) 170 (4)
Symmetry codes: (ii) ÿx;1ÿy;ÿz; (iii) xÿ1;y;z; (iv) x;y;zÿ1; (v) 1ÿx;1ÿy;ÿz.
Water H atoms were located in difference Fourier maps and re®ned with a single isotropic displacement parameter common to all H atoms. OÐH and H H distances were restrained to ensure a reasonable geometry for the water molecules. H atoms bound to carbon were placed in calculated positions and allowed to ride during subsequent re®nement, withUiso(H) = 1.2Ueq(C).
Data collection:COLLECT(Nonius, 1998); cell re®nement:HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction:HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure:SIR92 (Altomare et al., 1994); program(s) used to re®ne structure: SHELXTL (Bruker, 2001);
molecular graphics: SHELXTL; software used to prepare material for publication:SHELXTL.
We thank Dr Andrew D. Bond for collecting the crystal data and solving the crystal structure. We are also grateful to the Portuguese Foundation for Science and Technology (FCT) for ®nancial support through the PhD scholarship No. SFRH/BD/ 3024/2000 (to FAAP), and to the Cambridge Oppenheimer Fund for a research fellowship (to YZK).
References
Almeida Paz, F. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002).Acta Cryst.E58, m691±m693.
Almeida Paz, F. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002).Eur. J. Inorg. Chem.pp. 2823±2828.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.
Batten, S. R. & Robson, R. (1998).Angew. Chem. Int. Ed.37, 1461±1494. Blessing, R. H. (1995).Acta Cryst.A51, 33±58.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc. Madison, Wisconsin, USA.
Moulton, B. & Zaworotko, M. J. (2001).Chem. Rev.101, 1629±1658. Nonius (1998).COLLECT. Nonius BV, Delft, The Netherlands.
supporting information
sup-1
Acta Cryst. (2003). E59, m8–m10
supporting information
Acta Cryst. (2003). E59, m8–m10 [https://doi.org/10.1107/S1600536802022122]
Bis(4,4
′
-bipyridine)tetraaquacobalt(II) 2,6-naphathalenedicarboxylate dihydrate
Filipe A. Almeida Paz, Yaroslav Z. Khimyak and Jacek Klinowski
Bis(4,4′-bipyridine)-tetraaquacobalt(II) 2,6-naphathalenedicarboxylate dihydrate
Crystal data
C20H24CoN4O4·C12H6O4·2H2O
Mr = 693.56 Triclinic, P1 a = 6.9856 (5) Å b = 9.2926 (11) Å c = 12.3538 (14) Å α = 78.585 (5)° β = 84.015 (7)° γ = 73.740 (7)° V = 753.62 (13) Å3
Z = 1 F(000) = 361 Dx = 1.528 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 5738 reflections θ = 1.0–25.0°
µ = 0.64 mm−1
T = 180 K Needle, colourless 0.10 × 0.05 × 0.05 mm
Data collection
Nonius KappaCCD diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
Thin–slice ω and φ scans
Absorption correction: multi-scan (SORTAV; Blessing, 1995) Tmin = 0.839, Tmax = 0.955
5657 measured reflections 2574 independent reflections 2083 reflections with I > 2σ(I) Rint = 0.059
θmax = 24.9°, θmin = 3.6°
h = −7→8 k = −10→10 l = −13→14
Refinement
Refinement on F2
Least-squares matrix: full R[F2 > 2σ(F2)] = 0.046
wR(F2) = 0.121
S = 1.10 2574 reflections 234 parameters 9 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(F
o2) + (0.0493P)2 + 0.2073P]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max = 0.009
Δρmax = 0.34 e Å−3
Δρmin = −0.64 e Å−3
Special details
supporting information
sup-2
Acta Cryst. (2003). E59, m8–m10
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used
only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
Co1 0.0000 0.0000 0.0000 0.0208 (2)
O11 0.0282 (3) 0.2253 (3) −0.0172 (2) 0.0274 (6)
H11A 0.140 (3) 0.243 (4) −0.022 (3) 0.043 (5)*
H11B −0.054 (4) 0.305 (3) −0.045 (3) 0.043 (5)*
O12 −0.2876 (3) 0.0816 (3) −0.05407 (19) 0.0299 (6)
H12A −0.380 (4) 0.150 (3) −0.033 (3) 0.043 (5)*
H12B −0.315 (5) 0.060 (4) −0.111 (2) 0.043 (5)*
O311 0.2499 (3) 0.5218 (3) 0.11565 (19) 0.0291 (6)
O312 0.4913 (3) 0.5177 (3) 0.22336 (18) 0.0284 (6)
N21 −0.1176 (4) 0.0191 (3) 0.1663 (2) 0.0204 (6)
N22 −0.3546 (4) 0.0322 (3) 0.7407 (2) 0.0265 (7)
C21 −0.2266 (4) 0.1472 (4) 0.2008 (3) 0.0247 (8)
H21A −0.2658 0.2373 0.1473 0.030*
C22 −0.2844 (5) 0.1540 (4) 0.3105 (3) 0.0247 (8)
H22B −0.3623 0.2473 0.3306 0.030*
C23 −0.2292 (4) 0.0252 (3) 0.3918 (3) 0.0206 (7)
C24 −0.1193 (5) −0.1075 (4) 0.3548 (3) 0.0252 (8)
H24A −0.0794 −0.1997 0.4062 0.030*
C25 −0.0687 (5) −0.1053 (4) 0.2447 (3) 0.0250 (8)
H25A 0.0059 −0.1980 0.2223 0.030*
C26 −0.2590 (5) −0.0958 (4) 0.7025 (3) 0.0292 (8)
H26A −0.2170 −0.1869 0.7547 0.035*
C27 −0.2179 (5) −0.1029 (4) 0.5913 (3) 0.0257 (8)
H27A −0.1485 −0.1969 0.5692 0.031*
C28 −0.2778 (4) 0.0269 (4) 0.5120 (3) 0.0204 (7)
C29 −0.3809 (5) 0.1597 (4) 0.5512 (3) 0.0267 (8)
H29A −0.4276 0.2518 0.5007 0.032*
C210 −0.4155 (5) 0.1574 (4) 0.6640 (3) 0.0288 (8)
H21B −0.4862 0.2495 0.6884 0.035*
C31 0.3174 (5) 0.5157 (3) 0.2074 (3) 0.0235 (7)
C32 0.1736 (4) 0.5057 (3) 0.3090 (3) 0.0214 (7)
C33 0.2309 (4) 0.5086 (3) 0.4112 (3) 0.0218 (7)
H33A 0.3627 0.5136 0.4187 0.026*
C34 0.0979 (4) 0.5043 (3) 0.5060 (3) 0.0197 (7)
C35 0.1538 (4) 0.5079 (3) 0.6127 (3) 0.0231 (7)
H35A 0.2848 0.5136 0.6217 0.028*
C36 0.0226 (4) 0.5031 (3) 0.7024 (3) 0.0228 (7)
H36A 0.0629 0.5058 0.7730 0.027*
O4W 0.3739 (3) 0.3226 (3) −0.0310 (2) 0.0286 (6)
supporting information
sup-3
Acta Cryst. (2003). E59, m8–m10
H4B 0.348 (5) 0.375 (3) 0.018 (2) 0.043 (5)*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
Co1 0.0230 (3) 0.0211 (4) 0.0169 (4) −0.0046 (2) −0.0009 (2) −0.0017 (3) O11 0.0271 (13) 0.0221 (13) 0.0323 (14) −0.0069 (10) −0.0026 (10) −0.0019 (11) O12 0.0288 (13) 0.0363 (16) 0.0228 (14) 0.0012 (10) −0.0046 (10) −0.0132 (12) O311 0.0297 (12) 0.0347 (15) 0.0214 (13) −0.0049 (10) −0.0025 (10) −0.0066 (11) O312 0.0227 (12) 0.0354 (14) 0.0246 (13) −0.0062 (10) 0.0005 (9) −0.0023 (11) N21 0.0231 (13) 0.0184 (15) 0.0194 (15) −0.0064 (11) −0.0003 (11) −0.0021 (12) N22 0.0289 (15) 0.0308 (17) 0.0214 (15) −0.0093 (12) −0.0024 (12) −0.0061 (13) C21 0.0281 (17) 0.0236 (19) 0.0197 (18) −0.0052 (14) −0.0021 (13) 0.0001 (15) C22 0.0270 (17) 0.0203 (19) 0.0242 (19) −0.0021 (13) −0.0001 (14) −0.0043 (15) C23 0.0215 (16) 0.0215 (19) 0.0218 (18) −0.0103 (13) −0.0011 (13) −0.0042 (15) C24 0.0336 (18) 0.0197 (18) 0.0191 (18) −0.0056 (14) −0.0003 (14) 0.0013 (14) C25 0.0312 (18) 0.0212 (19) 0.0199 (18) −0.0036 (14) −0.0007 (14) −0.0022 (15) C26 0.0336 (19) 0.029 (2) 0.023 (2) −0.0074 (15) −0.0033 (14) −0.0014 (16) C27 0.0287 (17) 0.0218 (19) 0.0252 (19) −0.0047 (13) −0.0011 (14) −0.0038 (15) C28 0.0216 (15) 0.0218 (18) 0.0194 (17) −0.0096 (13) −0.0013 (13) −0.0018 (14) C29 0.0333 (19) 0.020 (2) 0.0242 (19) −0.0039 (14) −0.0043 (14) −0.0022 (15) C210 0.0333 (19) 0.027 (2) 0.0247 (19) −0.0033 (15) −0.0025 (15) −0.0080 (16) C31 0.0300 (18) 0.0143 (17) 0.0228 (19) −0.0019 (13) −0.0016 (14) −0.0006 (14) C32 0.0245 (17) 0.0157 (17) 0.0232 (18) −0.0047 (13) −0.0013 (13) −0.0021 (14) C33 0.0228 (16) 0.0145 (17) 0.0257 (19) −0.0043 (12) −0.0029 (13) 0.0017 (14) C34 0.0243 (15) 0.0136 (17) 0.0206 (17) −0.0060 (12) −0.0047 (13) 0.0015 (13) C35 0.0228 (16) 0.0180 (18) 0.0289 (19) −0.0068 (13) −0.0010 (14) −0.0030 (15) C36 0.0289 (17) 0.0181 (18) 0.0198 (18) −0.0040 (13) −0.0063 (14) −0.0005 (14) O4W 0.0328 (13) 0.0295 (15) 0.0241 (14) −0.0097 (11) 0.0056 (11) −0.0076 (11)
Geometric parameters (Å, º)
Co1—O12 2.070 (2) C25—H25A 0.9500
Co1—O11 2.124 (2) C26—C27 1.385 (5)
Co1—N21 2.153 (3) C26—H26A 0.9500
O11—H11A 0.837 (17) C27—C28 1.388 (4)
O11—H11B 0.835 (17) C27—H27A 0.9500
O12—H12A 0.832 (17) C28—C29 1.394 (4)
O12—H12B 0.829 (18) C29—C210 1.386 (5)
O311—C31 1.257 (4) C29—H29A 0.9500
O312—C31 1.256 (4) C210—H21B 0.9500
N21—C25 1.340 (4) C31—C32 1.529 (4)
N21—C21 1.343 (4) C32—C33 1.371 (5)
N22—C26 1.340 (4) C32—C36i 1.419 (4)
N22—C210 1.343 (4) C33—C34 1.418 (4)
C21—C22 1.382 (4) C33—H33A 0.9500
C21—H21A 0.9500 C34—C34i 1.416 (6)
supporting information
sup-4
Acta Cryst. (2003). E59, m8–m10
C22—H22B 0.9500 C35—C36 1.365 (4)
C23—C24 1.392 (4) C35—H35A 0.9500
C23—C28 1.490 (4) C36—H36A 0.9500
C24—C25 1.368 (4) O4W—H4A 0.833 (18)
C24—H24A 0.9500 O4W—H4B 0.828 (18)
O12—Co1—O12ii 180.0 N21—C25—C24 124.2 (3)
O12—Co1—O11 91.04 (9) N21—C25—H25A 117.9
O12ii—Co1—O11 88.96 (9) C24—C25—H25A 117.9
O12—Co1—O11ii 88.96 (9) N22—C26—C27 123.7 (3)
O12ii—Co1—O11ii 91.04 (9) N22—C26—H26A 118.1
O11—Co1—O11ii 180.0 C27—C26—H26A 118.1
O12—Co1—N21 89.34 (9) C26—C27—C28 120.2 (3)
O12ii—Co1—N21 90.66 (9) C26—C27—H27A 119.9
O11—Co1—N21 87.41 (9) C28—C27—H27A 119.9
O11ii—Co1—N21 92.59 (9) C27—C28—C29 116.3 (3)
O12—Co1—N21ii 90.66 (9) C27—C28—C23 121.7 (3)
O12ii—Co1—N21ii 89.34 (9) C29—C28—C23 122.0 (3)
O11—Co1—N21ii 92.59 (9) C210—C29—C28 120.0 (3)
O11ii—Co1—N21ii 87.41 (9) C210—C29—H29A 120.0
N21—Co1—N21ii 180.00 (13) C28—C29—H29A 120.0
Co1—O11—H11A 121 (2) N22—C210—C29 123.7 (3)
Co1—O11—H11B 126 (2) N22—C210—H21B 118.2
H11A—O11—H11B 108 (2) C29—C210—H21B 118.2
Co1—O12—H12A 128 (2) O312—C31—O311 126.3 (3)
Co1—O12—H12B 120 (2) O312—C31—C32 117.0 (3)
H12A—O12—H12B 111 (2) O311—C31—C32 116.8 (3)
C25—N21—C21 116.2 (3) C33—C32—C36i 119.4 (3)
C25—N21—Co1 117.7 (2) C33—C32—C31 120.6 (3)
C21—N21—Co1 126.0 (2) C36i—C32—C31 120.0 (3)
C26—N22—C210 116.1 (3) C32—C33—C34 121.5 (3)
N21—C21—C22 123.0 (3) C32—C33—H33A 119.2
N21—C21—H21A 118.5 C34—C33—H33A 119.2
C22—C21—H21A 118.5 C34i—C34—C33 118.8 (4)
C21—C22—C23 120.5 (3) C34i—C34—C35 118.7 (3)
C21—C22—H22B 119.7 C33—C34—C35 122.5 (3)
C23—C22—H22B 119.7 C36—C35—C34 121.1 (3)
C24—C23—C22 115.9 (3) C36—C35—H35A 119.4
C24—C23—C28 121.0 (3) C34—C35—H35A 119.4
C22—C23—C28 123.1 (3) C35—C36—C32i 120.4 (3)
C25—C24—C23 120.1 (3) C35—C36—H36A 119.8
C25—C24—H24A 119.9 C32i—C36—H36A 119.8
C23—C24—H24A 119.9 H4A—O4W—H4B 110 (2)
O12—Co1—N21—C25 125.6 (2) C26—C27—C28—C23 177.5 (3)
O12ii—Co1—N21—C25 −54.4 (2) C24—C23—C28—C27 −0.7 (4)
O11—Co1—N21—C25 −143.3 (2) C22—C23—C28—C27 −179.0 (3)
supporting information
sup-5
Acta Cryst. (2003). E59, m8–m10
O12—Co1—N21—C21 −58.7 (2) C22—C23—C28—C29 −0.8 (4)
O12ii—Co1—N21—C21 121.3 (2) C27—C28—C29—C210 1.0 (4)
O11—Co1—N21—C21 32.4 (2) C23—C28—C29—C210 −177.3 (3)
O11ii—Co1—N21—C21 −147.6 (2) C26—N22—C210—C29 −1.3 (5)
C25—N21—C21—C22 1.0 (4) C28—C29—C210—N22 0.0 (5)
Co1—N21—C21—C22 −174.8 (2) O312—C31—C32—C33 4.0 (4)
N21—C21—C22—C23 0.5 (5) O311—C31—C32—C33 −175.7 (3)
C21—C22—C23—C24 −1.5 (4) O312—C31—C32—C36i −177.5 (3)
C21—C22—C23—C28 176.8 (3) O311—C31—C32—C36i 2.8 (4)
C22—C23—C24—C25 1.2 (5) C36i—C32—C33—C34 −0.5 (5)
C28—C23—C24—C25 −177.2 (3) C31—C32—C33—C34 178.0 (3)
C21—N21—C25—C24 −1.3 (5) C32—C33—C34—C34i 0.4 (5)
Co1—N21—C25—C24 174.8 (2) C32—C33—C34—C35 −179.7 (3)
C23—C24—C25—N21 0.2 (5) C34i—C34—C35—C36 0.0 (5)
C210—N22—C26—C27 1.6 (5) C33—C34—C35—C36 −179.8 (3)
N22—C26—C27—C28 −0.5 (5) C34—C35—C36—C32i 0.1 (5)
C26—C27—C28—C29 −0.8 (4)
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z.
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
O11—H11A···O4W 0.84 (2) 1.96 (2) 2.785 (3) 169 (3)
O11—H11B···O311iii 0.84 (2) 1.92 (2) 2.754 (3) 175 (4)
O12—H12A···O4Wiv 0.83 (2) 2.00 (2) 2.798 (3) 162 (3)
O12—H12B···N22v 0.83 (2) 1.95 (2) 2.772 (4) 170 (4)
O4W—H4A···O312vi 0.83 (2) 1.95 (2) 2.767 (3) 169 (4)
O4W—H4B···O311 0.83 (2) 1.93 (2) 2.750 (3) 170 (4)