• No results found

The first example of a bromo and phosphido bridged binuclear rhenium carbonyl complex

N/A
N/A
Protected

Academic year: 2020

Share "The first example of a bromo and phosphido bridged binuclear rhenium carbonyl complex"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m244

Petters and FloÈrke (C24H20P)[Re2Br2(C12H22P)(CO)7] DOI: 101107/S1600536801007620 Acta Cryst.(2001). E57, m244±m245 Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

The first example of a bromo- and phosphido-bridged

binuclear rhenium carbonyl complex

Dina Petters and Ulrich FloÈrke*

Fachbereich Chemie und Chemietechnik, UniversitaÈt Paderborn, Warburgerstraûe 100, D-33098 Paderborn, Germany

Correspondence e-mail: uf@chemie.uni-paderborn.de

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.010 AÊ

Rfactor = 0.037

wRfactor = 0.076

Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2001 International Union of Crystallography Printed in Great Britain ± all rights reserved

The ionic crystals of the title complex, tetraphenylphos-phonium -bromo-bromoheptacarbonyl- -dicyclohexylphos-phido-dirhenate, (C24H20P)[Re2Br2(C12H22P)(CO)7], are built

of tetraphenylphosphonium cations and (-Br)(-PCy2

)-(CO)7BrRe2ÿ anions. The latter is the ®rst example of a

bromo- and phosphido-bridged binuclear rhenium carbonyl complex. The ReÐBr bond lengths are 2.6786 (7) and 2.6482 (7) AÊ for the bridging Br atom, and 2.6146 (8) AÊ for the terminal Br ligand. The Re Re distance of 3.930 AÊ is clearly non-bonding which is not unexpected for the 36 valence-electron complex anion.

Comment

The title complex, (I), was synthesized in the course of opti-mizing reaction paths to the neutral carbonyl complex ( -Br)(-PCy2)(CO)8Re2(Hauptet al., 1994).

The central fragment of the anion (Fig. 1) is the four-membered Re2(-Br)(-P) ring which is nearly planar; the

maximum deviation from the best plane is 0.061 (2) AÊ for the P1 atom. Each Re atom is hexacoordinated (three carbonyl groups and one terminal Br ligand at Re1, four terminal carbonyl groups at Re2, and bridging P1 and Br2 at both metal atoms). The resulting octahedral coordination spheres are only slightly distorted and the terminal ligands attached to both Re atoms show an eclipsed arrangement along the Re Re vector with pseudo-torsion anglesLÐRe ReÐL0,

involving pairs of eclipsed ligandsLandL0, ranging from 0.7

to 4.3. The phosphido bridge is symmetric with ReÐP1

distances of 2.5214 (15) and 2.5381 (14) AÊ, whereas the two ReÐ-Br2 bond lengths of 2.6482 (7) and 2.6786 (7) AÊ differ by about 0.030 AÊ. Other Re compounds with bromo bridges show ReÐ-Br bond lengths varying from 2.515 to 2.679 AÊ (Filippou et al., 1996; Calderazzo et al., 1978; Atwoodet al., 1978). The distance of 2.6146 (8) AÊ from Re1 to the terminal

(2)

Br1 ligand is somewhat elongated compared to the distance of 2.590 (3) AÊ in (-PCy2)(CO)8BrRe2(Hauptet al., 1994).

Experimental

(-PCy2)(CO)8BrRe2was re¯uxed in tetrahydrofuran for 3 h with

PPh4Br (molar ratio 1:1). After removal of the solventin vacuo, the

residue was recrystallized from CHCl3/pentane to give yellow

pris-matic crystals of the title compound. A full description of the synthesis is given elsewhere (Petters, 1999).

Crystal data

(C24H20P)[Re2Br2(C12H22P)(CO)7] Mr= 1264.93

Monoclinic,P21/n a= 18.795 (2) AÊ

b= 13.320 (1) AÊ

c= 19.579 (2) AÊ = 114.42 (1) V= 4463.1 (7) AÊ3 Z= 4

Dx= 1.883 Mg mÿ3 MoKradiation Cell parameters from 24

re¯ections = 11.8±14.5 = 7.33 mmÿ1 T= 293 (2) K Prism, yellow 0.300.250.15 mm Data collection

Nonius MACH3 diffractometer !±2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.385,Tmax= 0.997

17 450 measured re¯ections 8736 independent re¯ections 5813 re¯ections withI> 2(I)

Rint= 0.052

max= 26.0 h=ÿ23!21

k=ÿ16!15

l= 0!24

3 standard re¯ections frequency: 60 min intensity decay: <1% Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.037 wR(F2) = 0.076 S= 1.07 8736 re¯ections 506 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0432P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.002

max= 0.93 e AÊÿ3

min=ÿ0.67 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.00045 (4)

Table 1

Selected geometric parameters (AÊ,).

Re1ÐP1 2.5214 (15)

Re1ÐBr1 2.6146 (8)

Re1ÐBr2 2.6786 (7)

Re2ÐP1 2.5381 (14)

Re2ÐBr2 2.6482 (7)

C3ÐRe1ÐBr1 92.5 (2)

C2ÐRe1ÐBr1 89.8 (2)

C1ÐRe1ÐBr1 177.9 (2)

P1ÐRe1ÐBr1 87.67 (4)

P1ÐRe1ÐBr2 81.13 (4)

Br1ÐRe1ÐBr2 86.73 (2)

P1ÐRe2ÐBr2 81.42 (4)

Re2ÐBr2ÐRe1 95.07 (2)

Re1ÐP1ÐRe2 101.92 (5)

H atoms were included in the re®nement in the riding model approximation with isotropic displacement parameters U(H) = 1.2Ueq(C). Substantial anisotropic displacement parameters of

cyclohexyl C atoms C21±C26 indicate some degree of (orientational) disorder which was impossible to resolve. Therefore, the geometric parameters for this cyclohexyl group are less reliable. Cyclohexyl groups C11±C16 and C21±C26 were re®ned usingSHELXTL SAME

restraints (Bruker, 1998), phenyl groups C31±C36, C41±C46, C51±

C56 and C61±C66 were restrained with both FLAT and SAME

instructions.

Data collection: MACH3/PC (Nonius, 1989); cell re®nement:

MACH3/PC(Nonius, 1989); data reduction:NRCVAX(Gabeet al., 1989); program(s) used to solve structure:SHELXTL(Bruker, 1998); program(s) used to re®ne structure:SHELXTL; molecular graphics:

SHELXTL; software used to prepare material for publication:

SHELXTL.

References

Atwood, J. L., Newell, J. K., Hunter, W. E., Bernal, I., Calderazzo, F., Mavani, I. P. & Vitali, D. (1978).J. Chem. Soc. Dalton Trans.pp. 1189±1195. Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison,

Wisconsin, USA.

Calderazzo, F., Mavani, I. P., Vitali, D., Bernal, I., Korp, J. D. & Atwood, J. L. (1978).J. Organomet. Chem.160, 207±222.

Filippou, A. C., Lungwitz, B., Kociok-Koehn, G. & Heinz, I. (1996). J. Organomet. Chem.524, 133±146.

Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L. & White, P. S. (1989).J. Appl. Cryst.22, 384±387.

Haupt, H.-J., Disse, G. & FloÈrke, U. (1994).Z. Anorg. Allg. Chem.620, 1664± 1668.

Nonius (1989).MACH3/PC. Nonius BV, Delft, The Netherlands.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Petters, D. (1999). Dissertation, University of Paderborn, Germany.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2001). E57, m244–m245

supporting information

Acta Cryst. (2001). E57, m244–m245 [https://doi.org/10.1107/S1600536801007620]

The first example of a bromo- and phosphido-bridged binuclear rhenium

carbonyl complex

Dina Petters and Ulrich Fl

ö

rke

tetraphenylphosphonium µ-bromo-bromoheptacarbonyl-µ-dicyclohexylphosphido-dirhenate

Crystal data

(C24H20P)[Re2Br2(C12H22P)(CO)7]

Mr = 1264.93 Monoclinic, P21/n

a = 18.795 (2) Å

b = 13.320 (1) Å

c = 19.579 (2) Å

β = 114.42 (1)°

V = 4463.1 (7) Å3

Z = 4

F(000) = 2424

Dx = 1.883 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 24 reflections

θ = 11.8–14.5°

µ = 7.33 mm−1

T = 293 K Prism, yellow

0.30 × 0.25 × 0.15 mm

Data collection

Nonius MACH3 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω–2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.385, Tmax = 0.997

17450 measured reflections

8736 independent reflections 5813 reflections with I > 2σ(I)

Rint = 0.052

θmax = 26.0°, θmin = 3.1°

h = −23→21

k = −16→15

l = 0→24

3 standard reflections every 60 min intensity decay: <1%

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.037

wR(F2) = 0.076

S = 0.96 8736 reflections 506 parameters 296 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0432P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.93 e Å−3

Δρmin = −0.67 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2

or flagged by the user for potential systematic errors. Weighted R-factors

wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative

F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice

of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Re1 0.716316 (14) 0.21854 (2) 0.022200 (13) 0.03739 (8) Re2 0.783912 (15) 0.40694 (2) −0.093681 (14) 0.04375 (9) Br1 0.58067 (4) 0.30408 (6) −0.05134 (4) 0.0582 (2) Br2 0.77816 (4) 0.40294 (5) 0.03917 (4) 0.0543 (2) P1 0.73720 (9) 0.22751 (11) −0.09685 (8) 0.0351 (3) P2 0.67180 (9) −0.24045 (11) 0.08637 (8) 0.0356 (3) C1 0.8197 (5) 0.1592 (5) 0.0770 (4) 0.056 (2) O1 0.8748 (3) 0.1261 (5) 0.1052 (3) 0.075 (2) C2 0.7021 (4) 0.2312 (5) 0.1150 (4) 0.048 (2) O2 0.6929 (3) 0.2371 (4) 0.1673 (3) 0.0703 (14) C3 0.6723 (4) 0.0900 (5) 0.0062 (3) 0.050 (2) O3 0.6475 (3) 0.0093 (4) −0.0028 (3) 0.076 (2) C4 0.7912 (4) 0.4036 (5) −0.1877 (4) 0.057 (2) O4 0.7993 (4) 0.4002 (4) −0.2424 (3) 0.088 (2) C5 0.8927 (5) 0.3613 (6) −0.0449 (4) 0.064 (2) O5 0.9578 (3) 0.3369 (5) −0.0182 (4) 0.101 (2) C6 0.8145 (5) 0.5476 (6) −0.0800 (4) 0.069 (2) O6 0.8339 (4) 0.6305 (4) −0.0711 (4) 0.103 (2) C7 0.6729 (5) 0.4553 (6) −0.1417 (4) 0.067 (2) O7 0.6121 (4) 0.4852 (5) −0.1717 (4) 0.106 (2) C11 0.8163 (3) 0.1375 (4) −0.0911 (3) 0.0402 (13)

H11 0.8617 0.1573 −0.0457 0.048*

C12 0.8439 (3) 0.1452 (5) −0.1539 (3) 0.052 (2)

H12A 0.8549 0.2148 −0.1606 0.062*

H12B 0.8030 0.1217 −0.2005 0.062*

C13 0.9177 (4) 0.0821 (5) −0.1351 (4) 0.063 (2)

H13A 0.9326 0.0845 −0.1770 0.076*

H13B 0.9601 0.1109 −0.0918 0.076*

C14 0.9062 (4) −0.0247 (5) −0.1189 (4) 0.076 (2)

H14A 0.9556 −0.0601 −0.1030 0.091*

H14B 0.8695 −0.0563 −0.1645 0.091*

C15 0.8757 (4) −0.0342 (5) −0.0585 (5) 0.074 (2)

(5)

supporting information

sup-3 Acta Cryst. (2001). E57, m244–m245

H15B 0.8643 −0.1041 −0.0532 0.089*

C16 0.8021 (4) 0.0282 (5) −0.0781 (4) 0.058 (2)

H16A 0.7607 0.0013 −0.1230 0.069*

H16B 0.7852 0.0240 −0.0376 0.069*

C21 0.6488 (3) 0.1977 (5) −0.1842 (3) 0.050 (2)

H21 0.6117 0.2454 −0.1790 0.059*

C22 0.6087 (4) 0.1012 (5) −0.1830 (3) 0.061 (2)

H22A 0.6438 0.0461 −0.1793 0.073*

H22B 0.5984 0.0999 −0.1384 0.073*

C23 0.5339 (5) 0.0844 (8) −0.2497 (4) 0.123 (5)

H23A 0.5251 0.0125 −0.2550 0.147*

H23B 0.4924 0.1128 −0.2384 0.147*

C24 0.5245 (6) 0.1222 (8) −0.3207 (5) 0.140 (5)

H24A 0.4691 0.1288 −0.3520 0.168*

H24B 0.5454 0.0732 −0.3443 0.168*

C25 0.5629 (5) 0.2211 (6) −0.3193 (4) 0.091 (3)

H25A 0.5308 0.2743 −0.3131 0.109*

H25B 0.5659 0.2313 −0.3671 0.109*

C26 0.6449 (6) 0.2281 (8) −0.2564 (4) 0.131 (5)

H26A 0.6799 0.1861 −0.2691 0.158*

H26B 0.6631 0.2968 −0.2530 0.158*

C31 0.6499 (3) −0.1317 (4) 0.1277 (3) 0.0377 (13) C32 0.7039 (3) −0.0968 (4) 0.1961 (3) 0.051 (2)

H32 0.7525 −0.1275 0.2191 0.061*

C33 0.6853 (4) −0.0156 (5) 0.2305 (4) 0.064 (2)

H33 0.7217 0.0088 0.2760 0.077*

C34 0.6140 (4) 0.0275 (5) 0.1974 (4) 0.055 (2)

H34 0.6018 0.0816 0.2206 0.066*

C35 0.5590 (4) −0.0075 (4) 0.1297 (4) 0.053 (2)

H35 0.5103 0.0232 0.1077 0.064*

C36 0.5762 (3) −0.0879 (4) 0.0946 (3) 0.0436 (14)

H36 0.5391 −0.1124 0.0495 0.052*

C41 0.6262 (3) −0.2379 (4) −0.0139 (3) 0.0384 (13) C42 0.5467 (3) −0.2517 (4) −0.0519 (3) 0.0450 (14)

H42 0.5166 −0.2649 −0.0254 0.054*

C43 0.5120 (4) −0.2460 (5) −0.1281 (3) 0.057 (2)

H43 0.4583 −0.2551 −0.1535 0.068*

C44 0.5565 (5) −0.2266 (6) −0.1677 (4) 0.073 (2)

H44 0.5326 −0.2222 −0.2198 0.088*

C45 0.6349 (5) −0.2137 (7) −0.1313 (4) 0.084 (3)

H45 0.6645 −0.2019 −0.1586 0.101*

C46 0.6712 (4) −0.2182 (5) −0.0536 (4) 0.061 (2)

H46 0.7248 −0.2082 −0.0284 0.073*

C51 0.7747 (3) −0.2458 (4) 0.1121 (3) 0.0415 (14) C52 0.8166 (3) −0.1580 (4) 0.1154 (4) 0.052 (2)

H52 0.7932 −0.0954 0.1115 0.063*

C53 0.8931 (4) −0.1653 (5) 0.1246 (4) 0.062 (2)

(6)

C54 0.9277 (4) −0.2580 (6) 0.1288 (4) 0.063 (2)

H54 0.9789 −0.2622 0.1336 0.076*

C55 0.8867 (4) −0.3424 (6) 0.1259 (4) 0.064 (2)

H55 0.9105 −0.4045 0.1293 0.077*

C56 0.8106 (4) −0.3388 (4) 0.1179 (3) 0.049 (2)

H56 0.7834 −0.3977 0.1165 0.059*

C61 0.6377 (3) −0.3483 (4) 0.1196 (3) 0.0354 (12) C62 0.6215 (3) −0.4369 (4) 0.0789 (3) 0.0475 (15)

H62 0.6286 −0.4414 0.0347 0.057*

C63 0.5942 (4) −0.5193 (4) 0.1052 (4) 0.055 (2)

H63 0.5829 −0.5796 0.0788 0.066*

C64 0.5845 (4) −0.5102 (5) 0.1698 (4) 0.066 (2)

H64 0.5655 −0.5648 0.1869 0.080*

C65 0.6015 (4) −0.4239 (5) 0.2104 (4) 0.061 (2)

H65 0.5953 −0.4202 0.2551 0.073*

C66 0.6280 (3) −0.3414 (4) 0.1848 (3) 0.0448 (14)

H66 0.6391 −0.2817 0.2118 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-5 Acta Cryst. (2001). E57, m244–m245

C22 0.064 (5) 0.066 (4) 0.044 (4) −0.023 (4) 0.015 (3) −0.002 (3) C23 0.114 (8) 0.193 (11) 0.052 (5) −0.113 (8) 0.024 (5) −0.014 (6) C24 0.124 (9) 0.118 (8) 0.092 (8) −0.062 (7) −0.041 (7) 0.024 (6) C25 0.080 (6) 0.095 (6) 0.058 (5) −0.017 (5) −0.011 (4) 0.021 (5) C26 0.156 (10) 0.135 (9) 0.055 (5) −0.085 (8) −0.005 (6) 0.028 (5) C31 0.045 (3) 0.031 (3) 0.039 (3) −0.004 (3) 0.019 (3) 0.001 (2) C32 0.043 (4) 0.050 (4) 0.052 (4) 0.001 (3) 0.013 (3) −0.006 (3) C33 0.070 (5) 0.059 (4) 0.057 (4) −0.009 (4) 0.020 (4) −0.022 (4) C34 0.058 (4) 0.040 (3) 0.070 (5) −0.006 (3) 0.031 (4) −0.015 (3) C35 0.051 (4) 0.040 (3) 0.072 (5) 0.006 (3) 0.029 (4) 0.000 (3) C36 0.047 (4) 0.039 (3) 0.049 (4) 0.000 (3) 0.023 (3) −0.003 (3) C41 0.049 (4) 0.034 (3) 0.036 (3) −0.004 (3) 0.021 (3) 0.000 (2) C42 0.048 (4) 0.041 (3) 0.052 (4) −0.005 (3) 0.026 (3) −0.005 (3) C43 0.059 (4) 0.048 (4) 0.049 (4) −0.002 (3) 0.007 (4) −0.001 (3) C44 0.085 (6) 0.079 (5) 0.040 (4) −0.003 (5) 0.012 (4) 0.004 (4) C45 0.106 (7) 0.108 (7) 0.055 (5) −0.003 (6) 0.050 (5) 0.013 (5) C46 0.060 (4) 0.074 (5) 0.048 (4) −0.011 (4) 0.022 (3) 0.001 (3) C51 0.042 (3) 0.038 (3) 0.044 (3) 0.000 (3) 0.017 (3) 0.000 (3) C52 0.046 (4) 0.045 (4) 0.061 (4) −0.001 (3) 0.017 (3) 0.004 (3) C53 0.046 (4) 0.070 (5) 0.069 (5) −0.016 (4) 0.022 (4) 0.003 (4) C54 0.036 (4) 0.095 (6) 0.057 (4) 0.001 (4) 0.016 (3) 0.014 (4) C55 0.058 (5) 0.076 (5) 0.064 (5) 0.008 (4) 0.033 (4) 0.000 (4) C56 0.052 (4) 0.045 (4) 0.051 (4) 0.000 (3) 0.023 (3) 0.007 (3) C61 0.034 (3) 0.034 (3) 0.035 (3) −0.002 (2) 0.012 (3) 0.002 (2) C62 0.049 (4) 0.047 (4) 0.049 (4) −0.001 (3) 0.022 (3) −0.005 (3) C63 0.071 (5) 0.040 (3) 0.060 (4) −0.014 (3) 0.032 (4) −0.004 (3) C64 0.088 (6) 0.049 (4) 0.070 (5) −0.015 (4) 0.040 (4) 0.005 (4) C65 0.079 (5) 0.061 (4) 0.054 (4) −0.012 (4) 0.038 (4) 0.009 (3) C66 0.053 (4) 0.044 (3) 0.038 (3) −0.008 (3) 0.020 (3) −0.005 (3)

Geometric parameters (Å, º)

Re1—C3 1.871 (7) C21—C26 1.443 (9)

Re1—C2 1.951 (6) C21—C22 1.496 (7)

Re1—C1 1.956 (8) C22—C23 1.488 (8)

Re1—P1 2.5214 (15) C23—C24 1.420 (10)

Re1—Br1 2.6146 (8) C24—C25 1.496 (9)

Re1—Br2 2.6786 (7) C25—C26 1.527 (9)

Re2—C4 1.903 (7) C31—C32 1.386 (7)

Re2—C6 1.946 (7) C31—C36 1.391 (7)

Re2—C5 1.962 (8) C32—C33 1.392 (8)

Re2—C7 2.008 (8) C33—C34 1.351 (8)

Re2—P1 2.5381 (14) C34—C35 1.382 (8)

Re2—Br2 2.6482 (7) C35—C36 1.381 (7)

P1—C21 1.869 (5) C41—C42 1.380 (7)

P1—C11 1.877 (6) C41—C46 1.388 (8)

P2—C51 1.788 (6) C42—C43 1.361 (8)

(8)

P2—C41 1.788 (5) C44—C45 1.356 (9)

P2—C61 1.800 (5) C45—C46 1.388 (9)

C1—O1 1.048 (8) C51—C56 1.393 (7)

C2—O2 1.109 (7) C51—C52 1.397 (8)

C3—O3 1.156 (7) C52—C53 1.377 (8)

C4—O4 1.142 (8) C53—C54 1.381 (9)

C5—O5 1.160 (9) C54—C55 1.351 (9)

C6—O6 1.153 (8) C55—C56 1.373 (8)

C7—O7 1.120 (8) C61—C66 1.365 (7)

C11—C16 1.520 (8) C61—C62 1.385 (7)

C11—C12 1.524 (7) C62—C63 1.397 (8)

C12—C13 1.531 (8) C63—C64 1.356 (8)

C13—C14 1.493 (9) C64—C65 1.359 (8)

C14—C15 1.519 (9) C65—C66 1.383 (7)

C15—C16 1.521 (8)

C3—Re1—C2 90.8 (3) O7—C7—Re2 175.6 (7)

C3—Re1—C1 89.6 (3) C16—C11—C12 110.0 (5)

C2—Re1—C1 90.7 (3) C16—C11—P1 115.6 (4)

C3—Re1—P1 96.6 (2) C12—C11—P1 115.7 (4)

C2—Re1—P1 172.3 (2) C11—C12—C13 110.2 (5)

C1—Re1—P1 91.6 (2) C14—C13—C12 112.2 (5)

C3—Re1—Br1 92.5 (2) C13—C14—C15 112.3 (6)

C2—Re1—Br1 89.8 (2) C14—C15—C16 110.8 (6)

C1—Re1—Br1 177.9 (2) C11—C16—C15 111.2 (5) P1—Re1—Br1 87.67 (4) C26—C21—C22 115.7 (6)

C3—Re1—Br2 177.7 (2) C26—C21—P1 120.2 (5)

C2—Re1—Br2 91.4 (2) C22—C21—P1 115.6 (4)

C1—Re1—Br2 91.2 (2) C23—C22—C21 114.6 (6)

P1—Re1—Br2 81.13 (4) C24—C23—C22 119.7 (6) Br1—Re1—Br2 86.73 (2) C23—C24—C25 115.5 (7)

C4—Re2—C6 91.2 (3) C24—C25—C26 112.8 (6)

C4—Re2—C5 89.2 (3) C21—C26—C25 113.5 (7)

C6—Re2—C5 92.4 (3) C32—C31—C36 120.0 (5)

C4—Re2—C7 91.8 (3) C32—C31—P2 119.7 (4)

C6—Re2—C7 86.9 (3) C36—C31—P2 120.1 (4)

C5—Re2—C7 178.8 (3) C31—C32—C33 119.9 (6)

C4—Re2—P1 96.7 (2) C34—C33—C32 119.7 (6)

C6—Re2—P1 171.8 (2) C33—C34—C35 121.1 (6)

C5—Re2—P1 90.1 (2) C36—C35—C34 120.2 (6)

C7—Re2—P1 90.5 (2) C35—C36—C31 119.1 (5)

C4—Re2—Br2 177.0 (2) C42—C41—C46 119.8 (5)

C6—Re2—Br2 90.8 (2) C42—C41—P2 120.7 (4)

C5—Re2—Br2 88.5 (2) C46—C41—P2 119.5 (5)

C7—Re2—Br2 90.6 (2) C43—C42—C41 120.4 (6)

(9)

supporting information

sup-7 Acta Cryst. (2001). E57, m244–m245

C21—P1—Re1 114.6 (2) C45—C46—C41 119.0 (6) C11—P1—Re1 109.7 (2) C56—C51—C52 119.8 (5)

C21—P1—Re2 112.9 (2) C56—C51—P2 119.3 (4)

C11—P1—Re2 110.0 (2) C52—C51—P2 120.2 (4)

Re1—P1—Re2 101.92 (5) C53—C52—C51 119.0 (6) C51—P2—C31 109.3 (3) C52—C53—C54 120.8 (6) C51—P2—C41 106.3 (3) C55—C54—C53 119.7 (6) C31—P2—C41 112.7 (3) C54—C55—C56 121.7 (6) C51—P2—C61 111.8 (2) C55—C56—C51 119.1 (6) C31—P2—C61 107.5 (3) C66—C61—C62 120.7 (5)

C41—P2—C61 109.3 (2) C66—C61—P2 119.3 (4)

O1—C1—Re1 178.5 (7) C62—C61—P2 120.0 (4)

O2—C2—Re1 178.7 (6) C61—C62—C63 119.1 (6)

O3—C3—Re1 177.8 (6) C64—C63—C62 119.0 (6)

O4—C4—Re2 176.7 (7) C63—C64—C65 122.1 (6)

O5—C5—Re2 177.1 (7) C64—C65—C66 119.6 (6)

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical