• No results found

Characterization of probability distributions by conditional expectation of function of record statistics

N/A
N/A
Protected

Academic year: 2021

Share "Characterization of probability distributions by conditional expectation of function of record statistics"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

ORIGINAL ARTICLE

Characterization of probability distributions by

conditional expectation of function of record statistics

Zubdah-e-Noor, Haseeb Athar

*

Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh 202 002, India

Received 11 December 2012; revised 3 July 2013; accepted 7 July 2013 Available online 17 September 2013

KEYWORDS Record values;

Conditional expectation; Characterization; Probability distributions

Abstract In this paper, two general classes of distributions have been characterized through con-ditional expectation of power of difference of two record statistics. Further, some particular cases and examples are also discussed.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 62E10; 62G30; 60E05

ª 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

Record values are found in many situations of daily life as well as in many statistical applications. Often, we are interested in observing new records and in recording them, e.g. Olympic re-cords or world rere-cords in sports.

Record values are defined by Chandler[1] as a model of successive extreme sequence of identically and independent random variables. It may also be helpful as a model for succes-sively largest insurance claims in non-life insurance, for highest water-levels or highest temperatures. Record values are also useful in reliability theory. To be precise, record values are de-fined by means of record times. That is, those times have to be described at which successively largest values appear. Chandler [1] shows several properties of record value and notes their

Markovian structure. For detailed survey on the upper record values, one may refer to Arnold et al.[2]and Ahsanullah[3]. Suppose that X1, X2, . . . is a sequence of independent and

iden-tically distributed (i.i.d.) random variables with distribution func-tion (df) F(x) and probability density funcfunc-tion (pdf) f(x). Let Yn= max(min){X1, X2, . . ., Xn} for n P 1. We say Xjis an upper

(lower) record value of {Xn, n P 1}, if Yj> (<)Yj1, j > 1. By

definition, X1is an upper as well as lower record value. One can

transform the upper records to lower records by replacing the ori-ginal sequence of {Xj} by { Xj, j P 1} or (if P(Xj> 0) = 1 for

all j) by {1/Xj, j P 1}; the lower record values of this sequence will

correspond to the upper record values of the original sequence. The indices at which the upper record values occur are called the record times {U(n)}, n > 0, where U(n) = min{jŒj > U(n  1), Xj> XU(n1), n > 1} and U(1) = 1. The record times of

the sequence {Xn, n P 1} are the same as those for the sequence

{F(Xn), n P 1}.

The joint pdf of the r record values XU(1), XU(2), . . ., XU(r)is

given by fðx1; x2; . . . ; xrÞ ¼ fðxrÞ Yr1 i¼1 fðxiÞ FðxiÞ ; ð1:1Þ

* Corresponding author. Tel.: +91 5712701251. E-mail address:haseebathar@hotmail.com(H. Athar).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

1110-256Xª 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

http://dx.doi.org/10.1016/j.joems.2013.07.008

Open access under CC BY-NC-ND license. Open access under CC BY-NC-ND license.

(2)

for 1 < x1< x2<   < xr1<1 and FðxÞ ¼ 1  FðxÞ.

The probability density function of XU(r)is given by

fUðrÞðxÞ ¼

1

CðrÞ½ lnðFðxÞÞ

r1

fðxÞ; a < x < b; ð1:2Þ and the joint pdf of XU(r)and XU(s)is given by

fUðrÞ;UðsÞðx; yÞ ¼ 1 CðrÞCðs  rÞ½ lnðFðxÞÞ r1  ½ lnðFðyÞÞ þ lnðFðxÞÞsr1 fðxÞ FðxÞfðyÞ; a < x < y < b: ð1:3Þ

The conditional pdf of XU(s)given XU(r)= x, 1 6 r < s is[4]

fsjrðyjxÞ ¼ 1 Cðs  rÞ½ ln FðyÞ þ ln FðxÞ sr1fðyÞ FðxÞ; x < y: ð1:4Þ

Characterization of distributions through conditional expec-tation of record values have been considered among others by Nagraja [5], Franco and Ruiz ([6,7]), Lo´pez-Bla´zquez and Moreno-Rebollo [8], Dembin´ska and Wesolowski [9], Raqab [10], Athar et al. [11], Khan and Alzaid [12] and Wu [13]. In these papers, the authors have assumed the linearity of regression while characterizing the distribution functions.

Khan et al. [14]characterized a family of continuous dis-tributions through difference of two conditional expectations of record values. In this paper, we generalize the result of Khan et al. [14] and have characterized two general forms of distributions through conditional expectation of p th power of difference of functions of two upper record values.

2. Characterization results

Theorem 2.1. Let X be an absolutely continuous random variable with df F(x) and pdf f(x) on the support (a, b). Then, for two values of r and s, 1 6 r< s 6 n,

E½fhðXUðsÞÞ  hðXUðrÞÞg p jXUðrÞ¼ x ¼ gr;s;p ¼ 1 ap Cðp þ s  rÞ Cðs  rÞ ; ð2:1Þ if and only if FðxÞ ¼ 1  eahðxÞ; a >0; ð2:2Þ

where h(x) is a continuous, differentiable, and non-decreasing function of x and p is a positive integer.

Proof. To prove the necessary part, we have for sP r + 1

E½fhðXUðsÞÞ  hðXUðrÞÞg p jXUðrÞ¼ x ¼ 1 ðs  r  1Þ! Zb x

ðhðyÞ  hðxÞÞp½ ln FðyÞ þ ln FðxÞsr1fðyÞ FðxÞdy

¼ 1

ðs  r  1Þ! Zb

x

ðhðyÞ  hðxÞÞp½ahðyÞ  ahðxÞsr1e ahðyÞ eahðxÞah 0 ðyÞdy ¼ a sr ðs  r  1Þ! Zb x

ðhðyÞ  hðxÞÞpþsrþ1eaðhðyÞhðxÞÞh0ðyÞdy:

Let h(y) h(x) = t, then

E½fhðXUðsÞÞ  hðXUðrÞÞgpjXUðrÞ¼ x

¼ a sr ðs  r  1Þ! Z 1 0 tpþsr1eatdt ¼ a sr ðs  r  1Þ! ðp þ s  r  1Þ! apþsr ¼ 1 apðp þ s  r  1Þðp þ s  r  2Þ    ðs  rÞ: This proves the necessary part.

To prove the sufficiency part, suppose

E½fhðXUðsÞÞ  hðXUðrÞÞg p jXUðrÞ¼ x ¼ gr;s;p or, 1 ðs  r  1Þ! Z b x ðhðyÞ  hðxÞÞp½ ln FðyÞ þ ln FðxÞsr1 fðyÞdy ¼ gr;s;pFðxÞ:

Differentiating both sides w.r.t. x, we get

ph0ðxÞ 1 ðsr1Þ! Rb xðhðyÞ  hðxÞÞ p1 ½ ln FðyÞ þ ln FðxÞsr1fðyÞdy FðxÞfðxÞ 1 ðsr2Þ! Rb xðhðyÞ  hðxÞÞ p ½ ln FðyÞ þ ln FðxÞsr2fðyÞdy ¼ fðxÞgr;s;p or, ph0ðxÞ 1 ðsr1Þ! Rb xðhðyÞ  hðxÞÞ p1½ ln FðyÞ þ ln FðxÞsr1 fðyÞ FðxÞdy þfðxÞ FðxÞ 1 ðsr2Þ! Rb xðhðyÞ  hðxÞÞ p ½ ln FðyÞ þ ln FðxÞsr2 fðyÞ FðxÞdy ¼FðxÞfðxÞgr;s;p or, ph0ðxÞgr;s;p1þfðxÞ FðxÞgrþ1;s;p¼ fðxÞ FðxÞgr;s;p implying fðxÞ FðxÞ¼ ah 0ðxÞ as gr;s;p1¼ 1 ap1 Cðp þ s  r  1Þ Cðs  rÞ and gr;s;p grþ1;s;p¼ p ap Cðp þ s  r  1Þ Cðs  rÞ Hence the theorem. h

The case when p = 1,

which is the special case of Theorem 2.1, have been treated in Khan et al.[14].

Corollary 2.1. Let X be an absolutely continuous random variable with df F(x) and pdf f(x) on the support (a, b). Then, for r< s,

(3)

E½fhðXUðsÞÞ  hðXUðrÞÞg 2 jXUðrÞ¼ x ¼ 1 a2ðs  rÞðs  r þ 1Þ ð2:3Þ if and only if FðxÞ ¼ 1  eahðxÞ; a >0; ð2:4Þ

where h(x) is a continuous, differentiable, and non-decreasing function of x.

Proof. The proof is obvious at p = 2 in Theorem 2.1. h

Theorem 2.2. Let X be an absolutely continuous random variable with df F(x) and pdf f(x) on the support (a, b). Then, for two consecutive values of r and s, 1 6 r< s 6 n,

E½fhðXUðsÞÞ  hðXUðrÞÞgpjXUðrÞ¼ x ¼ a

Xp j¼0 p j   ðhðxÞÞpj b a  j ð2:5Þ if and only if FðxÞ ¼ ½ahðxÞ þ bc ; a –0; ð2:6Þ where a¼X p i¼0 ð1Þiþp p i   c cþ i  sr

and h(x) is a continuous and differentiable function of x.

Proof. To prove the necessary part, we have

E½fhðXUðsÞÞ  hðXUðrÞÞg p jXUðrÞ¼ x ¼ 1 ðs  r  1Þ! Z b x

ðhðyÞ  hðxÞÞp½ ln FðyÞ þ ln FðxÞsr1 fðyÞ FðxÞdy ¼ 1 ðs  r  1Þ! Z b x ðhðyÞ  hðxÞÞp lnFðxÞ FðyÞ  sr1 fðyÞ FðxÞdy ¼ 1 ðs  r  1Þ! Z b x ðhðyÞ  hðxÞÞp  ln ahðxÞ þ b ahðyÞ þ b  c  sr1 ahðyÞ þ b ahðxÞ þ b  c ach0ðyÞ ðahðyÞ þ bÞdy: Let ln ahðxÞ þ b ahðyÞ þ b  c ¼ t or ahðxÞ þ b ahðyÞ þ b  c ¼ et implying hðyÞ  hðxÞ ¼ 1 aðahðxÞ þ bÞð1  e t=cÞ or ðhðyÞ  hðxÞÞp¼ð1Þ p ap ðahðxÞ þ bÞ p ð1  et=cÞp: Then, we have

E½fhðXUðsÞÞ  hðXUðrÞÞgpjXUðrÞ¼ x

¼ ð1Þ p apðs  r  1Þ!ðahðxÞ þ bÞ pZ 1 0 ð1  et=cÞptsr1etdt ¼ ð1Þ p apðs  r  1Þ!ðahðxÞ þ bÞ pZ 1 0 Xp i¼0 p i ! ð1Þieit=ctsr1etdt ¼ ð1Þ p apðs  r  1Þ!ðahðxÞ þ bÞ pX p i¼0 p i ! ð1Þi Z 1 0 tsr1etði cþ1Þdt ¼ ð1Þ p apðs  r  1Þ!ðahðxÞ þ bÞ pX p i¼0 p i ! ð1Þiðs  r  1Þ! ðiþc cÞ sr ¼ð1Þ p ap ðahðxÞ þ bÞ pX p i¼0 p i ! ð1Þi c iþ c  sr :

This proves the necessary part. To prove sufficiency part, let

nr;s;pðxÞ ¼ E½fhðXUðsÞÞ  hðXUðrÞÞgpjXUðrÞ¼ x

¼ aX p j¼0 p j   ðhðxÞÞpj b a  j :

Now proceeding on the lines of Theorem 2.1, we have

fðxÞ FðxÞ¼

n0r;s;pðxÞ þ ph0ðxÞnr;s;p1ðxÞ

nr;s;pðxÞ  nrþ1;s;pðxÞ

: ð2:7Þ

Table 3.1 Examples based on the df F(x) = 1 eah(x)

. Distribution F(x) a h(x) Exponential 1 ehx h x 0 < x <1 Weibull 1 ehxp h xp 0 < x <1 Pareto 1 x a  h h log x a  a < x <1 Lomax 1 1 þ x a  p p log½1 þ x a   0 < x <1 Gompertz 1 exp k lðe lx 1Þ h i k l e lx  1 0 < x <1 Beta of I kind 1 (1  x)h h log(1  x) 0 < x < 1

Beta of II kind 1 (1 + x)1 1 log(1 + x) 0 < x <1

Extreme value I 1 exp[ex] 1 ex

0 < x <1 Log logistic 1 (1 + hxp

)1 1 log(1 + h xp) 0 < x <1

Burr type IX 1hcfð1þe2xÞk1gþ 1i1 1 loghcfð1þe2xÞk1gþ 1i 1 < x < 1

Burr type XII 1 (1 + hxp

)m m log(1 + h xp) 0 < x <1

(4)

Consider n0r;s;pðxÞ þ ph0ðxÞnr;s;p1ðxÞ ¼ pah0ðxÞ ð1Þp ap  ðahðxÞ þ bÞp1X p i¼0 p i ! ð1Þi c iþ c  sr þ ph0ðxÞð1Þ p1 ap1 ðahðxÞ þ bÞ p1Xp1 i¼0 p 1 i ! ð1Þi c iþ c  sr ¼ ph0ðxÞð1Þ p ap1 ðahðxÞ þ bÞ p1  X p i¼0 p i ! ð1Þi c iþ c  sr X p1 i¼0 p 1 i ! ð1Þi c iþ c  sr " # ¼ ph0ðxÞð1Þ p ap1 ðahðxÞ þ bÞ p1  X p i¼0 p i ! ð1Þi c iþ c  sr X p1 i¼0 p i ! ðp  iÞ p ð1Þ i c iþ c  sr " # ¼ ph0ðxÞð1Þ p ap1 ðahðxÞ þ bÞ p1  X p i¼0 p i ! ð1Þi c iþ c  sr X p1 i¼0 p i ! ð1Þi c iþ c  sr " þ1 p Xp1 i¼0 p i ! ð1Þii c iþ c  sr# ¼ ph0ðxÞð1Þ p ap1 ðahðxÞ þ bÞ p11 p Xp i¼0 p i ! ð1Þii c iþ c  sr

Table 3.2 Examples based on the df F(x) = 1 [ah(x) + b]c.

Distribution F(x) a b c h(x) Power function apxp ap 1 1 xp 0 < x 6 a Pareto 1 ap xp aq 0 p/q xq, q„ 0 a 6 x<1 Beta of I Kind 1 (1  x)p 1 0 p/q (1  x)q, q „ 0 0 6 x 6 1 1 1 p x Weibull 1 ehxp 1 0 h/q eqxp 0 6 x <1 h/c 1 1 xp Inverse Weibull ehxp 1 1 1 ehxp 0 6 x <1 Burr type II [1 + ex]k 1 1 1 (1 + ex)k 1 < x < 1

Burr type III [1 + xc]k 1 1 1 (1 + xc)k

0 6 x <1 Burr type IV ½1 þ ðcx xÞ 1=c k 1 1 1 ½1 þ ðcx xÞ 1=c k 0 6 x < c

Burr type V [1 + c etanx]k 1 1 1 [1 + c etan x]k

p/2 6 x 6 p/2

Burr type VI [1 + c eksinh x]k 1 1 1 [1 + c eksinh x]k

1 < x < 1

Burr type VII 2k(1 + tanhx)k

2k 1 1 [1 + tanh x]k

1 < x < 1

Burr type VIII 2

ptan1ex  k  2 p  k 1 1 (tan1ex)k 1 < x < 1

Burr type IX 1hcfð1þex2Þk1gþ2i1 c/2 1 c/2 1 (1 + ex)1

1 < x < 1 Burr type X ð1  ex2 Þk 1 1 1 ð1  ex2 Þk 0 < x <1 Burr type XI x1 2psin 2px  k  1 1 1 x1 2psin 2px  k 0 6 x 6 1

Burr type XII 1 (1 + hxp)m h 1

m xp 0 6 x <1 Cauchy 1 2þ1ptan1x 1p 12 1 tan 1x 1 < x < 1

(5)

and nr;s;pðxÞ  nrþ1;s;pðxÞ ¼ ð1Þp ap ðahðxÞ þ bÞ pX p i¼0 p i ! ð1Þi c iþ c  sr ð1Þ p ap ðahðxÞ þ bÞ pX p i¼0 p i ! ð1Þi c iþ c  sr1 ¼ð1Þ p ap ðahðxÞ þ bÞ pX p i¼0 p i ! ð1Þi c iþ c  sr 1iþ c c   ¼ ð1Þ p cap ðahðxÞ þ bÞ pX p i¼0 p i ! ð1Þi i c iþ c  sr :

Therefore in view of(2.7), we get

fðxÞ FðxÞ¼ pach0ðxÞ ðahðxÞ þ bÞ 1 p Pp i¼0 p i   ð1Þii c iþc sr Pp i¼0 p i   ð1Þi i c iþc sr ¼  ach0ðxÞ ahðxÞ þ b:

Hence the theorem. h

Corollary 2.2. Under the condition stated in Theorem 2.2

E½hðXUðsÞÞjXUðrÞ¼ x ¼ ahðxÞ þ b ð2:8Þ

where a¼ c 1þ c  sr and b¼  b a   ð1  aÞ if and only if FðxÞ ¼ ½ahðxÞ þ bc; a –0:

Proof. (2.8) can be proved in view of Theorem 2.2 at p= 1. h

3. Examples

SeeTables 3.1 and 3.2.

Acknowledgement

The authors acknowledge with thanks to both the referees and the Editor for their fruitful suggestions and comments

which led the overall improvement in the manuscript. Authors are also thankful to Professor A.H. Khan, Aligarh Muslim University, Aligarh, who helped in preparation of this manuscript.

References

[1]K.N. Chandler, The distribution and frequency of record values, J. R. Statist. Soc. B14 (1952) 220–228.

[2]B.C. Arnold, N. Balakrishnan, H.N. Nagraja, Records, John Wiley, New York, 1998.

[3]M. Ahsanullah, Record Values – Theory and Applications, University Press of America, Lanham, Maryland, 2004. [4]M. Ahsanullah, Record Statistics, Nova Science Publishers,

New York, 1995.

[5]H.N. Nagaraja, Some characterizations of continuous distributions based on regressions of adjacent order statistics and record values, Sankhya Ser. A 50 (1988) 70–73. [6]M. Franco, J.M. Ruiz, On characterization of continuous distributions by conditional expectation of record values, Sankhya Ser. A 58 (1996) 135–141.

[7]M. Franco, J.M. Ruiz, On characterization of distributions by expected values of order statistics and record values with gap, Metrika 45 (1997) 107–119.

[8]F. Lo´pez-Bla´zquez, J.L. Moreno-Rebollo, A characterization of distributions based on linear regression of order statistics and record values, Sankhya Ser. A 59 (1997) 311–323.

[9]A. Dembin´ska, J. Wesolowski, Linearity of regression for non-adjacent record values, J. Statist. Plann. Inference 90 (2000) 195– 205.

[10]M.Z. Raqab, Inferences for generalized exponential distribution based on record statistics, J. Statist. Plann. Inference 104 (2) (2002) 339–350.

[11]H. Athar, M. Yaqub, H.M. Islam, On characterization of distributions through linear regression of record values and order statistics, Aligarh J. Statist. 23 (2003) 97–105.

[12]A.H. Khan, A.A. Alzaid, Characterization of distributions through linear regression of non-adjacent generalized order statistics, J. Appl. Statist. Sci. 13 (2004) 123–136.

[13]J.W. Wu, On characterizing distributions by conditional expectation of functions of non-adjacent record values, J. Appl. Statist. Sci. 13 (2004) 137–145.

[14]A.H. Khan, M. Faizan, Z. Haque, Characterization of continuous distributions through record statistics, Commun. Korean Math. Soc. 25 (3) (2010) 485–489.

References

Related documents

Il confine tra il diritto alla salute, il consenso informato, oggi molto più articolato rispetto a un passato anche recente, e il diritto del paziente alla scelta della qualità

The numerical solution of the Faddeev equation is performed after truncating the interaction kernel to a dressed gluon-ladder exchange between any two quarks, thereby enabling a

increases with increasing NBE intensity from 86.27% to 93.54% for 250°C and 350°C annealed ZnO thin films and also it decrease to 85.47% for 450ºC annealed ZnO thin film

Sin embargo en vista de las situaciones de exclusión extrema expuestas, aquí se propone este recurso, como posible solución en caso de fracasar otras vías, para cubrir las

the effect of the internal control on the quality of management accounting information, (2) the.. influence of ethics on the quality of management accounting

B1 and R1 isolates showed high nitrogenase activity (7.99 and 7.15 n moles of ethylene /hr./mg of cell protein respectively). Total genomic DNA was isolated and PCR with 16S rRNA

In conclusion, in our study we have shown that serum VEGF levels are elevated in patients with systemic sclerosis and sPAP ≥ 35 mmHg compared to SSc patients and sPAP &lt; 35 mmHg

A 5-year follow-up study comparing Burch colposuspension and transob- turator tape for the surgical treatment of SUI in person without another concomitant procedure showed, that