• No results found

Barnes type Daehee polynomials

N/A
N/A
Protected

Academic year: 2020

Share "Barnes type Daehee polynomials"

Copied!
26
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Barnes-type Daehee polynomials

Dae San Kim

1

, Taekyun Kim

2*

, Takao Komatsu

3

and Jong-Jin Seo

4

*Correspondence: tkkim@kw.ac.kr 2Department of Mathematics,

Kwangwoon University, Seoul, 139-701, Republic of Korea Full list of author information is available at the end of the article

Abstract

In this paper, we consider Barnes-type Daehee polynomials of the first kind and of the second kind. From the properties of the Sheffer sequences of these polynomials arising from umbral calculus, we derive new and interesting identities.

MSC: 05A15; 05A40; 11B68; 11B75; 65Q05

1 Introduction

In this paper, we consider the polynomialsDn(x|a, . . . ,ar) andDn(x|a, . . . ,ar) called the Barnes-type Daehee polynomials of the first kind and of the second kind, whose generating functions are given by

r

j=

ln( +t) ( +t)aj– 

( +t)x=

n=

Dn(x|a, . . . ,ar)t n

n!, ()

r

j=

( +t)ajln( +t) ( +t)aj– 

( +t)x=

n=

Dn(x|a, . . . ,ar)t n

n!, ()

respectively, wherea, . . . ,ar= . Whenx= ,Dn(a, . . . ,ar) =Dn(|a, . . . ,ar) andDn(a, . . . ,ar) =Dn(|a, . . . ,ar) are called the Barnes-type Daehee numbers of the first kind and of the second kind, respectively.

Recall that the Daehee polynomials of the first kind and of the second kind of orderr, denoted byD(r)n (x) andD(r)n (x), respectively, are given by the generating functions to be

ln( +t) t

r

( +t)x=

n= D(r)n(x)t

n

n!,

( +t)ln( +t) t

r

( +t)x=

n= D(r)n (x)t

n

n!,

respectively. Ifa =· · ·=ar= , thenD(r)n(x) =Dn(x|, . . . , 

r

) andD(r)n (x) =Dn(x|, . . . , 

r ).

Daehee polynomials were defined by the second author [] and have been investigated in [–].

In this paper, we consider Barnes-type Daehee polynomials of the first kind and of the second kind. From the properties of the Sheffer sequences of these polynomials arising from umbral calculus, we derive new and interesting identities.

(2)

2 Umbral calculus

LetCbe the complex number field and letF be the set of all formal power series in the variablet:

F=

f(t) =

k= ak

k!t

kakC

. ()

LetP=C[x] and letP∗be the vector space of all linear functionals onP.L|p(x)is the action of the linear functionalLon the polynomialp(x), and we recall that the vector space operations onP∗are defined byL+M|p(x)=L|p(x)+M|p(x),cL|p(x)=cL|p(x), wherecis a complex constant inC. Forf(t)∈F, let us define the linear functional onP by setting

f(t)|xn=an (n≥). ()

In particular,

tk|xn=n!δn,k (n,k≥), ()

whereδn,kis the Kronecker symbol.

ForfL(t) =k=Lk!|xktk, we havefL(t)|xn=L|xn. That is,L=fL(t). The mapLfL(t) is a vector space isomorphism fromP∗ontoF. Henceforth,Fdenotes both the algebra of formal power series intand the vector space of all linear functionals onP, and therefore an elementf(t) ofFwill be thought of as both a formal power series and a linear functional. We callFtheumbral algebraand theumbral calculusis the study of umbral algebra. The orderO(f(t)) of a power seriesf(t) (= ) is the smallest integerkfor which the coefficient oftk does not vanish. IfO(f(t)) = , thenf(t) is called adelta series; ifO(f(t)) = , then f(t) is called aninvertible series. Forf(t),g(t)F withO(f(t)) =  andO(g(t)) = , there exists a unique sequencesn(x) (degsn(x) =n) such thatg(t)f(t)k|sn(x)=n!δn,k, forn,k≥. Such a sequencesn(x) is called theSheffer sequencefor (g(t),f(t)), which is denoted by sn(x)∼(g(t),f(t)).

Forf(t),g(t)Fandp(x)∈P, we have

f(t)g(t)|p(x)=f(t)|g(t)p(x)=g(t)|f(t)p(x) ()

and

f(t) =

k=

f(t)|xkt k

k!, p(x) =

k=

tk|p(x)x k

k! ()

[, Theorem ..]. Thus, by (), we get

tkp(x) =p(k)(x) =d kp(x)

dxk and e

ytp(x) =p(x+y). ()

(3)

Lemma  The sequence sn(x)is Sheffer for(g(t),f(t))if and only if

g(f¯(t))e

y¯f(t)=

k= sk(y)

k! t

k (yC),

wheref¯(t)is the compositional inverse of f(t).

For sn(x)∼ (g(t),f(t)), we have the following equations [, Theorem .., Theo-rem .., TheoTheo-rem ..]:

f(t)sn(x) =nsn–(x) (n≥), ()

sn(x) = n

j=j!

gf¯(t)–f¯(t)j|xnxj, ()

sn(x+y) = n

j=

n j

sj(x)pn–j(y), ()

wherepn(x) =g(t)sn(x).

Assume thatpn(x)∼(,f(t)) andqn(x)∼(,g(t)). Then the transfer formula [, Corol-lary ..] is given by

qn(x) =x

f(t) g(t)

n

x–pn(x) (n≥).

Forsn(x)∼(g(t),f(t)) andrn(x)∼(h(t),l(t)), assume that

sn(x) = n

m=

Cn,mrm(x) (n≥).

Then we have [, p.]

Cn,m=  m!

h(¯f(t)) g(f¯(t))l

¯ f(t)mxn

. ()

3 Main results

We now note thatDn(x|a, . . . ,ar) is the Sheffer sequence for

g(t) = r

j=

eajt–  t

and f(t) =et– .

Therefore,

Dn(x|a, . . . ,ar)∼ r

j=

eajt–  t

,et– 

. ()

Dn(x|a, . . . ,ar) is the Sheffer sequence for

g(t) = r

j=

eajt–  teajt

(4)

So,

Dn(x|a, . . . ,ar)r

j=

eajt–  teajt

,et– 

. ()

3.1 Explicit expressions

Recall that Barnes’ multiple Bernoulli polynomialsBn(x|a, . . . ,ar) are defined by the gen-erating function as

tr r

j=(eajt– ) ext=

n=

Bn(x|a, . . . ,ar)t n

n!, ()

wherea, . . . ,ar=  [–]. Let (n)j=n(n– )· · ·(n–j+ ) (j≥) with (n)= . The (signed) Stirling numbers of the first kindS(n,m) are defined by

(x)n= n

m=

S(n,m)xm.

Theorem 

Dn(x|a, . . . ,ar) = n

m=

S(n,m)Bm(x|a, . . . ,ar) ()

= n

j= n

l=j

n l

S(l,j)Dn–l(a, . . . ,ar)

xj ()

= n

m=

n m

Dn–m(a, . . . ,ar)(x)m, ()

Dn(x|a, . . . ,ar) = n

m=

S(n,m)Bm(x+a+· · ·+ar|a, . . . ,ar) ()

= n

j= n

l=j

n l

S(l,j)Dn–l(a, . . . ,ar)

xj ()

= n

m=

n m

Dn–m(a, . . . ,ar)(x)m. ()

Proof Since

r

j=

eajt–  t

Dn(x|a, . . . ,ar)∼,et–  ()

and

(5)

we have

Dn(x|a, . . . ,ar) = r

j=

t eajt– 

(x)n

= n

m= S(n,m)

r

j=

t eajt– 

xm

= n

m=

S(n,m)Bm(x|a, . . . ,ar).

So, we get (). Similarly, by

r

j=

eajt–  teajt

Dn(x|a, . . . ,ar)∼

,et–  ()

and (), we have

Dn(x|a, . . . ,ar) = r

j=

teajt eajt– 

(x)n

= n

m= S(n,m)

r

j=

teajt eajt– 

xm

= n

m=

S(n,m)e(a+···+ar)t r

j=

t eajt– 

xm

= n

m=

S(n,m)Bm(x+a+· · ·+ar|a, . . . ,ar).

Therefore, we get (). By () with (), we get

Dn(x|a, . . . ,ar) = n

j=j!

r

j=

ln( +t) ( +t)aj– 

ln( +t)jxn

xj.

Since r

j=

ln( +t) ( +t)aj– 

ln( +t)jxn

= r

j=

ln( +t) ( +t)aj– 

ln( +t)jxn

= r

j=

ln( +t) ( +t)aj– 

j!

l=j S(l,j)

tl l!x

n

=j! n

l=j

n l

S(l,j)

r

j=

ln( +t) ( +t)aj– 

xn–l

(6)

=j! n

l=j

n l

S(l,j)

i=

Di(a, . . . ,ar)t i

i! xn–l

=j! n

l=j

n l

S(l,j)Dn–l(a, . . . ,ar),

we obtain ().

Similarly, by () with (), we get

Dn(x|a, . . . ,ar) = n

j=j!

r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)jxn

xj.

Since

r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)jxn

= r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)jxn

=j! n

l=j

n l

S(l,j)

r

j=

( +t)ajln( +t) ( +t)aj– 

xn–l

=j! n

l=j

n l

S(l,j)

i=

Di(a, . . . ,ar)t i

i! xn–l

=j! n

l=j

n l

S(l,j)Dn–l(a, . . . ,ar),

we obtain (). Next, we obtain

Dn(y|a, . . . ,ar) =

i=

Di(y|a, . . . ,ar)t i

i! xn

= r

j=

ln( +t) ( +t)aj– 

( +t)yxn

= r

j=

ln( +t) ( +t)aj– 

m= (y)mt

m

m!x n

= n

m= (y)m

n m

r

j=

ln( +t) ( +t)aj– 

xn–m

= n

m=

n m

Dn–m(a, . . . ,ar)(y)m.

(7)

Similarly,

Dn(y|a, . . . ,ar) =

i=

Di(y|a, . . . ,ar)t i

i! xn

= r

j=

( +t)ajln( +t) ( +t)aj– 

( +t)yxn

= r

j=

( +t)ajln( +t) ( +t)aj– 

m= (y)m

tm m!x

n

= n

m= (y)m

n m

r

j=

( +t)ajln( +t) ( +t)aj– 

xn–m

= n

m=

n m

Dn–m(a, . . . ,ar)(y)m.

Thus, we get the identity ().

3.2 Sheffer identity

Theorem 

Dn(x+y|a, . . . ,ar) = n

j=

n j

Dj(x|a, . . . ,ar)(y)n–j, ()

Dn(x+y|a, . . . ,ar) = n

j=

n j

Dj(x|a, . . . ,ar)(y)n–j. ()

Proof By () with

pn(x) = r

j=

eajt–  t

Dn(x|a, . . . ,ar)

= (x)n

,et– ,

using (), we have (). By () with

pn(x) = r

j=

eajt–  teajt

Dn(x|a, . . . ,ar)

= (x)n∼,et– ,

using (), we have ().

3.3 Difference relations

Theorem 

Dn(x+ |a, . . . ,ar) –Dn(x|a, . . . ,ar) =nDn–(x|a, . . . ,ar), ()

(8)

Proof By () with (), we get

et– Dn(x|a, . . . ,ar) =nDn–(x|a, . . . ,ar).

By (), we have ().

Similarly, by () with (), we get

et– Dn(x|a, . . . ,ar) =nDn–(x|a, . . . ,ar).

By (), we have ().

3.4 Recurrence

Theorem 

Dn+(x|a, . . . ,ar) =xDn(x– |a, . . . ,ar)

n

m= n

i=m n

l=i r

j=i+ 

n l

i+ 

m

S(l,i)

×Bi+–m(–aj)i+–mDn–l(a, . . . ,ar)

(x– )m, ()

Dn+(x|a, . . . ,ar) =

x+ r

j= aj

Dn(x– |a, . . . ,ar)

n

m= n

i=m n

l=i r

j=i+ 

n l

i+ 

m

S(l,i)

×Bi+–m(–aj)i+–mDn–l(a, . . . ,ar)

(x– )m, ()

where Bnis the nth ordinary Bernoulli number.

Proof By applying

sn+(x) =

xg

(t)

g(t)

f(t)sn(x) ()

[, Corollary ..] with (), we get

Dn+(x|a, . . . ,ar) =xDn(x– |a, . . . ,ar) –e–tg

(t)

g(t)Dn(x|a, . . . ,ar).

Now,

g(t) g(t) =

lng(t)

= r

j=

(9)

= r

j= ajeajt eajt– 

r t

= r

j=

i=j(eait– )(ajteajteajt+ ) trj=(eajt– ) .

Since

r

j= ajteajt eajt– r=

r j=

i=j(eait– )(ajteajteajt+ ) r

j=(eajt– )

=  (

r

j=a· · ·aj–ajaj+· · ·ar)tr++· · · (a· · ·ar)tr+· · ·

= 

r

j= aj

t+· · ·

is a series with order≥, by () we have

Dn+(x|a, . . . ,ar)

=xDn(x– |a, . . . ,ar) –e–t r

j= ajteajt eajt––r

t Dn(x|a, . . . ,ar)

=xDn(x– |a, . . . ,ar) –e–t r

j= ajteajt eajt––r

t

n

i= n

l=i

n l

S(l,i)Dn–l(a, . . . ,ar)xi

=xDn(x– |a, . . . ,ar) – n

i= n

l=i

n l

S(l,i)Dn–l(a, . . . ,ar)e–t r

j= ajteajt eajt– r

xi+ i+ .

Since

e–t r

j= ajteajt eajt– r

xi+=e–t r

j=

m= (–)mB

mamj

m! t

mr

xi+

=e–t r

j= i+

m=

i+  m

Bm(–aj)mxi+–mrxi+

= r

j= i+

m=

i+  m

Bm(–aj)m(x– )i+–m

= r

j= i

m=

i+  m

Bi+–m(–aj)i+–m(x– )m, ()

we have

Dn+(x|a, . . . ,ar) =xDn(x– |a, . . . ,ar)

n

i= n

l=i r

j= i

m=i+ 

n l

i+ 

m

(10)

×Bi+–m(–aj)i+–mDn–l(a, . . . ,ar)(x– )m

=xDn(x– |a, . . . ,ar)

n

m= n

i=m n

l=i r

j=i+ 

n l

i+ 

m

S(l,i)

×Bi+–m(–aj)i+–mDn–l(a, . . . ,ar)

(x– )m,

which is the identity ().

Next, by applying () with (), we get

Dn+(x|a, . . . ,ar) =xDn(x– |a, . . . ,ar) –e–tg

(t)

g(t)Dn(x|a, . . . ,ar).

Now,

g(t) g(t) =

lng(t)

= r

j=

lneajt– rlnt r

j= aj

t

= r

j= ajeajt eajt– 

r t

r

j= aj.

By () we have

Dn+(x|a, . . . ,ar)

=

x+ r

j= aj

Dn(x– |a, . . . ,ar)

e–t r

j= ajteajt eajt––r

t Dn(x|a, . . . ,ar)

=

x+ r

j= aj

Dn(x– |a, . . . ,ar)

e–t r

j= ajteajt eajt––r

t

n

i= n

l=i

n l

S(l,i)Dn–l(a, . . . ,ar)xi

=

x+ r

j= aj

Dn(x– |a, . . . ,ar)

n

i= n

l=i

n l

S(l,i)Dn–l(a, . . . ,ar)e–t r

j= ajteajt eajt– r

xi+ i+ .

(11)

3.5 Differentiation

Theorem 

d

dxDn(x|a, . . . ,ar) =n! n–

l=

(–)n–l–

l!(nl)Dl(x|a, . . . ,ar), ()

d

dxDn(x|a, . . . ,ar) =n! n–

l=

(–)n–l–

l!(nl)Dl(x|a, . . . ,ar). ()

Proof We shall use

d dxsn(x) =

n–

l=

n l

¯

f(t)|xn–lsl(x)

(cf.[, Theorem ..]). Since

¯

f(t)|xn–l=ln( +t)|xn–l=

m=

(–)m–tm m

xn–l

= n–l

m= (–)m–

m

tm|xn–l

= n–l

m= (–)m–

m (n–l)!δm,n–l = (–)n–l–(n–l– )!,

with (), we have

d

dxDn(x|a, . . . ,ar) = n–

l=

n l

(–)n–l–(n–l– )!Dl(x|a, . . . ,ar)

=n! n–

l=

(–)n–l–

l!(nl)Dl(x|a, . . . ,ar),

which is the identity (). Similarly, with (), we have the identity ().

3.6 More relations

The classical Cauchy numberscnare defined by

t

ln( +t)=

n= cn

tn n!

(seee.g.[, ]).

Theorem 

Dn(x|a, . . . ,ar) =xDn–(x– |a, . . . ,ar)

+r n

n

l=

n l

(12)

–

Observe that

(13)

is a series with order≥, we have

Therefore, we obtain

Dn(x|a, . . . ,ar) =xDn–(x– |a, . . . ,ar)

(14)

=

Observe that

∂t

(15)

=

Therefore, we obtain

which is the identity ().

3.7 Relations including the Stirling numbers of the first kind

(16)

×

r

l+

i=

l+  i

ciDl+–i(–|a, . . . ,ar)

r

j= l+

i=

l+  i

ajciDl+–i(aj– |a, . . . ,ar,aj)

, ()

n–m

l=

n l

S(nl,m)Dl(a, . . . ,ar)

= n–m

l=

n–  l

S(nl– ,m– )Dl(–|a, . . . ,ar)

+  n

n–m–

l=

n l+ 

S(n–l– ,m)

×

r

l+

i=

l+  i

ciDl+–i(–|a, . . . ,ar)

r

j= l+

i=

l+  i

ajciDl+–i(–|a, . . . ,ar,aj)

+ n–m–

l=

n–  l

S(nl– ,m) r

j=

ajDl(–|a, . . . ,ar). ()

Proof We shall compute

r

j=

ln( +t) ( +t)aj– 

ln( +t)mxn

in two different ways. On the one hand,

r

j=

ln( +t) ( +t)aj– 

ln( +t)mxn

= r

j=

ln( +t) ( +t)aj– 

ln( +t)mxn

= r

j=

ln( +t) ( +t)aj– 

l= m!

(l+m)!S(l+m,m)t l+mxn

= n–m

l= m!

(l+m)!S(l+m,m)(n)l+m r

j=

ln( +t) ( +t)aj– 

xn–l–m

= n–m

l= m!

n l+m

S(l+m,m)Dn–l–m(a, . . . ,ar)

= n–m

l= m!

n l

(17)

On the other hand, r

j=

ln( +t) ( +t)aj– 

ln( +t)mxn

=

∂t r

j=

ln( +t) ( +t)aj– 

ln( +t)m

xn–

=

∂t r

j=

ln( +t) ( +t)aj– 

ln( +t)mxn–

+ r

j=

ln( +t) ( +t)aj– 

∂t

ln( +t)mxn–

. ()

The second term of () is equal to r

j=

ln( +t) ( +t)aj– 

∂t

ln( +t)mxn–

=m r

j=

ln( +t) ( +t)aj– 

( +t)–ln( +t)m–xn–

=m r

j=

ln( +t) ( +t)aj– 

( +t)–

n–m

l=

(m– )!

(l+m– )!S(l+m– ,m– )t

l+m–xn–

=m n–m

l=

(m– )!

(l+m– )!S(l+m– ,m– )(n– )l+m–

×

r

j=

ln( +t) ( +t)aj– 

( +t)–xn–l–m

=m! n–m

l=

n–  l+m– 

S(l+m– ,m– )Dn–l–m(–|a, . . . ,ar)

=m! n–m

l=

n–  l

S(nl– ,m– )Dl(–|a, . . . ,ar).

The first term of () is equal to

∂t r

j=

ln( +t) ( +t)aj– 

ln( +t)mxn–

=

∂t r

j=

ln( +t) ( +t)aj– 

ln( +t)mxn–

=

∂t r

j=

ln( +t) ( +t)aj– 

n–m–

l= m!

(l+m)!S(l+m,m)t l+mxn–

= n–m–

l= m!

(l+m)!S(l+m,m)(n– )l+m

∂t r

j=

ln( +t) ( +t)aj– 

xn–l–m–

(18)

= Next, we shall compute

(19)

in two different ways. On the one hand, r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)mxn

= r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)mxn

= r

j=

( +t)ajln( +t) ( +t)aj– 

l= m!

(l+m)!S(l+m,m)t l+mxn

= n–m

l= m!

(l+m)!S(l+m,m)(n)l+m r

j=

( +t)ajln( +t) ( +t)aj– 

xn–l–m

= n–m

l= m!

n l+m

S(l+m,m)Dn–l–m(a, . . . ,ar)

= n–m

l= m!

n l

S(nl,m)Dl(a, . . . ,ar).

On the other hand, r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)mxn

=

∂t r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)m

xn–

=

∂t r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)mxn–

+ r

j=

( +t)ajln( +t) ( +t)aj– 

∂t

ln( +t)mxn–

. ()

The second term of () is equal to r

j=

( +t)ajln( +t) ( +t)aj– 

∂t

ln( +t)mxn–

=m r

j=

( +t)ajln( +t) ( +t)aj– 

( +t)–ln( +t)m–xn–

=m r

j=

( +t)ajln( +t) ( +t)aj– 

( +t)–

n–m

l=

(m– )!

(l+m– )!S(l+m– ,m– )t

l+m–xn–

=m n–m

l=

(m– )!

(l+m– )!S(l+m– ,m– )(n– )l+m–

×

r

j=

( +t)ajln( +t) ( +t)aj– 

(20)

=m! n–m

l=

n–  l+m– 

S(l+m– ,m– )Dn–l–m(–|a, . . . ,ar)

=m! n–m

l=

n–  l

S(nl– ,m– )Dl(–|a, . . . ,ar).

The first term of () is equal to

∂t r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)mxn–

=

∂t r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)mxn–

=

∂t r

j=

( +t)ajln( +t) ( +t)aj– 

n–m–

l= m!

(l+m)!S(l+m,m)t l+mxn–

= n–m–

l= m!

(l+m)!S(l+m,m)(n– )l+m

∂t r

j=

( +t)ajln( +t) ( +t)aj– 

xn–l–m–

.

From the proof of (), we recall

∂t r

j=

( +t)ajln( +t) ( +t)aj– 

= 

 +t r

i=

( +t)ailn( +t) ( +t)ai– 

r

j=(ln(+t)tajt(+t)aj (+t)aj–) t

+ 

 +t r

i=

( +t)ailn( +t) ( +t)ai– 

r

j= aj.

Hence, the first term of () is equal to

n–m–

l= m!

n–  l+m

S(l+m,m)

×

r

i=

( +t)ailn( +t) ( +t)ai– 

( +t)–

r

j=(ln(+t)tajt(+t)aj (+t)aj–)

t x

n–l–m–

+ r

j= aj

r

i=

( +t)ailn( +t) ( +t)ai– 

( +t)–xn–l–m–

=m! n–m–

l=

n–  l

S(nl– ,m)

×

r

i=

( +t)ailn( +t) ( +t)ai– 

( +t)–

r

j=(ln(+t)tajt(+t)aj (+t)aj–)

t x

(21)
(22)

r

j= l+

i=

l+  i

ajciDl+–i(–|a, . . . ,ar,aj)

+m! n–m–

l=

n–  l

S(nl– ,m) r

j=

ajDl(–|a, . . . ,ar).

Therefore, we get ().

3.8 Relations with the falling factorials

Theorem 

Dn(x|a, . . . ,ar) = n

m=

n m

Dn–m(a, . . . ,ar)(x)m, ()

Dn(x|a, . . . ,ar) = n

m=

n m

Dn–m(a, . . . ,ar)(x)m. ()

Proof For () and (), assume thatDn(x|a, . . . ,ar) = n

m=Cn,m(x)m. By (), we have

Cn,m=  m!

r

j=(e ajln(+t)

– ln(+t) )

tmxn

=  m!

r

j= ln

( +t) ( +t)aj– 

tmxn

=

n m

r

j=

ln( +t) ( +t)aj– 

xn–m

=

n m

Dn–m(a, . . . ,ar).

Thus, we get the identity ().

Similarly, for () and (), assume thatDn(x|a, . . . ,ar) =nm=Cn,m(x)m. By (), we have

Cn,m=  m!

r

j=( e ajln(+t)

– eajln(+t)ln(+t))

tmxn

=  m!

r

j=

( +t)ajln( +t) ( +t)aj– 

tmxn

=

n m

r

j=

( +t)ajln( +t) ( +t)aj– 

xn–m

=

n m

Dn–m(a, . . . ,ar).

(23)

3.9 Relations with higher-order Frobenius-Euler polynomials

Forλ∈Cwithλ= , the Frobenius-Euler polynomials of orderr,Hn(r)(x|λ) are defined by the generating function

 –λ

etλ r

ext=

n=

Hn(r)(x|λ)t n

n!

(seee.g.[, ]).

Theorem 

Dn(x|a, . . . ,ar) = n

m= n–m

j= n–m–j

l=

s j

nj

l

(n)j

×( –λ)–jS(n–jl,m)Dl(a, . . . ,ar)

Hm(s)(x|λ), ()

Dn(x|a, . . . ,ar) = n

m= n–m

j= n–m–j

l=

s j

nj

l

(n)j

×( –λ)–jS(njl,m)Dl(a, . . . ,ar)

Hm(s)(x|λ). ()

Proof For () and

Hn(s)(x|λ)∼

etλ

 –λ

s ,t

, ()

assume thatDn(x|a, . . . ,ar) =nm=Cn,mHm(s)(x|λ). By (), similarly to the proof of (), we have

Cn,m=  m!

(eln(+–λt)–λ)s r

j=(

eajln(+t)– ln(+t) )

ln( +t)mxn

= 

m!( –λ)s r

j=

ln( +t) ( +t)aj– 

ln( +t)m( –λ+t)sxn

= 

m!( –λ)s r

j=

ln( +t) ( +t)aj– 

ln( +t)m

min{s,n}

i=

s i

( –λ)s–itixn

= 

m!( –λ)s n–m

i=

s i

( –λ)s–i(n)i r

j=

ln( +t) ( +t)aj– 

ln( +t)mxn–i

= 

m!( –λ)s n–m

i=

s i

( –λ)s–i(n) i

n–m–i

l= m!

ni

l

S(n–il,m)Dl(a, . . . ,ar)

= n–m

i= n–m–i

l=

s i

ni

l

(n)i( –λ)–iS(n–il,m)Dl(a, . . . ,ar).

(24)

Next, for () and (), assume thatDn(x|a, . . . ,ar) =nm=Cn,mHm(s)(x|λ). By (), simi-larly to the proof of (), we have

Cn,m=  m!

(eln(+t)–λ –λ )

s r

j=( e ajln(+t)

– eajln(+t)ln(+t))

ln( +t)mxn

= 

m!( –λ)s r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)m( –λ+t)sxn

= 

m!( –λ)s r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)m

min{s,n}

i=

s i

( –λ)s–itixn

= 

m!( –λ)s n–m

i=

s i

( –λ)s–i(n)i r

j=

( +t)ajln( +t) ( +t)aj– 

ln( +t)mxn–i

= 

m!( –λ)s n–m

i=

s i

( –λ)s–i(n)i n–m–i

l= m!

ni

l

S(nil,m)Dl(a, . . . ,ar)

= n–m

i= n–m–i

l=

s i

ni

l

(n)i( –λ)–iS(n–il,m)Dl(a, . . . ,ar).

Thus, we get the identity ().

3.10 Relations with higher-order Bernoulli polynomials

Bernoulli polynomialsB(r)n (x) of orderrare defined by

t et– 

r ext=

n= B(r)n(x)

n! t n

(seee.g.[, Section .]). In addition, Cauchy numbers of the first kindC(r)n of orderrare defined by

t

ln( +t) r

=

n= C(r)n

n! t n

(seee.g.[, (.)], [, ()]).

Theorem 

Dn(x|a, . . . ,ar)

= n

m= n–m

i= n–m–i

l=

n i

ni

l

C(s)i S(nil,m)Dl(a, . . . ,ar)

B(s)m(x), ()

Dn(x|a, . . . ,ar)

= n

m= n–m

i= n–m–i

l=

n i

ni

l

C(s)i S(nil,m)Dl(a, . . . ,ar)

(25)

Proof For () and

Thus, we get the identity ().

(26)

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details

1Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea.2Department of Mathematics,

Kwangwoon University, Seoul, 139-701, Republic of Korea.3Graduate School of Science and Technology, Hirosaki

University, Hirosaki, 036-8561, Japan.4Department of Applied Mathematics, Pukyong National University, Pusan, 608-739,

Republic of Korea.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MOE) (No. 2012R1A1A2003786). The authors would like to thank the referee for his valuable comments.

Received: 14 January 2014 Accepted: 30 April 2014 Published:09 May 2014

References

1. Kim, T: An invariantp-adic integral associated with Daehee numbers. Integral Transforms Spec. Funct.13, 65-69 (2002)

2. Kim, DS, Kim, T, Rim, S-H: On the associated sequence of special polynomials. Adv. Stud. Contemp. Math. (Kyungshang)23, 355-366 (2013)

3. Ozden, H, Cangul, IN, Simsek, Y: Remarks onq-Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. (Kyungshang)18, 41-48 (2009)

4. Park, J-W, Rim, S-H, Kwon, J: The twisted Daehee numbers and polynomials. Adv. Differ. Equ.2014, 1 (2014) 5. Roman, S: The Umbral Calculus. Dover, New York (2005)

6. Kim, T: On Euler-Barnes multiple zeta functions. Russ. J. Math. Phys.10, 261-267 (2003)

7. Kim, T: Barnes-type multipleq-zeta functions andq-Euler polynomials. J. Phys. A43, 255201 (2010)

8. Bayad, A, Kim, T, Kim, WJ, Lee, SH: Arithmetic properties ofq-Barnes polynomials. J. Comput. Anal. Appl.15, 111-117 (2013)

9. Comtet, L: Advanced Combinatorics. Reidel, Dordrecht (1974) 10. Komatsu, T: Poly-Cauchy numbers. Kyushu J. Math.67, 143-153 (2013)

11. Kim, DS, Kim, T: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Adv. Differ. Equ.2012, 196 (2012)

12. Kim, DS, Kim, T, Lee, S-H: Poly-Bernoulli polynomials arising from umbral calculus. arXiv:1306.6697 13. Carlitz, L: A note on Bernoulli and Euler polynomials of the second kind. Scr. Math.25, 323-330 (1961) 14. Liang, H, Wuyungaowa: Identities involving generalized harmonic numbers and other special combinatorial

sequences. J. Integer Seq.15, Article 12.9.6 (2012)

10.1186/1687-1847-2014-141

References

Related documents

This thesis uses parental reported service utilisation data from a large epidemiological survey to provide estimates of the costs of public service involvement with

To confirm that the effect induced by CTs was associated with the arrest of cells in a particular phase, we analyzed cell distribution at each phase of the cell cycle by

In order to guarantee performance SLAs, service providers in the Cloud tend to over provision mainly due to the lack of capacity planning tools that guide

Given, then, that it proves possible to model this relationship between risk and equity discount rates, it should be possible, assuming we can also model the term risk associated

Thus the 2010 control for England’s Saturday match was taken as the average rate per thousand population aged 16 or over (based on ONS 2010 mid-year estimates) for the four

Ethnicity of selected child , by multiple disadvantage 64 Table B2.1 Reasons for receipt of childcare by pre-school children, by multiple disadvantage 65 Table B3.1 Reasons

The diff erence between the code for drawing a circle and the code for drawing a Voronoi diagram using the traditional ‘computational geometry’ approach is huge: the two

Reaching movements in a null field during early de-adaptation (i.e. Block N5) following sham tDCS had a summed error in hand trajectory that was opposite in direction (but of a