• No results found

(51) Int Cl.: H02H 7/26 ( ) H02H 7/30 ( )

N/A
N/A
Protected

Academic year: 2021

Share "(51) Int Cl.: H02H 7/26 ( ) H02H 7/30 ( )"

Copied!
25
0
0

Loading.... (view fulltext now)

Full text

(1)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the

2

566

001

B1

TEPZZ 566ZZ_B_T

(11)

EP 2 566 001 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

11.03.2015 Bulletin 2015/11

(21) Application number: 12182209.2 (22) Date of filing: 29.08.2012

(51) Int Cl.:

H02H 7/26(2006.01) H02H 7/30(2006.01)

(54) Power distribution network fault management Stromverteilungsnetzwerk-Fehlerverwaltung

Gestion de pannes de réseau de distribution d’énergie (84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 29.08.2011 US 201113220192 (43) Date of publication of application:

06.03.2013 Bulletin 2013/10

(73) Proprietor: General Electric Company

Schenectady, NY 12345 (US)

(72) Inventors:

• Du Toit, Willem Hendrik

Cochrane, Alberta T4C 1L1 (CA)

• Fan, Jiyuan

Atlanta, GA Georgia 30339 (US) • Popescu, Bogdan Cristian

Calgary, Alberta T2B 3M1 (CA)

(74) Representative: Cleary, Fidelma et al

GPO Europe GE International Inc. The Ark 201 Talgarth Road Hammersmith London W6 8BJ (GB) (56) References cited: WO-A2-2010/017041

(2)

5 10 15 20 25 30 35 40 45 50 55 Description

BACKGROUND OF THE INVENTION

[0001] The disclosure relates generally to power

dis-tribution management, and more particularly, to fault de-tection, isolation, and resolution (FDIR), as well as sys-tems, methods, and computer products therefore.

[0002] In power distribution networks, faults should be

isolated as quickly as possible to protect the rest of the network, such as by disconnecting the affected portion of the network. Once the fault is isolated, power can be restored to at least portions of the network that were taken off line by the fault. Embodiments of the invention dis-closed and claimed herein provide system, method, and/or computer product for detecting, isolating, and re-solving issues surrounding faults in power distribution networks.

[0003] WO-A-2010/017041 concerns a system and

method for operating an autoloop system in an electrical distribution system. A master controller is in communi-cation with controllers associated with reclosers and switches coupled to branch circuits. The system is ar-ranged to momentarily block the fast tripping function of a feeder recloser in response to the detection of a fault on another branch circuit. The system is also arranged to isolate a segment on which a fault is located and re-store electrical power service to areas upstream and downstream from the isolated segment.

[0004] The present invention provides a

computer-im-plemented method of power distribution network fault management as defined in appended claim 1, a computer program product as defined in appended claim 12 and a power distribution network fault management system as defmed in appended claim 13.

[0005] Embodiments of the invention disclosed and

claimed herein provide a power distribution network fault management method for a power distribution network including at least one controller configured to execute the method responsive to a fault in the power distribution network, and at least one node configured to communi-cate with and be responsive to the at least one controller, each controller being configured to store network data, including at least one of device data, topology data, and power demand data. Network data is used to determine a region affected by a first fault, and the region affected is isolated by instructing a nearest upstream node and a nearest downstream node to interrupt conductivity to the region affected. Power is restored upstream of the first fault, such as by restoring conductivity through a first fault interrupt device between a source and the region affect-ed, the first fault interrupt device having previously inter-rupted conductivity responsive to the fault. Power down-stream of the first fault is restored responsive to a power requirement and power availability being analyzed. Re-sponsive to power requirement exceeding power avail-ability, a load is disconnected to reduce the power re-quirement. Once power requirement has been

deter-mined to be no more than power available, at least one secondary source is connected to the region affected downstream of the fault including. The power distribution network includes a second partition with a respective controller and network data. When a second fault inter-rupt device is tripped in response to a second fault in, a location of the second fault interrupt device is deter-mined, as is a location of the second fault. The second fault is isolated, and power is restored upstream, then downstream of the second fault location.

[0006] Other embodiments of the invention disclosed

and claimed herein provide a computer program product including program code embodied in at least one com-puter-readable medium, which, when executed, enables a computer system to implement a method of power dis-tribution network fault management in a power distribu-tion network including at least one partidistribu-tion with at least a first controller configured to execute the method re-sponsive to a first fault in the power distribution network. The at least one partition includes at least one node con-figured to communicate with and be responsive to the at least one controller, and each controller is configured to store network data, including at least one of device data, topology data, and power demand. The computer pro-gram product includes propro-gram code for using the net-work data to determine a region affected by the first fault and for isolating a region affected by the first fault by instructing a nearest upstream node and a nearest down-stream node to interrupt conductivity to the region affect-ed. Program code is also included for restoring power upstream of the first fault, including program code for restoring conductivity through a device between a source and the affected portion of a power distribution network, the device having interrupted conductivity responsive to the first fault. Additionally, the computer program product includes program code for restoring power downstream of the first fault responsive to a power requirement and a power availability, including program code for analyzing a power requirement and a power availability, discon-necting a load to reduce the power requirement respon-sive to power availability being less than power require-ments prior to disconnecting loads, and connecting at least one source to the region affected downstream of the first fault. If a second fault occurs, program code for communicating with at least a second controller of at least a second partition may be used, the second controller having respective network data, and additional program code may be used to determine a location of and isolate the second fault, restore power upstream of the second fault location, and restore power downstream of the sec-ond fault location.

[0007] Additional embodiments provide a power

distri-bution network fault management system including at least a first partition controller with at least one computing device, the first partition controller being configured to communicate with at least one intelligent electronic de-vice (IED) configured to control conductivity in a first par-tition of a power distribution network, the first parpar-tition

(3)

5 10 15 20 25 30 35 40 45 50 55

controller also being configured to store network data, including data from and the at least one IED, and to send an instruction to the at least one IED. The system also includes t least one fault interrupt device responsive to at least one IED and a computer program including com-puter-readable code that, when executed by a computing device of the first partition controller, responsive to a first fault interruption device being tripped, performs a method in which a first fault location of a first fault is determined. An IED controlling a node upstream of the first fault lo-cation is instructed to stop conductivity between a source side of an affected segment of the first partition and the first fault location, and an IED controlling a node down-stream of the first fault location is instructed to interrupt conductivity between the first fault location and a down-stream portion of the affected segment. Power is restored to the source side of the affected segment, including re-storing conductivity through the first fault interrupt device. A power requirement of a load on the downstream portion of the affected segment is determined, including analyz-ing a power requirement of the downstream portion, and power available to the downstream portion of the affected segment from at least one secondary source is deter-mined. Responsive to the power requirement exceeding power availability, conductivity to a portion of the down-stream portion is interrupted to reduce the power require-ment. Once the power requirement does not exceed pow-er available, at least one secondary source is connected to the downstream portion of the affected segment. If a second fault occurs, program code for communicating with at least a second controller of at least a second par-tition may be used, the second controller having respec-tive network data, and additional program code may be used to determine a location of and isolate the second fault, restore power upstream of the second fault location, and restore power downstream of the second fault loca-tion.

[0008] The illustrative aspects of the invention are

signed to solve one or more of the problems herein de-scribed and/or one or more other problems not dis-cussed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] These and other features of the disclosure will

be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that de-pict various aspects of the invention.

FIG. 1 shows a schematic diagram of a portion of a power distribution network in which embodiments may be employed.

FIG. 2 shows a schematic diagram of a computer system with which embodiments may be employed. FIG. 3 shows a schematic flow diagram of a method

of embodiments.

FIGS. 4-8 show a schematic diagram of a portion of a power distribution network as seen in FIG. 1 in an illustration of application of embodiments responsive to a first fault.

FIG. 9 shows a schematic flow diagram of a method of embodiments.

FIGS. 10-14 show a schematic diagram of a portion of a power distribution network as seen in FIG. 8 in an illustration of an application of embodiments re-sponsive to a second fault in a first location. FIGS. 15-20 show a schematic diagram of a portion of a power distribution network as seen in FIG. 8 in an illustration of an application of embodiments re-sponsive to a second fault in a second location. FIGS. 21-25 show a schematic diagram of a portion of a power distribution network as seen in FIG. 8 in an illustration of an application of embodiments re-sponsive to a second fault in a third location.

[0010] It is noted that the drawings may not be to scale.

The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

[0011] As indicated above, aspects of the invention

provide a power distribution network fault management. As used herein, unless otherwise noted, the term "set" means one or more (i.e., at least one) and the phrase "any solution" means any now known or later developed solution.

[0012] Turning to the drawings, FIG. 1 shows a

sche-matic diagram of a power distribution network 10 accord-ing to embodiments of the invention disclosed and claimed herein. Network 10 may include at least one par-tition 100, 200, each of which may include at least one substation 110, 210 receiving power from at least one source 20 on network 10, such as a gas- or coal-fired power generation facilities, hydroelectric power genera-tion facilities, wind-based power generagenera-tion facilities, so-lar power generation facilities, and/or other partitions of network 10. Each substation 110, 210 may include a transformer 120, 220 feeding at least one segment 130, 230 to distribute power to users. A main fault interrupt device 122, 222, such as a main breaker, may be inter-posed between transformer 120, 220 and segment(s) 130, 230 to protect parts of network 10 and/or partition 100, 200 in the event of, for example, a component failure

(4)

5 10 15 20 25 30 35 40 45 50 55 or the like.

[0013] In embodiments, each partition 100, 200 may

include a distributed automation controller (DAC) 140, 240 in communication with nodes 132, 232 of segment(s) 130, 230 via a communications arrangement 150, 250, such as an Ethernet-based communications network, a substation bus, or the like. Each DAC 140, 240 may com-prise and/or be included in a substation computer and control as many as all nodes 132, 232 of as many as all segments 130, 230 of each substation 110, 210 in bodiments, though other arrangements may be em-ployed within the scope of the invention disclosed and claimed herein. Each segment 130, 230 may include a first fault interrupt device 134, 234 to protect each re-spective segment 130, 230 and rere-spective components from, for example, component failure, power surges, power failures, and the like in itself and/or other seg-ments, partitions, and/or other connected portions of power distribution network 10. Each node 132, 232 may include at least one control device 138, 238 responsive to at least one intelligent electronic device (IED) 136, 236 in communication with DAC 140, 240 via communica-tions arrangement 150, 250. For convenience, reference will be made to IEDs in this description, but it should be recognized that the IEDs to which reference is made are parts of and/or include respective nodes. It should also be recognized that an IED may control more than one node. In addition, when reference is made to a node being instructed to do something, it should be recognized that instruction could be made to an IED controlling such node and/or to an IED that is part of a node. Examples of control devices 138, 238 that might be included in nodes 132, 232 include switches, breakers, meters, and other devic-es for power distribution, measuring, and control as may be appropriate, now known and/or later developed and/or discovered. Where a segment first fault interrupt device 134, 234 is included, it also may be in communication with and/or controlled by DAC 140, 240. A connector node 30, such as a tie, may connect two or more partitions 100, 200 responsive to control by a DAC 140, 240, so that one partition may act as a source for another partition in the event a need for additional power arises in the one partition. In embodiments, connector node 30 is normally open, while connector node 30 may be normally closed in other embodiments. DAC 140, 240 may be configured to store network data 142, 242, including one or more of device data 144, 244, topology data 146, 246, and power demand data 148, 248. Some or all of the network data 142, 242 may be received from devices on the network, such as IEDs 136, 236, and/or may be preloaded and/or transmitted upon occasion from other sources. Device data 144,244 may include one or more of device type, device configuration, environmental data, and other de-vice-related data as may be appropriate and/or desired. Topology data 146, 246 may include one or more of net-work structure, netnet-work protocol data, traffic data, and other topology data as may be appropriate and/or de-sired. Power demand data 148, 248 may include one or

more of current demand, historical demand, projected demand, power usage, and/or other power demand data as may be appropriate and/or desired. Additionally, any or all of the device data, topology data, and the power demand data may be for an entire power distribution net-work, a partition of a power distribution netnet-work, and/or other hierarchical summaries of data down to an individ-ual end-use device.

[0014] FIG. 2 shows an illustrative environment 40 for

power distribution network fault management according to an embodiment. To this extent, environment 40 in-cludes a computer system 50 that can perform a process described herein in order to perform power distribution network fault management. For example, each IED 136, 236 may comprise such a computer system, as may at least one DAC 140, 240. In particular, computer system 50 is shown including a power distribution network fault management program 60, which makes computer sys-tem 50 operable to power distribution network fault man-agement by performing a process described herein.

[0015] Computer system 50 is shown including a

processing component or unit 52 (e.g., one or more proc-essors, PU), a storage component 54 (e.g., a storage hierarchy), an input/output (I/O) component 56 (e.g., one or more I/O interfaces and/or devices), and a communi-cations pathway 58. In general, processing component 52 executes program code, such as power distribution network fault management program 60, which is at least partially fixed in storage component 54. While executing program code, processing component 52 can process data, which can result in reading and/or writing trans-formed data from/to storage component 54 and/or I/O component 56 for further processing. Pathway 58 pro-vides a communications link between each of the com-ponents in computer system 50. I/O component 56 can comprise one or more human I/O devices, which enable a human user 42 to interact with computer system 50 and/or one or more communications devices to enable a system user 42 to communicate with computer system 50 using any type of communications link. In embodi-ments, a communications arrangement 80, such as net-working hardware/software, enables computing device 50 to communicate with other devices in and outside of a substation in which it is installed. To this extent, power distribution network fault management program 60 can manage a set of interfaces (e.g., graphical user inter-face(s), application program interface, and/or the like) that enable human and/or system users 42 to interact with power distribution network fault management pro-gram 60. Further, power distribution network fault man-agement program 60 may manage (e.g., store, retrieve, create, manipulate, organize, present, etc.) the data, such as power distribution network fault management data 70, including network data 140, 240, for example, using any solution.

[0016] Computer system 50 can comprise one or more

general purpose computing articles of manufacture (e.g., computing devices) capable of executing program code,

(5)

5 10 15 20 25 30 35 40 45 50 55

such as power distribution network fault management program 60, installed thereon. As used herein, it is un-derstood that "program code" means any collection of instructions, in any language, code or notation, that cause a computing device having an information processing capability to perform a particular action either directly or after any combination of the following: (a) con-version to another language, code or notation; (b) repro-duction in a different material form; and/or (c) decom-pression. Additionally, computer code may include object code, source code, and/or executable code, and may form part of a computer product when on at least one computer readable medium. It is understood that the term "computer readable medium" may comprise one or more of any type of tangible medium of expression, now known or later developed, from which a copy of the program code may be perceived, reproduced, or otherwise municated by a computing device. For example, the com-puter readable medium may comprise: one or more port-able storage articles of manufacture; one or more mem-ory/storage components of a computing device; paper; and/or the like. Examples of memory/storage compo-nents include magnetic media (floppy diskettes, hard disc drives, tape, etc.), optical media (compact discs, digital versatile/video discs, magneto-optical discs, etc.), ran-dom access memory (RAM), read only memory (ROM), flash ROM, erasable programmable read only memory (EPROM), or any other computer readable storage me-dium now known and/or later developed and/or discov-ered on which the computer program code is stored and with which the computer program code can be loaded into and executed by a computer. When the computer executes the computer program code, it becomes an ap-paratus for practicing the invention, and on a general purpose microprocessor, specific logic circuits are cre-ated by configuration of the microprocessor with compu-ter code segments. A technical effect of the executable instructions is to implement a power distribution network management method and/or system and/or computer product that detects, isolates, and resolves faults, such as in a device of a substation, to minimize down time to a fault and/or to minimize a number of users affected by a fault.

[0017] The computer program code may be written in

computer instructions executable by the controller, such as in the form of software encoded in any programming language. Examples of suitable programming languages include, but are not limited to, assembly language, VHDL (Verilog Hardware Description Language), Very High Speed IC Hardware Description Language (VHSIC HDL), FORTRAN (Formula Translation), C, C++, C#, Java, ALGOL (Algorithmic Language), BASIC (Beginner All-Purpose Symbolic Instruction Code), APL (A Pro-gramming Language), ActiveX, HTML (HyperText Markup Language), XML (extensible Markup Language), and any combination or derivative of one or more of these and/or others now known and/or later developed and/or discovered. To this extent, power distribution network

fault management program 60 can be embodied as any combination of system software and/or application soft-ware.

[0018] Further, power distribution network fault

man-agement program 60 can be implemented using a set of modules 62. In this case, a module 62 can enable com-puter system 50 to perform a set of tasks used by power distribution network fault management program 60, and can be separately developed and/or implemented apart from other portions of power distribution network fault management program 60. As used herein, the term "com-ponent" means any configuration of hardware, with or without software, which implements the functionality de-scribed in conjunction therewith using any solution, while the term "module" means program code that enables a computer system 50 to implement the actions described in conjunction therewith using any solution. When fixed in a storage component 54 of a computer system 50 that includes a processing component 52, a module is a sub-stantial portion of a component that implements the ac-tions. Regardless, it is understood that two or more com-ponents, modules, and/or systems may share some/all of their respective hardware and/or software. Further, it is understood that some of the functionality discussed herein may not be implemented or additional functionality may be included as part of computer system 50.

[0019] When computer system 50 comprises multiple

computing devices, each computing device can have on-ly a portion of power distribution network fault manage-ment program 60 fixed thereon (e.g., one or more mod-ules 62). However, it is understood that computer system 50 and power distribution network fault management pro-gram 60 are only representative of various possible equivalent computer systems that may perform a process described herein. To this extent, in other embodiments, the functionality provided by computer system 50 and power distribution network fault management program 60 can be at least partially implemented by one or more computing devices that include any combination of gen-eral and/or specific purpose hardware with or without gram code. In each embodiment, the hardware and pro-gram code, if included, can be created using standard engineering and programming techniques, respectively.

[0020] Regardless, when computer system 50

in-cludes multiple computing devices, the computing devic-es can communicate over any type of communications link. Further, while performing a process described here-in, computer system 50 can communicate with one or more other computer systems using any type of commu-nications link. In either case, the commucommu-nications link can comprise any combination of various types of wired and/or wireless links; comprise any combination of one or more types of networks; and/or utilize any combination of various types of transmission techniques and protocols now known and/or later developed and/or discovered.

[0021] As discussed herein, power distribution network

fault management program 60 enables computer system 50 to implement a product and/or method of power

(6)

dis-5 10 15 20 25 30 35 40 45 50 55

tribution network fault management, such as will be dis-cussed below and as schematically illustrated, for exam-ple, in FIG. 3. Computer system 50 can obtain power distribution network fault management data 70 using any solution. For example, computer system 50 can generate and/or be used to generate power distribution network fault management data 70, retrieve power distribution network fault management data 70 from one or more data stores, receive power distribution network fault man-agement data 70 from another system, and/or the like.

[0022] In another embodiment, the invention provides

a method of providing a copy of program code, such as power distribution network fault management program 60 (FIG. 2), which implements some or all of a process described herein, such as those shown schematically in FIG. 3. In this case, a computer system can process a copy of program code that implements some or all of a process described herein to generate and transmit, for reception at a second, distinct location, a set of data sig-nals that has one or more of its characteristics set and/or changed in such a manner as to encode a copy of the program code in the set of data signals. Similarly, an embodiment of the invention provides a method of ac-quiring a copy of program code that implements some or all of a process described herein, which includes a com-puter system receiving the set of data signals described herein, and translating the set of data signals into a copy of the computer program fixed in at least one computer-readable medium. In either case, the set of data signals can be transmitted/received using any type of communi-cations link.

[0023] In still another embodiment, the invention

pro-vides a method of generating a system for power distri-bution network fault management. In this case, a com-puter system, such as comcom-puter system 50 (FIG. 2), can be obtained (e.g., created, maintained, made available, etc.) and one or more components for performing a proc-ess described herein can be obtained (e.g., created, pur-chased, used, modified, etc.) and deployed to the puter system. To this extent, the deployment can com-prise one or more of: (1) installing program code on a computing device; (2) adding one or more computing and/or I/O devices to the computer system; (3) incorpo-rating and/or modifying the computer system to enable it to perform a process described herein; and/or the like.

[0024] It is understood that aspects of the invention

can be implemented as part of a method that performs a process described herein on a subscription, advertis-ing, and/or fee basis. That is, a service provider could offer to power distribution network fault management as described herein. In this case, the service provider can manage (e.g., create, maintain, support, etc.) a computer system, such as computer system 50 (FIG. 2), that per-forms a process described herein for one or more cus-tomers. In return, the service provider can receive pay-ment from the customer(s) under a subscription and/or fee agreement, receive payment from the sale of adver-tising to one or more third parties, and/or the like.

[0025] With reference to FIG. 3, embodiments include

a power network distribution management method 300 executed or which starts (block 302) when a notification is received of or a check is performed for a fault or tripping of a first fault interrupt device. A check is made to see if it is the first fault (block 304), and if it is not, the method of FIG. 9, described below, is called. If the fault is the first fault, such as indicated by a first fault interrupt device being tripped, a first controller, such as first DAC 140 of partition 100, which may use network data 142, isolates the fault (block 306), then restores power to the upstream portion of the affected segment (block 308). As used herein, "upstream portion" means a portion of the affect-ed segment closer along a distribution pathway, such as a transmission line, to a source or component that may be viewed as a source, such as a substation transformer. In other words, the upstream portion is the portion of the network, along a power distribution pathway, lying be-tween the fault and the source. Likewise, "downstream portion" means a portion of the segment between the fault and a terminus of the segment, or at least the portion of the segment extending away from the fault and the source, along a power distribution pathway.

[0026] Power distribution network management

con-tinues by analyzing power requirements of the down-stream portion, which remains without power, as well as power availability (block 310), such as secondary sourc-es that may be connected to the downstream portion. For example, another partition may be connected to the downstream portion to act as a source, and/or other sources ordinarily not supplying power to the down-stream portion may be connected, such as co-generation facilities of commercial customers, solar/wind generators of customers, or other power generating facilities. In some cases, such facilities may already be connected via a normally-open tie or switch or the like such that the switch need only be closed to bring the secondary source on line for the downstream portion. Power requirements are checked against power availability (block 312), and if power requirements are not greater than power avail-able, at least one secondary source is connected to the downstream portion (block 314) and method 300 stops or changes or returns to a monitoring state (block 316). If power requirements exceed power available, embod-iments may disconnect loads and/or disable nodes of the downstream portion to reduce power requirements (block 318), then connect at least one secondary source (block 314) and stop or change or return to a monitoring state (block 316). While analysis of power requirements is shown in the same block as analysis of power availa-bility, it should be recognized that these may be separate steps and may be performed in any order. Further, while the order presented has the upstream portion of the af-fected segment having power restored first, it should be recognized that the downstream portion could be re-stored first. There is an advantage to restoring the up-stream portion first in that the source supplying the af-fected segment is known to have enough power available

(7)

5 10 15 20 25 30 35 40 45 50 55

for the entire segment, and so will almost certainly have enough power available for the upstream portion, so that once the fault is isolated, power can be restored upstream after minimal downtime and without an analysis of power requirements that would delay restoration of power.

[0027] FIGS. 4-8 show a power distribution network 10

like that shown in FIG. 1, in which like reference numerals refer to like components and in which nodes with X are unpowered and nodes with a circle are disabled. Thus, a first fault 160 is shown in FIGS. 4-8 as occurring in a first segment 130 of first partition 100. As seen in FIGS. 5 and 6, a first fault interrupt device 134 is tripped in response to fault 160, discontinuing or stopping or inter-rupting conductivity therethrough and stopping power flowing through a remainder of first segment 130. As seen in FIGS. 6 and 7, the affected or first segment 130 may be viewed as having a first upstream portion 432 and a first downstream portion 434. As also seen in FIG. 6, DAC 140 isolates fault 160 by disabling or instructing IEDs 436, 438 closest to the fault to discontinue or inter-rupt conductivity to the location of the fault 160 so that power will not flow to fault 160, and power may be re-stored to remaining portions of first segment 130. For example, first fault interrupt device 134 may be reset, as seen in FIG. 7, to restore power to the first upstream portion 432 of the first segment 130. Once a determina-tion has been made that power requirements of first downstream portion 434 do not exceed power available from secondary sources, such as second partition 200, power may be restored to first downstream portion 434. For example, power may be restored by connecting at least one secondary source to first downstream portion 434, such as by enabling conductivity through connector 30 to allow power to flow from second partition 200 to first downstream portion 434, as seen, for example, in FIG. 8.

[0028] If another fault occurs in the restored network

shown in FIG. 8, power network management distribution according to embodiments may be achieved using addi-tional steps, such as those shown schematically in FIG. 9. It should be noted that the steps shown in FIG. 9 are an application of those shown in FIG. 3, with specificity applied due to a particular situation, i.e., a fault has oc-curred in a portion of a power distribution network that has already been managed to recover from a fault, such as by connecting one partition to another to act as a power source. Thus, notification/determination of tripped fault device, isolation of fault, power restoration upstream of the fault, power requirements/availability analysis, and power restoration downstream of the fault are performed, but with specific circumstances taken into account.

[0029] As seen in FIG.9, a method 500 of embodiments

starts (block 502) when it receives notification of or termines a location of a tripped second fault interrupt de-vice (block 504), such as by using DAC 240, which may use network data 242. If the first fault interrupt device is located in the first partition (block 506), then a check is made as to whether the second fault is in first upstream

portion 432 of first segment 130 (block 508). An example of such a situation and a response according to embod-iments is shown, for example, in FIGS. 10-14. Thus, a second fault 162 is shown in FIG. 10, and first fault inter-rupt device 134 may be seen as a second fault interinter-rupt device since it trips in response to second fault 162, as shown in FIGS. 11 and 12, stopping power to first up-stream portion 432 of first segment 130. First upup-stream portion 432 itself is now divided into second upstream portion 632 and second downstream portion 634 by sec-ond fault 162, as shown in FIG. 11.

[0030] First controller 140 isolates second fault 162

(block 510), such as by disabling or instructing nodes 636, 638 closest to second fault 162 to discontinue con-ductivity to second fault 162, as seen in FIG. 12. Power is restored to second upstream portion 632 (block 512), such as by resetting first fault interrupt device 134 (FIG. 13). A check is made to see if first fault 160 has been repaired (block 514). If not, the iteration of method 500 stops or changes or returns to a monitoring state (block 516), since, in this case, no secondary source can be connected to remaining portions of first segment 130. If first fault 160 has been repaired, first controller 140 re-enables first segment 130 (block 518), such as by in-structing IEDs 436, 438 to re-enable conductivity to the location of first fault 160, and a secondary source is con-nected (block 520), such as by connecting second par-tition 200 to first downstream portion 434 by enabling connector 30.

[0031] With reference to FIG. 9, if the tripped second

fault interrupt device is in the second partition (block 522), then a check is made to determine whether the second fault is in the first downstream portion 434 of first segment 130 (block 524). If so, then, as seen in FIGS. 15-20, a second upstream portion 732 between second fault 162 and second fault interrupt device 234, and a second downstream portion 734 between first fault 160 and sec-ond fault 162 are formed. To initially isolate secsec-ond fault 162, connector 30 may be opened (block 526, FIG. 17), and power may be restored to second partition portion 740 of second upstream portion 732 (block 528, FIG. 18). For example, power may be restored to second partition 200 by resetting second fault interrupt device 234 as shown in FIG. 18. First controller 140 may further isolate second fault 162 (block 530, FIG. 19), such as by disa-bling or instructing IEDs 736, 738 closest to second fault 162 to discontinue or interrupt conductivity to the location of second fault 162. Power may be restored to a first partition portion 742 of second upstream portion 732 (block 532) by, as seen, for example, in FIG. 20, recon-necting second partition 200 via connector 30. In embod-iments, a check may be made to see if first fault 160 has been repaired (block 514). If not, the iteration of method 500 stops, but if first fault 160 has been repaired, first controller 140 instructs IEDs 436, 438 to re-enable con-ductivity to the location of first fault 160, allowing power to flow to the location of first fault 160 from the first fault interrupt device 134.

(8)

5 10 15 20 25 30 35 40 45 50 55

[0032] If the tripped second fault interrupt device is in

the second partition and the second fault is also in the second partition (block 534, FIGS. 22-25), second con-troller 240 isolates second fault 162 (block 536, FIGS. 23-25) and second downstream portion 834, such as by instructing IEDs 836, 838 to discontinue or interrupt con-ductivity to second fault 162. Second DAC 240 may re-store power to second upstream portion 832 of first seg-ment 230 of second partition 200 (block 538, FIG. 23), such as by resetting second fault interrupt device 234. In embodiments, a check may be made to see if first fault 160 has been repaired (block 514). If not, the iteration of method 500 stops or changes or returns to a monitoring state (block 516), but if first fault 160 has been repaired, blocks 518 and 520 may be executed, such as by first controller 140 instructing IEDs 436, 438 to re-enable con-ductivity to the location of first fault 160 (block 518), al-lowing power to flow to the location of first fault 160 from the first fault interrupt device 134. If the answer in block 508 or block 534 is No, an error may be noted (block 540), and the method may stop (block 516).

[0033] Employing embodiments as disclosed herein

may result in more expedient isolation and resolution of faults in power distribution networks. While particular scenarios have been disclosed, it should be apparent that embodiments may be employed to isolate and re-solve faults in other locations in a power distribution net-work within the spirit of the invention described and claimed herein.

[0034] The corresponding structures, materials, acts,

and equivalents of any and all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and descrip-tion, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.

[0035] While the invention has been described in detail

in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the in-vention can be modified to incorporate any number of variations, alterations, substitutions or equivalent ar-rangements not heretofore described, but which are com-mensurate with the scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the in-vention may include only some of the described embod-iments. Accordingly, the invention is not to be seen as

limited by the foregoing description, but is only limited by the scope of the appended claims.

Claims

1. A computer-implemented method of power

distribu-tion network fault management (300, 500), the power distribution network (10) having a first partition (100) including at least one controller (140) configured to execute the method responsive to a fault (160) in the power distribution network, and a plurality of nodes (132) configured to communicate with and be re-sponsive to the at least one controller, each control-ler being configured to store network data (142), in-cluding at least one of device data (144), topology data (146), and power demand data (148), the meth-od comprising:

using the network data to determine a region in the first partition (100) affected by a first fault (304);

isolating the region affected by instructing a nearest upstream node and a nearest down-stream node to interrupt conductivity to the re-gion affected (306); and

restoring power upstream of the first fault (308), including restoring conductivity through a first fault interrupt device between a source and the region affected, the first fault interrupt device having previously interrupted conductivity re-sponsive to the first fault; characterised by:

restoring power downstream of the first fault (314) responsive to a power requirement and power availability, including analyzing the power requirement and the power avail-ability (310), disconnecting a load to reduce the power requirement when the power availability is determined to be no more than the power requirement prior to disconnect-ing the load (318), and connectdisconnect-ing at least one secondary source to the region affected downstream of the first fault (314); and wherein the power distribution network fur-ther includes at least a second partition (200) with a respective controller (240) hav-ing respective network data (242), and the computer-implemented method further comprises, responsive to a second fault in-terrupt device being tripped after connect-ing the at least one secondary source to the downstream portion of the affected seg-ment (502):

determining a location of the second fault inter-rupt device (504);

(9)

sec-5 10 15 20 25 30 35 40 45 50 55 ond fault (508);

isolating the second fault (510, 530, 536); restoring power upstream of the second fault lo-cation (512, 532, 538); and

restoring power downstream of the second fault location (528).

2. The computer-implemented method of claim 1,

wherein at least one controller (140, 240) is config-ured to receive data from at least one device on the network in real time.

3. The computer-implemented method of claim 1 or

claim 2, wherein the disconnecting the load includes prioritizing, amongst a plurality of loads, which to dis-connect.

4. The computer-implemented method of claim 3,

wherein the first partition (100) includes at least one tie configured to connect the first partition to at least one secondary source, and preferably at least a first tie of the at least one tie is a normally-open tie.

5. The computer-implemented method of claim 3 or

claim 4, wherein the prioritizing amongst a plurality of loads includes determining priorities based on da-ta received from at least one load on the network.

6. The computer-implemented method of any

preced-ing claim, wherein determinpreced-ing a location of the sec-ond fault (508) includes:

determining that a second fault interrupt device has been tripped; and

determining a location of the second fault inter-rupt device.

7. The computer-implemented method of any

preced-ing claim, wherein the secondary source includes at least the second partition (200), at least the first and second partition controllers (140, 240) being config-ured to selectively exchange information including at least one of a respective power requirement, pow-er availability, and fault information.

8. The computer-implemented method of any

preced-ing claim, wherein, responsive to the second fault interrupt device being in the second partition (200), the restoring power to the upstream portion includes the second controller (240) resetting the second fault interrupt device, and, responsive to the second fault location being in the first partition (100), the isolating the second fault includes disconnecting the second partition from the first partition and the first controller (140) instructing at least one intelligent electronic de-vice (IED) controlling a node immediately upstream and a node immediately downstream of the second fault location to interrupt conductivity to the fault

lo-cation, and the restoring power downstream of the second fault location includes reconnecting the sec-ond partition (200) to the first partition (100).

9. The computer-implemented method of any

preced-ing claim, wherein, responsive to the second fault interrupt device being in the second partition (200), the restoring power to the upstream portion includes the second controller resetting the second fault in-terrupt device, and, responsive to the second fault location being in the second partition (200), the iso-lating the second fault includes the second controller (240) instructing at least one intelligent electronic de-vice (IED) controlling a node immediately upstream and a node immediately downstream of the second fault location to interrupt conductivity to the fault lo-cation, and the restoring power downstream of the second fault location includes, responsive to the first fault having been repaired, the first controller (140) instructing at least one IED controlling a node of the first partition (100) immediately upstream and a node of the first partition immediately downstream of the first fault location to enable conductivity and re-connecting the second partition (200) to the first par-tition (100).

10. The computer-implemented method of any

preced-ing claim, wherein, responsive to the second fault interrupt device being in the first partition (100), the restoring power to the upstream portion includes the first controller (140) resetting the second fault inter-rupt device and, responsive to the second fault lo-cation being in the upstream portion of the first par-tition, the isolating the second fault includes first con-troller instructing at least one intelligent electronic device (IED) immediately upstream and at least one intelligent electronic device (IED) immediately down-stream of the second fault location to interrupt con-ductivity to the fault location, and the restoring power downstream of the second fault location includes, responsive to the first fault having been repaired, the first controller (140) instructing at least one intelligent electronic device (IED) controlling a node of the first partition (100) immediately upstream and a node of the first partition immediately downstream of the first fault location to re-enable conductivity.

11. The computer-implemented method of any

preced-ing claim, wherein the restorpreced-ing power downstream of the second fault location includes:

determining a power requirement of a load downstream of the second fault location; determining a power available for a load down-stream of the second fault location; and responsive to the power requirement exceeding the power availability, stopping conductivity to the load downstream of the second fault location

(10)

5 10 15 20 25 30 35 40 45 50 55

to reduce the power requirement.

12. A computer program product comprising program

code embodied in at least one computer-readable medium, which, when executed, enables a computer system to implement a method of power distribution network fault management in a power distribution network including at least one partition (100) with at least a first controller (140) configured to execute the method responsive to at least one fault in the power distribution network (10), a plurality of nodes (132) configured to communicate with and be responsive to the at least one controller, each controller being configured to store network data, including at least one of device data, topology data, and power de-mand data, the computer program product compris-ing program code for performcompris-ing the computer-im-plemented method of any one of claims 1 to 11.

13. A power distribution network fault management

sys-tem comprising:

at least a first partition controller (140) including at least one computing device, the first partition controller being configured to communicate with at least one intelligent electronic device, hence forth termed IED, configured to control conduc-tivity in a first partition (100) of a power distribu-tion network (10), the first partidistribu-tion controller (140)

also being configured to store network data, in-cluding data from the at least one IED, and to send an instruction to the at least one IED; at least one fault interrupt device responsive to the at least one IED; and

a computer program including computer-reada-ble code that, when executed by a computing device of the first partition controller (140), re-sponsive to a first fault interruption device being tripped, performs a method comprising:

determining a first fault location of a first fault (304);

instructing an IED controlling a node up-stream of the first fault location to stop con-ductivity between a source side of an affect-ed segment of the first partition and the first fault location;

instructing an IED controlling a node down-stream of the first fault location to interrupt conductivity between the first fault location and a downstream portion of the affected segment (306);

restoring power to the source side of the affected segment (308), including restoring conductivity through the first fault interrupt device;

determining a power requirement of a load

on the downstream portion of the affected segment, including analyzing a power re-quirement of the downstream portion; determining power available to the down-stream portion of the affected segment from at least one secondary source;

responsive to the power requirement ex-ceeding power availability (312), interrupt-ing conductivity to a portion of the down-stream portion of the affected segment to reduce the power requirement;

connecting at least one secondary source to the downstream portion of the affected segment; and

responsive to a second fault interrupt device being tripped after connecting the at least one secondary source to the downstream portion of the affected segment:

determining a location of the second fault interrupt device (504);

determining a second fault location of the second fault (508);

isolating the second fault (510, 530, 536);

restoring power upstream of the sec-ond fault location (512, 532, 538); and

restoring power downstream of the second fault location (528).

14. The power distribution network fault management

system of claim 13, further comprising a first tie con-figured to selectively enable conductivity between the first partition (100) and a secondary source, and wherein the connecting at least one secondary source includes enabling conductivity through the first tie.

Patentansprüche

1. Computerimplementiertes Verfahren zum

Stromverteilungsnetzwerk-Fehlermanagement (300, 500), wobei das Stromverteilungsnetzwerk (10) eine erste Partition (100) aufweist, die mindes-tens eine Steuerung (140), die dafür eingerichtet ist, das Verfahren ansprechend auf einen Fehler (160) in dem Stromverteilungsnetzwerk auszuführen, und eine Vielzahl von Knoten (132), die dafür eingerichtet sind, mit der mindestens einen Steuerung zu kom-munizieren und auf diese anzusprechen, enthält, wobei jede Steuerung dafür eingerichtet ist, Netz-werkdaten (142), die mindestens eines von Geräte-daten (144), TopologieGeräte-daten (146) und Strombe-darfsdaten (148) enthalten, zu speichern, wobei das Verfahren umfasst:

(11)

5 10 15 20 25 30 35 40 45 50 55

Verwenden der Netzwerkdaten, um eine Region in der ersten Partition (100) zu ermitteln, die durch einen ersten Fehler (304) beeinträchtigt ist;

Isolieren der beeinträchtigten Region durch In-struieren eines nahesten stromaufwärtigen Knotens und eines nahesten stromabwärtigen Knotens, Leitfähigkeit zu der beeinträchtigten Region (306) zu unterbrechen; und

Wiederherstellen von Strom stromaufwärts des ersten Fehlers (308), was ein Wiederherstellen von Leitfähigkeit durch ein Erster-Fehler-Unter-brechungsgerät hindurch zwischen einer Quelle und der beeinträchtigten Region einschließt, wobei das Erster-Fehler-Unterbrechungsgerät vorher Leitfähigkeit ansprechend auf den ersten Fehler unterbrochen hat; gekennzeichnet

durch:

Wiederherstellen von Strom stromabwärts des ersten Fehlers (314) ansprechend auf einen Strombedarf und Stromverfügbarkeit, was ein Analysieren des Strombedarfs und der Stromverfügbarkeit (310), ein Trennen einer Last, um den Strombedarf zu verrin-gern, wenn ermittelt ist, dass die Stromver-fügbarkeit nicht größer als der Strombedarf vor dem Trennen der Last (318) ist, und ein Verbinden mindestens einer Sekundär-quelle mit der beeinträchtigten Region stromabwärts des ersten Fehlers (314) ein-schließt; und

wobei das Stromverteilungsnetzwerk ferner mindestens eine zweite Partition (200) mit einer jeweiligen Steuerung (240), die jewei-lige Netzwerkdaten (242) aufweist, enthält, und das computerimplementierte Verfah-ren ferner, ansprechend auf ein Zweiter-Fehler-Unterbrechungsgerät, das nach Verbinden der mindestens einen Sekundär-quelle mit dem stromabwärtigen Bereich des beeinträchtigten Segments (502) aus-gelöst wird, umfasst:

Ermitteln eines Orts des Zweiter-Fehler-Unter-brechungsgeräts (504);

Ermitteln eines Zweiter-Fehler-Orts des zweiten Fehlers (508);

Isolieren des zweiten Fehlers (510, 530, 536); Wiederherstellen von Strom stromaufwärts des Zweiter-Fehler-Orts (512, 532, 538); und Wiederherstellen von Strom stromabwärts des Zweiter-Fehler-Orts (528).

2. Computerimplementiertes Verfahren gemäß

An-spruch 1, wobei mindestens eine Steuerung (140, 240) dafür eingerichtet ist, Daten von mindestens einem Gerät in dem Netzwerk in Echtzeit zu

emp-fangen.

3. Computerimplementiertes Verfahren gemäß

An-spruch 1 oder AnAn-spruch 2, wobei das Trennen der Last ein Priorisieren, welche unter einer Vielzahl von Lasten zu trennen ist, einschließt.

4. Computerimplementiertes Verfahren gemäß

An-spruch 3, wobei die erste Partition (100) mindestens ein Verbindungsstück enthält, das dafür eingerichtet ist, die erste Partition mit mindestens einer zweiten Quelle zu verbinden, und vorzugsweise ist mindes-tens ein erstes Verbindungsstück des mindesmindes-tens einen Verbindungsstücks ein normalerweise offe-nes Verbindungsstück.

5. Computerimplementiertes Verfahren gemäß

An-spruch 3 oder AnAn-spruch 4, wobei das Priorisieren unter einer Vielzahl von Lasten ein Ermitteln von Pri-oritäten auf Grundlage von Daten, die von mindes-tens einer Last auf dem Netzwerk empfangen wer-den, einschließt.

6. Computerimplementiertes Verfahren gemäß einem

der vorhergehenden Ansprüche, wobei ein Ermitteln eines Ortes des zweiten Fehlers (508) einschließt:

Ermitteln, dass ein Zweiter-Fehler-Unterbre-chungsgerät ausgelöst worden ist; und Ermitteln eines Ortes des Zweiter-Fehler-Unter-brechungsgeräts.

7. Computerimplementiertes Verfahren gemäß einem

der vorhergehenden Ansprüche, wobei die zweite Quelle mindestens die zweite Partition (200) enthält, wobei mindestens die ersten und zweiten Partitions-steuerungen (140, 240) dafür eingerichtet sind, se-lektiv Information auszutauschen, die mindestens ei-nes von einem jeweiligen Strombedarf, Stromver-fügbarkeit und Fehlerinformation enthält.

8. Computerimplementiertes Verfahren gemäß einem

der vorhergehenden Ansprüche, wobei, anspre-chend darauf, dass sich das Zweiter-Fehler-Unter-brechungsgerät in der zweiten Partition (200) befin-det, das Wiederherstellen von Strom an den strom-aufwärtigen Bereich ein Zurücksetzen des Zweiter-Fehler-Unterbrechungsgeräts durch die zweite Steuerung (240) einschließt, und, ansprechend dar-auf, dass sich der Zweiter-Fehler-Ort in der ersten Partition (100) befindet, das Isolieren des zweiten Fehlers ein Trennen der zweiten Partition von der ersten Partition und ein Instruieren mindestens eines intelligenten Elektrogeräts (IED), das einen Knoten unmittelbar stromaufwärts und einen Knoten unmit-telbar stromabwärts des Zweiter-Fehler-Orts steu-ert, die Leitfähigkeit zu dem Fehlerort zu unterbre-chen, durch die erste Steuerung (140) einschließt,

(12)

5 10 15 20 25 30 35 40 45 50 55

und das Wiederherstellen von Strom stromabwärts des Zweiter-Fehler-Orts ein Wiederverbinden der zweiten Partition (200) mit der ersten Partition (100) einschließt.

9. Computerimplementiertes Verfahren gemäß einem

der vorhergehenden Ansprüche, wobei, anspre-chend darauf, dass sich das Zweiter-Fehler-Unter-brechungsgerät in der zweiten Partition (200) befin-det, das Wiederherstellen von Strom an den strom-aufwärtigen Bereich ein Zurücksetzen des Zweiter-Fehler-Unterbrechungsgeräts durch die zweite Steuerung einschließt, und, ansprechend darauf, dass sich der Zweiter-Fehler-Ort in der zweiten Par-tition (200) befindet, das Isolieren des zweiten Feh-lers ein Instruieren mindestens eines intelligenten elektronischen Geräts (IED), das einen Knoten un-mittelbar stromaufwärts und einen Knoten unmittel-bar stromabwärts des Zweiter-Fehler-Orts steuert, Leitfähigkeit zu dem Fehlerort zu unterbrechen, durch die zweite Steuerung (240) einschließt, und das Wiederherstellen von Strom stromabwärts des Zweiter-Fehler-Orts, ansprechend darauf, dass der erste Fehler repariert worden ist, ein Instruieren min-destens eines IEDs, das einen Knoten der ersten Partition (100) unmittelbar stromaufwärts und einen Knoten der ersten Partition unmittelbar stromab-wärts des Erster-Fehler-Orts steuert, Leitfähigkeit wieder zu aktivieren und die zweite Partition (200) wieder mit der ersten Partition (100) zu verbinden, durch die erste Steuerung (140) einschließt.

10. Computerimplementiertes Verfahren gemäß einem

der vorhergehenden Ansprüche, bei dem, anspre-chend darauf, dass sich das Zweiter-Fehler-Unter-brechungsgerät in der ersten Partition (100) befin-det, das Wiederherstellen von Strom an den strom-aufwärtigen Bereich ein Zurücksetzen des Zweiter-Fehler-Unterbrechungsgeräts durch die erste Steu-erung (140) einschließt und, ansprechend darauf, dass sich der Zweiter-Fehler-Ort in dem stromauf-wärtigen Bereich der ersten Partition befindet, das Isolieren des zweiten Fehlers ein Instruieren min-destens eines intelligenten elektronischen Geräts (IED) unmittelbar stromaufwärts und mindestens ei-nes intelligenten elektronischen Geräts (IED) unmit-telbar stromabwärts des Zweiter-Fehler-Orts, Leitfä-higkeit zu dem Fehlerort zu unterbrechen, durch die erste Steuerung einschließt, und das Wiederherstel-len von Strom stromabwärts des Zweiter-Fehler-Orts, ansprechend darauf, dass der erste Fehler re-pariert worden ist, ein Instruieren mindestens eines intelligenten elektronischen Geräts (IED), das einen Knoten der ersten Partition (100) unmittelbar strom-aufwärts und einen Knoten der ersten Partition un-mittelbar stromabwärts des Erster-Fehler-Orts steu-ert, Leitfähigkeit wieder zu aktivieren, durch die erste Steuerung (140) einschließt.

11. Computerimplementiertes Verfahren gemäß einem

der vorhergehenden Ansprüche, wobei das Wieder-herstellen von Strom stromabwärts des Zweiter-Fehler-Orts einschließt:

Ermitteln eines Strombedarfs einer Last strom-abwärts des Zweiter-Fehler-Orts;

Ermitteln eines Stroms, der für eine Last strom-abwärts des Zweiter-Fehler-Orts verfügbar ist; und,

ansprechend darauf, dass der Strombedarf die Stromverfügbarkeit übertrifft, Anhalten von Leit-fähigkeit zu der Last stromabwärts des Zweiter-Fehler-Orts, um den Strombedarf zu verringern.

12. Computerprogrammprodukt, das einen

Programm-code umfasst, der in mindestens einem computer-lesbaren Medium verkörpert ist, der, wenn er aus-geführt wird, ein Computersystem dazu aktiviert, ein Verfahren zum Stromverteilungsnetzwerk-Fehler-management in einem Stromverteilungsnetzwerk zu implementieren, welches mindestens eine Partition (100) mit mindestens einer ersten Steuerung (140), die dafür eingerichtet ist, ein Verfahren ansprechend auf mindestens einen Fehler in dem Stromvertei-lungsnetzwerk (10) auszuführen, und eine Vielzahl von Knoten (132), die dafür eingerichtet sind, mit der mindestens einen Steuerung zu kommunizieren und auf diese anzusprechen, enthält, wobei jede Steue-rung dafür eingerichtet ist, Netzwerkdaten zu spei-chern, die mindestens eines von Gerätedaten, To-pologiedaten und Stromanforderungsdaten enthal-ten, wobei das Computerprogrammprodukt Pro-grammcode zum Durchführen des computerimple-mentierten Verfahrens gemäß einem der Ansprüche 1 bis 11 umfasst.

13.

Stromverteilungsnetzwerk-Fehlermanagementsys-tem, umfassend:

mindestens eine erste Partitionssteuerung (140), die mindestens ein Berechnungsgerät enthält, wobei die erste Partitionssteuerung da-für eingerichtet ist, mit mindestens einem intel-ligenten elektronischen Gerät, im Weiteren als IED bezeichnet, das dafür eingerichtet ist, Leit-fähigkeit in einer ersten Partition (100) eines Stromverteilungsnetzwerks (10) zu steuern, zu kommunizieren, wobei die erste Partitionssteu-erung (140) auch dafür eingerichtet ist, Netz-werkdaten zu speichern, einschließlich Daten von dem mindestens einen IED, und Instruktio-nen an das mindestens eine IED zu senden; mindestens ein auf das mindestens eine IED an-sprechende Fehler-Unterbrechungsgerät; und ein Computerprogramm, das computerlesbaren Code enthält, der, wenn er durch ein Berech-nungsgerät der ersten Partitionssteuerung

(13)

5 10 15 20 25 30 35 40 45 50 55

(140), ansprechend darauf, dass ein Erster-Fehler-Unterbrechungsgerät ausgelöst wird, ausgeführt wird, ein Verfahren durchführt, das umfasst:

Ermitteln eines Erster-Fehler-Orts eines ersten Fehlers (304);

Instruieren eines IED, das einen Knoten stromaufwärts des Erster-Fehler-Orts steu-ert, Leitfähigkeit zwischen einer Quellensei-te eines beeinträchtigQuellensei-ten Segments der ers-ten Partition und dem Erster-Fehler-Ort zu stoppen;

Instruieren eines IED, das einen Knoten stromabwärts des Erster-Fehler-Orts steu-ert, Leitfähigkeit zwischen dem Erster-Feh-ler-Ort und einem stromabwärtigen Bereich des beeinträchtigten Segments (306) zu un-terbrechen;

Wiederherstellen von Strom zu der Quel-lenseite des beeinträchtigten Segments (308), was ein Wiederherstellen von Leitfä-higkeit durch das Erster-Fehler-Unterbre-chungsgerät einschließt;

Ermitteln eines Strombedarfs einer Last in dem stromabwärtigen Bereich des beein-trächtigten Segments, was ein Analysieren eines Strombedarfs des stromabwärtigen Bereichs einschließt;

Ermitteln von Strom, der für den stromab-wärtigen Bereich des beeinträchtigten Seg-ments von mindestens einer Sekundärquel-le verfügbar ist;

ansprechend darauf, dass der Strombedarf die Stromverfügbarkeit übertrifft (312), Un-terbrechen von Leitfähigkeit zu einem Be-reich des stromabwärtigen BeBe-reichs des beeinträchtigen Segments, um den Strom-bedarf zu verringern;

Verbinden mindestens einer Sekundär-quelle mit dem stromabwärtigen Bereich des beeinträchtigten Segments; und, ansprechend auf ein Zweiter-Fehler-Unter-brechungsgerät, das nach dem Verbinden der mindestens einen Sekundärquelle mit dem stromabwärtigen Bereich des beein-trächtigten Segments ausgelöst wird:

Ermitteln eines Ortes des Zweiter-Feh-ler-Unterbrechungsgeräts (504); Ermitteln eines Zweiter-Fehler-Orts des zweiten Fehlers (508);

Isolieren des zweiten Fehlers (510, 530, 536);

Wiederherstellen von Strom stromauf-wärts des Zweiter-Fehler-Orts (512, 532, 538); und

Wiederherstellen von Strom

stromab-wärts des Zweiter-Fehler-Orts (528).

14.

Stromverteilungsnetzwerk-Fehlermanagementsys-tem gemäß Anspruch 13, ferner umfassend ein ers-tes Verbindungsstück, das dafür eingerichtet ist, se-lektiv Leitfähigkeit zwischen der ersten Partition (100) und einer Sekundärquelle zu aktivieren, und wobei das Verbinden mindestens einer Sekundär-quelle ein Aktivieren von Leitfähigkeit durch das ers-te Verbindungsstück einschließt.

Revendications

1. Procédé mis en oeuvre par ordinateur de gestion de

pannes de réseau de distribution d’énergie (300, 500), le réseau de distribution d’énergie (10) ayant une première partition (100) comprenant au moins un dispositif de commande (140) configuré pour exé-cuter le procédé à la suite d’une panne (160) dans le réseau de distribution d’énergie et une pluralité de noeuds (132) configurés pour communiquer avec le au moins un dispositif de commande et réagir à celui-ci, chaque dispositif de commande étant configuré pour stocker des données de réseau (142), notam-ment au moins l’une ou l’autre de données de dis-positifs (144), de données de topologie (146) et de données de demande d’énergie (148), le procédé comprenant les étapes consistant à :

utiliser les données de réseau pour déterminer une

région dans la première partition (100) affectée par une première panne (304) ;

isoler la région affectée en instruisant un noeud amont

le plus proche et un noeud aval le plus proche d’interrompre la conductivité vers la région af-fectée (306) ; et

restaurer l’énergie en amont de la première pan-ne (308), notamment restaurer la conductivité à travers un premier dispositif d’interruption de panne entre une source et la région affectée, le premier dispositif d’interruption de panne ayant une conductivité précédemment interrompue à la suite de la première panne ; caractérisé en

ce que :

l’on restaure l’énergie en aval de la première panne (314) à la suite d’un besoin d’énergie et d’une disponibilité d’énergie, notamment on analyse le besoin en énergie et la dispo-nibilité d’énergie (310), on déconnecte une charge pour réduire le besoin en énergie lorsque l’on détermine que la disponibilité d’énergie n’est pas supérieure au besoin en énergie avant de déconnecter la charge (318) et l’on connecte au moins une source

(14)

5 10 15 20 25 30 35 40 45 50 55

secondaire à la région affectée en aval de la première panne (314) ; et

dans lequel le réseau de distribution d’éner-gie

comprend en outre au moins une deuxième partition (200) avec un dispositif de com-mande respectif (240) ayant des données de réseau respectives (242) et le procédé mis en oeuvre par ordinateur comprend en outre, à la suite du déclenchement d’un se-cond dispositif d’interruption de panne après connexion de la au moins une source secondaire à la partie aval du segment af-fecté (502) :

la détermination d’un emplacement du se-cond dispositif

d’interruption de panne (504) ;

la détermination d’un second emplacement de panne pour

la seconde panne (508) ;

l’isolement de la seconde panne (510, 530, 536) ;

la restauration de l’énergie en amont du se-cond

emplacement de panne (512, 532, 538) ; et la restauration de l’énergie en aval du se-cond

emplacement de panne (528).

2. Procédé mis en oeuvre par ordinateur selon la

re-vendication 1, dans lequel au moins un dispositif de commande (140, 240) est configuré pour recevoir des données d’au moins un dispositif sur le réseau en temps réel.

3. Procédé mis en oeuvre par ordinateur selon la

re-vendication 1 ou la rere-vendication 2, dans lequel la déconnexion de la charge comprend le choix priori-taire, entre une pluralité de charges, de celle à dé-connecter.

4. Procédé mis en oeuvre par ordinateur selon la

re-vendication 3, dans lequel la première partition (100) comprend au moins une liaison configurée pour con-necter la première partition à au moins une source secondaire et, de préférence, au moins une première liaison de la au moins une liaison est une liaison normalement ouverte.

5. Procédé mis en oeuvre par ordinateur selon la

re-vendication 3 ou la rere-vendication 4, dans lequel le choix prioritaire entre une pluralité de charges com-prend la détermination de priorités sur la base des données reçues d’au moins une charge du réseau.

6. Procédé mis en oeuvre par ordinateur selon l’une

quelconque des revendications précédentes, dans lequel la détermination d’un emplacement de la

se-conde panne (508) comprend :

la détermination qu’un second dispositif d’interruption de panne a été déclenché ; et la détermination d’un emplacement du second dispositif

d’interruption de panne.

7. Procédé mis en oeuvre par ordinateur selon l’une

quelconque des revendications précédentes, dans lequel la source secondaire comprend au moins la seconde partition (200), au moins les dispositifs de commande (140, 240) de la première et de la secon-de partition étant configurés pour échanger sélecti-vement des informations comprenant au moins l’un(e) d’un besoin d’énergie, d’une disponibilité d’énergie et d’une information de panne respectifs.

8. Procédé mis en oeuvre par ordinateur selon l’une

quelconque des revendications précédentes, dans lequel, à la suite du positionnement du second dis-positif d’interruption de panne dans la seconde par-tition (200), la restauration de l’énergie dans la partie amont comprend le second dispositif de commande (240) qui remet à zéro le second dispositif d’inter-ruption de panne et, à la suite du positionnement du second emplacement de panne dans la première partition (100), l’isolement de la seconde panne com-prend la déconnexion de la seconde partition de la première partition et le premier dispositif de com-mande (140) qui instruit au moins un dispositif élec-tronique intelligent (IED) commandant un noeud im-médiatement en amont et un noeud imim-médiatement en aval du second emplacement de panne d’inter-rompre la conductivité vers l’emplacement de la pan-ne et la restauration de l’épan-nergie en aval du second emplacement de panne comprend la reconnexion de la seconde partition (200) avec la première par-tition (100).

9. Procédé mis en oeuvre par ordinateur selon l’une

quelconque des revendications précédentes, dans lequel, à la suite du second dispositif d’interruption de panne qui se trouve dans la seconde partition (200), la restauration de l’énergie dans la partie amont comprend le second dispositif de commande qui remet à zéro le second dispositif d’interruption de panne et, à la suite du second emplacement de panne qui se trouve dans la seconde partition (200), l’isolement de la seconde panne comprend le se-cond dispositif de commande (240) qui instruit au moins un dispositif électronique intelligent (IED) commandant un noeud immédiatement en amont et un noeud immédiatement en aval du second empla-cement de panne d’interrompre la conductivité vers l’emplacement de panne et la restauration de l’éner-gie en aval du second emplacement de panne com-prend, à la suite de la première panne qui a été

References

Related documents

Even if we were able to correctly classify each Twitter user, we would not be able to make a reliable estimate of the voting results as (i) several Twitter users may not vote,

She has created mechanisms to feedback customer service and mystery shopping data into real time, revenue producing activities by the front line and outside sales forces.

Using a Public Goods Game, we are interested in assessing how cooperation rates change when agents can play one of two different reactive strategies, i.e., they can pay a cost in

For each pair, the same context photograph that accompanied it in the first study phase was later re-presented together with the cue on both cued-recall tests (see Fig. The

Open Society Georgia (Soros) 27 Course Baccalaureate Nursing Curriculum 40 Continuing Tbilisi State University Iashvili Children’s Hospital National Medical Center. Model

1 Peter 3:21 – And baptism, which is a figure [of their deliverance], does now also save you [from inward questionings and fears], not by the removing of outward body filth

Indonesia, Sinar Bakti, Jakarta, 2009, pp.120. educating humans to be good citizens is a need because their fair behavior will then guarantee the citizens’ happiness. 7

Comparative study of various bomber aircrafts The first step in the design of aircraft is to collect data of existing aircraft of similar purpose i.e., bomber.. This step