• No results found

2 (2 Nitro­phenyl) 4,5 benz 1,3 oxazin 6 one

N/A
N/A
Protected

Academic year: 2020

Share "2 (2 Nitro­phenyl) 4,5 benz 1,3 oxazin 6 one"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, o1111±o1112 DOI: 10.1107/S1600536802016148 Bishwa Nath Yadavet al. C14H8N2O4

o1111

organic papers

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

2-(2-Nitrophenyl)-4,5-benz-1,3-oxazin-6-one

Bishwa Nath Yadav, Shambhu Prasad and Satya Murti Prasad*

Department of Physics, Ranchi University, Ranchi 834008, India.

Correspondence e-mail: prasadsm50@hotmail.com

Key indicators Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.003 AÊ Rfactor = 0.038 wRfactor = 0.105

Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, C14H8N2O4, the planar benzoxazinone

moiety forms a dihedral angle of 54.54 (8) with the phenyl

ring. The crystal structure is stabilized by weak CÐH O hydrogen bonds and van der Waals interactions.

Comment

The preparation of several new 2-phenyl substituted phenyl benzoxazinones and evaluation of their biological activity against some pathogenic fungi and bacteria have been reported (Kumaret al., 1977). A project has been undertaken by us to study the crystal structures of some of these benzoxazinones to establish their stereochemistry. The present paper reports the structure of the title compound, C14H8N2O4(I), a benzoxazinone derivative.

A displacement ellipsoid plot of the molecule is shown in Fig. 1. The benzoxazinone moiety is essentially planar, with O2 deviating by a maximum of 0.037 (1) AÊ, and it forms a di-hedral angle of 54.54 (8) with the phenyl ring. The nitro

group is twisted out of the phenyl ring plane by 19.63 (11).

Although there is no ÐNH or ÐOH group available in the structure to form strong hydrogen bonds, the C atoms are involved in the formation of weak CÐH O hydrogen bonds with the O atoms O3 and O4 of the nitro group (Table 2 and Fig. 2). Some other short intermolecular contacts are listed in Table 3.

Experimental

The title compound was obtained by the reaction ofo-nitrobenzoyl chloride with anthranilic acid at 273 K (Kumar et al., 1977). The precipitate was recrystallized from EtOH/H2O (4:1) as pale-yellow

crystals. Crystal data

C14H8N2O4

Mr= 268.22

Monoclinic,P21=c

a= 4.1824 (6) AÊ

b= 22.191 (2) AÊ

c= 12.767 (1) AÊ = 93.26 (1)

V= 1183.0 (2) AÊ3

Z= 4

Dx= 1.506 Mg mÿ3

CuKradiation Cell parameters from 25

re¯ections = 11.2±35.2

= 0.96 mmÿ1

T= 293 (2) K Needle, light yellow 0.360.240.15 mm

(2)

Data collection

Enraf±Nonius CAD-4 diffractometer !±2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.968,Tmax= 0.999

2438 measured re¯ections 2130 independent re¯ections 1739 re¯ections withI> 2(I)

Rint= 0.014

max= 67.7

h= 0!5

k= 0!26

l=ÿ15!15 3 standard re¯ections

frequency: 60 min intensity decay: none

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.038

wR(F2) = 0.105

S= 1.06 2130 re¯ections 182 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0456P)2

+ 0.4728P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.24 e AÊÿ3

min=ÿ0.15 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0048 (6)

Table 1

Selected geometric parameters (AÊ,).

C5ÐN1 1.401 (2)

C7ÐO1 1.193 (2)

C7ÐO2 1.392 (2)

C8ÐN1 1.265 (2)

C8ÐO2 1.366 (2)

C14ÐN2 1.469 (2)

N2ÐO3 1.213 (2)

N2ÐO4 1.216 (2)

O1ÐC7ÐO2 117.08 (17)

O1ÐC7ÐC6 127.93 (17)

N1ÐC8ÐO2 126.33 (15)

O2ÐC8ÐC9 112.39 (14)

O3ÐN2ÐO4 123.76 (17)

O3ÐN2ÐC14 118.43 (15)

N1ÐC8ÐC9ÐC10 ÿ54.3 (2)

O2ÐC8ÐC9ÐC10 121.85 (18) N1ÐC8ÐC9ÐC14 127.61 (19)

O2ÐC8ÐC9ÐC14 ÿ56.3 (2)

C13ÐC14ÐN2ÐO3 158.17 (18)

C9ÐC14ÐN2ÐO3 ÿ18.0 (3)

C13ÐC14ÐN2ÐO4 ÿ20.3 (3) C9ÐC14ÐN2ÐO4 163.51 (19)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C1ÐH1 O1iv 0.93 2.75 3.434 (2) 131

C12ÐH12 O1v 0.93 2.91 3.470 (3) 120

C13ÐH13 O1v 0.93 2.68 3.353 (2) 130

C12ÐH12 O3vi 0.93 2.61 3.386 (2) 141

C11ÐH11 O4vi 0.93 2.79 3.633 (3) 151

C2ÐH2 O4vii 0.93 2.84 3.342 (3) 115

C3ÐH3 O4vii 0.93 2.53 3.189 (2) 129

Symmetry codes: (iv) ÿx;ÿy;ÿz; (v) x;1

2ÿy;12‡z; (vi) xÿ1;12ÿy;12‡z; (vii) 1ÿx;yÿ1

2;12ÿz.

Table 3

Some short inter-molecular contacts shorter than 3.5 AÊ.

N1 C10i 3.353 (3)

O2 O3ii 3.045 (3)

O2 C5ii 3.485 (3)

O3 C9i 3.200 (3)

O3 C14i 3.103 (3)

O4 C11iii 3.245 (3)

Symmetry codes: (i) 1‡x;y;z; (ii)xÿ1;y;z; (iii)x;1 2ÿy;zÿ12.

After checking their presence in a difference map, all the H atoms were positioned geometrically and were treated as riding on their aromatic parent C atoms, with CÐH = 0.93 AÊ.

Data collection: CAD-4 EXPRESS (Enraf±Nonius, 1994); cell re®nement:CAD-4EXPRESS; data reduction:MoLEN(Fair,1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:SHELXL97.

The authors thank Dr S. Kumar, Department of Chemistry, Ranchi University, Ranchi, and his co-workers for the gift of the crystals, and the Indian Institute of Technology, Chennai, India, for the collection of X-ray diffraction data.

References

Enraf±Nonius (1994).CAD-4EXPRESS. Enraf±Nonius, Delft, The Nether-lands.

Fair, C. K. (1990).MolEN.Enraf±Nonius, Delft, The Netherlands. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Kumar, S., Srivastava, A. K. & Sarkar, P. C. (1977).J. Inst. Chem. India,69, 116±117.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Figure 1

AnORTEP-3 plot (Farrugia, 1997) of the molecule, with 50% probability displacement ellipsoids for non-H atoms.

Figure 2

A view of the weak CÐH O hydrogen bonds in the title compound. Symmetry codes: (i)ÿx,ÿy,ÿz, (ii)x,1

2ÿy,12+z(iii) = 1 +x,12ÿy,12+z

and (iv) = 1ÿx,1

(3)

supporting information

sup-1

Acta Cryst. (2002). E58, o1111–o1112

supporting information

Acta Cryst. (2002). E58, o1111–o1112 [doi:10.1107/S1600536802016148]

2-(2-Nitrophenyl)-4,5-benz-1,3-oxazin-6-one

Bishwa Nath Yadav, Shambhu Prasad and Satya Murti Prasad

S1. Comment

The preparation of several new 2-phenyl substituted phenyl benzoxinones and evaluation of their biological activity

against some pathogenic fungi and bacteria have been reported (Kumar et al., 1997). A project has been undertaken by us

to study the crystal structures of some of these benzoxinones to establish their stereochemistry. The present paper reports

the structure of the title compound, C14H8N2O4 (I), a benzoxinone derivative.

A displacement ellipsoid plot of the title molecule is shown in Fig. 1. The benzoxinone moiety is essentially planar, with

O2 deviating a maximum of 0.037 (1) Å and it forms a dihedral angle of 54.54 (8)° with the phenyl ring. The nitro group

is twisted out of the phenyl ring plane by 19.63 (11)°. Although there is no —NH or —OH group available in the

structure to form strong hydrogen bonds, the C atoms are involved in the formation of weak C—H···O hydrogen bonds

with the oxygen atoms O3 and O4 of the nitro group (Table 2 and Fig. 2). Some other short intermolecular contacts are

listed in Table 3.

S2. Experimental

The title compound was obtained by the reaction of o-nitrobenzoyl chloride on anthralinic acid in cold (273 K) (Kumar et

al., 1997). The precipitate was recrystallized from EtOH/H2O (4:1) as pale yellow crystals.

S3. Refinement

After checking their presence in a difference map, all the hydrogen atoms were fixed and geometrically were treated as

(4)
[image:4.610.129.480.74.273.2]

Figure 1

An ORTEP-3 plot (Farrugia, 1997) of the molecule, with 50% probability displacement ellipsoids for non-hydrogen

atoms.

Figure 2

A view of the weak C—H···O hydrogen bonds in the title compound. Symmetry codes: (i) −x, −y, −z, (ii) x, 1/2 − y, −1/2

+ z (iii) = 1 + x, 1/2 − y, −1/2 + z and (iv) = 1 − x, 1/2 + y, 1/2 − z.

2-(2′-Nitrophenyl)-4,5-benz-1,3-oxazin-6-one

Crystal data

C14H8N2O4

Mr = 268.22 Monoclinic, P21/c

Hall symbol: -P 2ybc a = 4.1824 (6) Å b = 22.191 (2) Å

c = 12.767 (1) Å β = 93.26 (1)° V = 1183.0 (2) Å3

[image:4.610.128.482.338.541.2]
(5)

supporting information

sup-3

Acta Cryst. (2002). E58, o1111–o1112

Cu radiation, λ = 1.5418 Å Cell parameters from 25 reflections θ = 11.2–35.2°

µ = 0.96 mm−1

T = 293 K

Needles, light yellow 0.36 × 0.24 × 0.15 mm

Data collection

Enraf-Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω–2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.968, Tmax = 0.999

2438 measured reflections

2130 independent reflections 1739 reflections with I > 2σ(I) Rint = 0.014

θmax = 67.7°, θmin = 4.0°

h = 0→5 k = 0→26 l = −15→15

3 standard reflections every 60 min intensity decay: none

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.038

wR(F2) = 0.105

S = 1.06 2130 reflections 182 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0456P)2 + 0.4728P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.24 e Å−3

Δρmin = −0.15 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.0048 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.3229 (5) −0.01215 (9) 0.13071 (15) 0.0488 (5)

H1 0.2493 −0.0088 0.0608 0.063*

C2 0.5058 (6) −0.06047 (9) 0.16334 (17) 0.0550 (5)

H2 0.5558 −0.0902 0.1156 0.069*

C3 0.6167 (5) −0.06517 (8) 0.26742 (17) 0.0525 (5)

H3 0.7425 −0.0980 0.2887 0.068*

C4 0.5443 (5) −0.02231 (8) 0.33934 (15) 0.0454 (4)

H4 0.6196 −0.0262 0.4090 0.054*

C5 0.3573 (4) 0.02718 (7) 0.30789 (13) 0.0369 (4)

(6)

C7 0.0492 (5) 0.08343 (8) 0.17082 (13) 0.0425 (4)

C8 0.1188 (4) 0.11534 (7) 0.35014 (13) 0.0361 (4)

C9 0.0280 (4) 0.16375 (7) 0.42316 (13) 0.0364 (4)

C10 −0.1239 (5) 0.14748 (9) 0.51246 (14) 0.0468 (5)

H10 −0.1578 0.1069 0.5265 0.056*

C11 −0.2260 (5) 0.19071 (10) 0.58126 (16) 0.0553 (5)

H11 −0.3282 0.1789 0.6408 0.065*

C12 −0.1777 (5) 0.25082 (10) 0.56230 (16) 0.0553 (5)

H12 −0.2487 0.2796 0.6086 0.064*

C13 −0.0248 (5) 0.26852 (8) 0.47518 (15) 0.0474 (5)

H13 0.0099 0.3092 0.4622 0.065*

C14 0.0768 (4) 0.22512 (8) 0.40701 (13) 0.0383 (4)

N1 0.2876 (4) 0.07100 (6) 0.38216 (11) 0.0390 (4)

N2 0.2595 (4) 0.24605 (7) 0.31904 (12) 0.0469 (4)

O1 −0.0650 (4) 0.09470 (7) 0.08535 (10) 0.0645 (5)

O2 −0.0164 (3) 0.12322 (5) 0.25113 (9) 0.0440 (3)

O3 0.4312 (4) 0.21035 (7) 0.27731 (11) 0.0570 (4)

O4 0.2345 (6) 0.29876 (7) 0.29373 (14) 0.0860 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0628 (13) 0.0459 (11) 0.0380 (10) −0.0012 (9) 0.0051 (9) −0.0068 (8) C2 0.0688 (14) 0.0393 (10) 0.0577 (12) 0.0042 (9) 0.0120 (10) −0.0132 (9) C3 0.0607 (13) 0.0354 (10) 0.0618 (12) 0.0068 (9) 0.0058 (10) −0.0006 (9) C4 0.0556 (12) 0.0363 (9) 0.0439 (10) −0.0002 (8) 0.0000 (8) 0.0037 (8) C5 0.0429 (10) 0.0309 (8) 0.0369 (9) −0.0056 (7) 0.0038 (7) −0.0021 (7) C6 0.0455 (10) 0.0325 (8) 0.0359 (9) −0.0044 (7) 0.0052 (7) −0.0012 (7) C7 0.0573 (12) 0.0370 (9) 0.0329 (9) −0.0019 (8) 0.0011 (8) −0.0027 (7) C8 0.0455 (10) 0.0312 (8) 0.0315 (8) −0.0064 (7) 0.0001 (7) 0.0011 (7) C9 0.0397 (10) 0.0358 (9) 0.0335 (8) −0.0009 (7) −0.0003 (7) −0.0032 (7) C10 0.0542 (12) 0.0444 (10) 0.0419 (10) −0.0074 (9) 0.0045 (8) 0.0007 (8) C11 0.0569 (12) 0.0687 (14) 0.0418 (10) −0.0086 (10) 0.0148 (9) −0.0085 (9) C12 0.0584 (13) 0.0575 (12) 0.0509 (11) 0.0016 (10) 0.0101 (9) −0.0200 (9) C13 0.0560 (12) 0.0371 (10) 0.0489 (11) 0.0010 (8) 0.0023 (9) −0.0110 (8) C14 0.0421 (10) 0.0379 (9) 0.0349 (9) −0.0009 (7) 0.0022 (7) −0.0026 (7) N1 0.0508 (9) 0.0321 (7) 0.0339 (7) −0.0008 (6) 0.0005 (6) −0.0004 (6) N2 0.0602 (10) 0.0383 (8) 0.0420 (8) −0.0057 (7) 0.0023 (7) 0.0011 (7) O1 0.0994 (12) 0.0560 (9) 0.0362 (7) 0.0131 (8) −0.0125 (7) −0.0019 (6) O2 0.0592 (8) 0.0386 (7) 0.0335 (6) 0.0087 (6) −0.0047 (5) −0.0040 (5) O3 0.0596 (9) 0.0585 (9) 0.0548 (8) 0.0009 (7) 0.0200 (7) −0.0002 (7) O4 0.1446 (18) 0.0398 (9) 0.0768 (12) −0.0022 (9) 0.0351 (12) 0.0139 (7)

Geometric parameters (Å, º)

C1—C2 1.368 (3) C8—O2 1.366 (2)

C1—C6 1.396 (2) C8—C9 1.486 (2)

(7)

supporting information

sup-5

Acta Cryst. (2002). E58, o1111–o1112

C2—C3 1.386 (3) C9—C14 1.394 (2)

C2—H2 0.93 C10—C11 1.385 (3)

C3—C4 1.368 (3) C10—H10 0.93

C3—H3 0.93 C11—C12 1.373 (3)

C4—C5 1.394 (2) C11—H11 0.93

C4—H4 0.93 C12—C13 1.371 (3)

C5—C6 1.396 (2) C12—H12 0.93

C5—N1 1.401 (2) C13—C14 1.381 (2)

C6—C7 1.453 (3) C13—H13 0.93

C7—O1 1.193 (2) C14—N2 1.469 (2)

C7—O2 1.392 (2) N2—O3 1.213 (2)

C8—N1 1.265 (2) N2—O4 1.216 (2)

N1···C10i 3.353 (3) O3···C9i 3.200 (3)

O2···O3ii 3.045 (3) O3···C14i 3.103 (3)

O2···C5ii 3.485 (3) O4···C11iii 3.245 (3)

C2—C1—C6 119.63 (18) C10—C9—C14 117.03 (16)

C2—C1—H1 120.2 C10—C9—C8 118.28 (15)

C6—C1—H1 120.2 C14—C9—C8 124.66 (15)

C1—C2—C3 120.10 (18) C9—C10—C11 120.95 (18)

C1—C2—H2 119.9 C9—C10—H10 119.5

C3—C2—H2 119.9 C11—C10—H10 119.5

C4—C3—C2 121.09 (18) C12—C11—C10 120.51 (18)

C4—C3—H3 119.5 C12—C11—H11 119.7

C2—C3—H3 119.5 C10—C11—H11 119.7

C3—C4—C5 119.77 (18) C13—C12—C11 120.09 (18)

C3—C4—H4 120.1 C13—C12—H12 120.0

C5—C4—H4 120.1 C11—C12—H12 120.0

C4—C5—C6 119.18 (16) C12—C13—C14 119.06 (18)

C4—C5—N1 119.14 (16) C12—C13—H13 120.5

C6—C5—N1 121.67 (15) C14—C13—H13 120.5

C5—C6—C1 120.22 (17) C13—C14—C9 122.35 (17)

C5—C6—C7 118.96 (15) C13—C14—N2 116.96 (16)

C1—C6—C7 120.81 (16) C9—C14—N2 120.58 (15)

O1—C7—O2 117.08 (17) C8—N1—C5 117.07 (14)

O1—C7—C6 127.93 (17) O3—N2—O4 123.76 (17)

O2—C7—C6 114.98 (14) O3—N2—C14 118.43 (15)

N1—C8—O2 126.33 (15) O4—N2—C14 117.79 (17)

N1—C8—C9 121.15 (15) C8—O2—C7 120.76 (14)

O2—C8—C9 112.39 (14)

C6—C1—C2—C3 −0.4 (3) C9—C10—C11—C12 −0.2 (3)

C1—C2—C3—C4 0.6 (3) C10—C11—C12—C13 −0.6 (3)

C2—C3—C4—C5 −0.3 (3) C11—C12—C13—C14 0.5 (3)

C3—C4—C5—C6 −0.1 (3) C12—C13—C14—C9 0.4 (3)

C3—C4—C5—N1 −179.40 (17) C12—C13—C14—N2 −175.73 (18)

(8)

N1—C5—C6—C1 179.57 (16) C8—C9—C14—C13 177.09 (17)

C4—C5—C6—C7 179.26 (17) C10—C9—C14—N2 174.90 (16)

N1—C5—C6—C7 −1.5 (3) C8—C9—C14—N2 −6.9 (3)

C2—C1—C6—C5 −0.1 (3) O2—C8—N1—C5 3.6 (3)

C2—C1—C6—C7 −179.00 (18) C9—C8—N1—C5 179.14 (15)

C5—C6—C7—O1 −179.8 (2) C4—C5—N1—C8 179.57 (16)

C1—C6—C7—O1 −0.9 (3) C6—C5—N1—C8 0.3 (2)

C5—C6—C7—O2 −0.9 (2) C13—C14—N2—O3 158.17 (18)

C1—C6—C7—O2 178.02 (16) C9—C14—N2—O3 −18.0 (3)

N1—C8—C9—C10 −54.3 (2) C13—C14—N2—O4 −20.3 (3)

O2—C8—C9—C10 121.85 (18) C9—C14—N2—O4 163.51 (19)

N1—C8—C9—C14 127.61 (19) N1—C8—O2—C7 −6.3 (3)

O2—C8—C9—C14 −56.3 (2) C9—C8—O2—C7 177.87 (15)

C14—C9—C10—C11 0.9 (3) O1—C7—O2—C8 −176.52 (17)

C8—C9—C10—C11 −177.32 (18) C6—C7—O2—C8 4.4 (2)

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C1—H1···O1iv 0.93 2.75 3.434 (2) 131

C12—H12···O1v 0.93 2.91 3.470 (3) 120

C13—H13···O1v 0.93 2.68 3.353 (2) 130

C12—H12···O3vi 0.93 2.61 3.386 (2) 141

C11—H11···O4vi 0.93 2.79 3.633 (3) 151

C2—H2···O4vii 0.93 2.84 3.342 (3) 115

C3—H3···O4vii 0.93 2.53 3.189 (2) 129

Figure

Figure 1

References

Related documents

Index of production of the ECSC Iron and Steel industry 6.. Production of other merchant bars

Under the remaining standard assumptions of mixture spaces, the following representation theorem is proven; a rational, independent, and continuous preference relation over

Danaark O.utschland Hell as Espagna France Ireland Ital ta Hader land Portugal Homencl ature coeb.. Danaark Deutschland Hallas Espagna France Ireland I tal Ia

Having considered a novel approach that considers the nonlinear Fourier and a structural break in the unit root testing framework, we find the classical unit root test

In a large international mobility capital environment, emerging economies are weakened by the vulnerabilities of their own, including financial structures often marked by

Cases of intestinal infections by helminths and protozoa in 308 inhabitants with enteroparasites, aged between less than one to 15 years old, inhabitants around Catoca Mining

In this study, students learn to differenti- ate the confusing words by reading the exam- ple sentences, and then choose the appropriate word(s) to complete the sentence

Among the deep learning models, highest micro-averaged F-measures for most of the risk factor categories were achieved by the BLSTM network while the top performance for the dia-