• No results found

Electric Power Systems Research

N/A
N/A
Protected

Academic year: 2021

Share "Electric Power Systems Research"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Electric

Power

Systems

Research

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r

A

novel

VSC-HVDC

link

model

for

dynamic

power

system

simulations

Luis

M.

Castro

a,∗

,

Enrique

Acha

a

,

Claudio

R.

Fuerte-Esquivel

b aTampereUniversityofTechnology,DepartmentofElectricalEngineering,Tampere,Finland

bUniversidadMichoacanadeSanNicolásdeHidalgo,FacultyofElectricalEngineering,Morelia,México

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23September2014 Receivedinrevisedform9April2015 Accepted7May2015

Availableonline29May2015 Keywords:

VSC HVDC FACTS

Newton–Raphsonmethod Dynamicpowersystemsimulations

a

b

s

t

r

a

c

t

ThispaperintroducesanewRMSmodeloftheVSC-HVDClink.Themodelisusefulforassessingthe steady-stateanddynamicresponsesoflargepowersystemswithembeddedback-to-backand point-to-pointVSC-HVDClinks.TheVSC-HVDCmodelcomprisestwovoltagesourceconverters(VSC)linkedby aDCcable.EachVSCismodelledasanidealphase-shiftingtransformerwhoseprimaryandsecondary windingscorrespond,inanotionalsense,totheACandDCbusesoftheVSC.Themagnitudeandphase angleoftheidealphase-shiftingtransformerrepresenttheamplitudemodulationratioandthephase shiftthatexistsinaPWMconvertertoenableeithergenerationorabsorptionofreactivepowerpurelyby electronicprocessingofthevoltageandcurrentwaveformswithintheVSC.Themathematicalmodelis formulatedinsuchawaythattheback-to-backVSC-HVDCmodelisrealizedbysimplysettingtheDCcable resistancetozerointhepoint-to-pointVSC-HVDCmodel.TheNewton–Raphsonmethodisusedtosolve thenonlinearalgebraicanddiscretiseddifferentialequationsarisingfromtheVSC-HVDC,synchronous generatorsandthepowergrid,inaunifiedframe-of-referenceforefficient,iterativesolutionsateach timestep.ThedynamicresponseoftheVSC-HVDCmodelisassessedthoroughly;itisvalidatedagainst theresponseofadetailedEMT-typemodelusingSimulink®.Thesolutionofarelativelylargepower

systemshowstheabilityofthenewdynamicmodeltocarryoutlarge-scalepowersystemsimulations withhighefficiency.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Continuousincreases in electrical energy consumption have encouraged a great deal of technological development in the electricalpowerindustry.Inparticular,thedevelopmentofnew equipmentforpowertransmissionthat enablesamore flexible powergridaimedatachievinghigherthroughputs,enhancing sys-temstabilityand reducing transmissionpowerlosses,hasbeen highontheagenda[1,2].TheVSC-HVDClinkisthelatestequipment developedinthearenaofhigh-voltage,high-powerelectronicsand itsintendedfunctionistotransportelectricalpowerinDCform,as wellastoenabletheasynchronousinterconnectionofotherwise independentACsystems [3], and toprovide independent reac-tivepowersupport.ThetechnologyemploysInsulatedGateBipolar Transistors(IGBTs),drivenbypulsewidthmodulation(PWM) con-trol.Thisvalveswitchingcontrolpermitstoregulatedynamically, inanindependentmanner,thereactivepowerateitherterminalof theACsystemandthepowerflowthroughtheDClink[4].

∗ Correspondingauthor.Tel.:+358465496289.

E-mailaddress:luismiguelcg@hotmail.com(L.M.Castro).

TheVSC-HVDCmodelputforwardinthispapercomprisestwo VSCmodelslinkedbya cableonitsDC sides.Inturn,eachVSC modelis madeupofanidealphase-shiftingtransformerwhich synthesisesthephase-shiftingandscalingnatureofthePWM con-trol.Theidealphaseshifteristakentobetheinterfacebetween theACandDCcircuitsoftheVSC.Themodelmakesprovisionsfor therepresentationofconductionlossesandswitchinglosses.Since bothconvertersarecapableofindependentlycontrollingthe reac-tivepowerexchangedwiththeACpowergridattheirrespective ACnodes,theVSC-HVDCdynamicmodelusestwo independent dynamicvoltageregulators.Bothcontrolloopsareaimedat pro-vidingtherequiredreactivepowersupportattheirrespectiveAC nodestomaintainpre-setvoltages,byregulationoftheiramplitude modulationcoefficients.Likewisethemodelcorrectlyaccountsfor thedynamicsoftheDClink.Thisiscarriedoutbyusingacontrol blockthatactsupontheDCcurrenttoadjusttheDCvoltageofthe VSC-HVDClink.

ItshouldbementionedthatinanearlymodeloftheVSC-HVDC system,thetwo VSCare emulatedby idealisedvoltagesources

[5–8].Alternatively,theVSCshavealsobeenrepresentedby equiv-alentcontrolledcurrentsources[9,10],wherethecurrentstobe injectedintotheACgridsarecomputedbytheexistingdifference betweenthecomplexvoltages oftheVSCterminalsandtheAC http://dx.doi.org/10.1016/j.epsr.2015.05.003

(2)

systemnodesatwhichtheVSC-HVDCisembedded.Morerecently, theconceptofdynamicaveragemodellinghascaughtthe atten-tionofthepowersystemcommunitysinceitallowsthemodelling ofVSCsinamoredetailedmanner[11].Inthedynamicaverage modellingapproach,theaveragevalueoftheoutputvoltage wave-formiscalculatedateachswitchinginterval,avaluethatchanges dynamicallydependingonthevalueofthereferencewaveform.The VSCisrepresentedbyathree-phasecontrolledvoltagesourceon itsACsidesandasacontrolledcurrentsourceonitsDCsides[12]. However,thisapproachmaybetimeconsumingwhenrepetitive simulationsstudiesarerequired,suchasinpowergridexpansion planningandinoperationplanning.Thesolutiontimeisalwaysan importantpointtokeepinmindandinthismethod,increasingtime stepsisalwaysatemptationbutcautionneedstobeexercisedwhen usingthedynamicaveragingmethodsince,asreportedin[12],the useoflargetimestepsmayaffecttheaccuracyoftheresults.Itis worthmentioningthatifharmonicsorelectromagnetictransients arethestudysubject,suchahighlevelofmodellingdetailis nec-essary,where,forinstance,thePWMcontrolneedstobemodelled explicitlytoachievemeaningfulresults.

Ontheotherhand,inlarge-scalepowersystemapplications, itlooksattractivetorepresenteach VSCasacontrolledvoltage sourceowingtoitsmuchreducedcomplexity.However,itsinternal variablesmaynotbereadilyavailable.Incontrast,thenewmodel introducedherecapturesverywellthekeyoperational character-isticsoftheVSCsmakinguptheHVDClink.Thisisdonebyusing explicitstatevariablesthatencapsulatetheactualperformanceof theACandDCcircuitsforboth,thesteady-stateanddynamic oper-atingregimes.Furthermore,thenewVSC-HVDCmodelpossesses thefourdegreesoffreedomfoundinactualVSC-HVDC installa-tions,characterisedbyhavingsimultaneousvoltagesupportatits twoACterminals,DCvoltagecontrolattheinverterconverterand regulatedDCpowerattherectifierconverter.

ThenumericalimplementationoftheVSC-HVDCmodelis car-riedoutusingaunifiedframeworkwhichsuitablycombinesthe algebraicanddiscretiseddifferentialequationsoftheVSC-HVDC linkmodel,thesynchronousgeneratorsandthenon-linear alge-braic equations of thepower grid.This iterativesolution takes advantageoftheNewton–Raphson(NR)methodthusfacilitating theefficientsolutionofthenon-linearequations.Thediscretisation ofthedifferentialequationsiscarriedoutusingtheimplicit trape-zoidalruleofintegrationwhichhasbeenproventobenumerically stableandaccurate[13,14].Inthispaper,specialattentionispaid tothenewdynamicVSC-HVDCmodel,emphasisinghowthe alge-braicanddiscretiseddifferentialequationsareassembledtogether inthisframework.

2. VSC-HVDCmodelfordynamicanalysis

2.1. Keyphysicalcharacteristics

IftwoVSCstationsarelinkedasshowninFig.1,aVSC-HVDC systemisformedandtermedpoint-to-pointconfiguration.Inthis arrangement,electricpoweristakenfromonepointoftheAC net-work,convertedtoDCintherectifierstation,transmittedthrough theDClinkandthenconvertedbacktoACintheinverterstation

Fig.1. SchematicrepresentationofaVSC-HVDClink.

Fig.2.VSCequivalentcircuitfortheinverterstation.

andinjectedintothereceivingACnetwork.Inadditiontotransport powerinDCform,thiscombinedsystemisalsocapableofsupplying reactivepowerandprovidingindependentdynamicvoltage con-trolatitstwoACterminals.Itisworthmentioningthatbysetting thecableresistanceRDCtozero,therepresentationreducestothat

oftheso-calledback-to-backVSC-HVDCconfiguration.Pleaserefer totheAppendixAforthesymbolsusedinallequationsandfigures. 2.2. VSC-HVDCsteady-statemodel

Fig.2depictstheequivalentcircuitoftheVSCcorrespondingto theinverterstation;asimilartopologycanbeformulatedforthe rectifierstation.Itssteady-staterepresentationreliesonanideal phase-shiftingtransformerwithcomplextaps,aseriesimpedance onitsACsideaswellasanequivalentvariableshuntsusceptance BeqI,andashuntresistoronitsDCside[15].

TheseriesreactanceX1IrepresentsdeVSC’sinterface

magnet-icswhereastheseriesresistorR1Iisassociatedtotheohmiclosses

whichareproportionaltotheACterminalcurrent squared.The shuntresistor(withaconductancevalueofGswI)producespower

losstoaccountfortheswitchingactionoftheconverter valves. Thisconductanceiscalculatedaccordingtoratedconditionsand ensuresthattheoperatingconditionsonswitchinglossesare repre-sentedbyscalingthequadraticratiooftheactualterminalcurrent IItothenominalcurrentInom: GswI=G0I



II/Inom



2

.Notethatthe squaringofthisratioistogivetheswitchingconductanceterman overallpowerperformance.Thefollowingassumptionsaremade inthemodel:(a)thecomplexvoltageV1=k2maIEDCejIisthe

volt-agerelativetothesystemphasereference;(b)thetapmagnitude maIoftheidealphase-shiftingtransformercorrespondstotheVSC’s

amplitudemodulationcoefficientwherethefollowingrelationship holdsforatwo-level,three-phaseVSC: k2=



3

8;(c)theangle IisthephaseangleofvoltageV1;(d)EDC istheDCbus

ampli-tudevoltagewhichisarealscalar.Bearingthisinmind,thenodal powerflowequationsfortheseriesbranchoftheVSCrepresenting theinverterstationarederivedfromthenodaladmittancematrix developedinAppendixB.Aftersomearduousalgebra,theactive andreactivepowersexpressionsforthepowersinjectedatboth endsoftheVSC,nodesvIand0vI,arearrivedat:

PvI=Vv2IG1I−k2maIVvIEDCI



G1Icos



vI−I



+B1Isin



vI−I



(1) QvI=−Vv2IB1I−k2maIVvIEDCI



G1Isin



vI−I



−B1Icos



vI−I



(2) P0vI =k22m2aIEDCI2 G1I−k2maIVvIEDCI



G1Icos



I−vI



+B1Isin



I−vI



+PswI (3) Q0vI =−k22m2aIEDCI2 B1I−k2maIVvIEDCI



G1Isin



I−vI



−B1Icos



I−vI



+QeqI (4)

(3)

where, PswI=EDCI2 G0I



IvI/Inom



2 (5)

QeqI=−k22m2aIEDCI2 BeqI (6)

Likewise,asimilarsetofequationsmaybeobtainedfortheVSC correspondingtotherectifierstation.Toobtainthesteady-state equilibriumpoint,thesetofmismatchpowerflowequationsthat mustbesolvedtogetherwiththosearisingfromallthenetwork’s nodesis: PvR=−PvR−PvR,load−PvRcal=0 (7) QvR=−QvR−QvR,load−QvRcal=0 (8) PvI=−PvI−PvI,load−PvIcal=0 (9) QvI=−QvI−QvI,load−QvIcal=0 (10) E0R=EDCR2 −EDCIEDCR−PschRDC=0 (11) P0vR=−Psch−P0vR=0 (12) P0vI=Psch− (EDCR−EDCI)2R−1DC−P0vI=0 (13) Q0vR=−Q0vR=0 (14) Q0vI=−Q0vI=0 (15)

where,inthisparticularcase,PvRcal,QvRcal,PvIcalandQvIcal,standfor

thepowersflowingfrombusvRtokandvItom,respectively.They aregivenby PvRcal=Vv2RGRR+VvRVk



GRkcos



vR−k



+BRksin



vR−k



(16) QvRcal=−Vv2RBRR+VvRVk



GRksin



vR−k



−BRkcos



vR−k



(17) Similarequationsmaybeobtainedforthepowerflowingfrom busItombysimplyexchangingsubscriptsin(16)and(17).Itshould beremarkedthat(12)ensuresthatthepowerflowleavingthe rec-tifierstationbekeptatthescheduledvaluePsch.Giventhatthe inverterstationischosentokeeptheDClinkvoltageataconstant valueEDCIthenEq.(11)allowsthecomputationoftheDCvoltagein

therectifier’sside,EDCR.Sincetheobjectiveistoregulatethe

volt-agemagnitudeatbothACsidesoftheVSC-HVDCwhilekeeping theDCvoltagefixed,VvI,VvRandEDCIarenotpartofthesetofstate

variablesthatneedtobecomputed.Thus,vR,maR,vI,maI,EDCR,R,

I,BeqRandBeqI,constitutethesetofstatevariablesthatmustbe

calculatedbysolving(7)–(15)withtherestoftheequations aris-ingfromthenetwork.ToguaranteethateachVSCoperateswithin feasibleoperatinglimits,alimitcheckingofthemodulationratio andterminalcurrentmusttakeplace,thatis,ma≤1andI≤Inom.

Furthermore,toenablegoodstartingconditions,theNRalgorithm isinitialisedasfollows:theamplitudemodulationratios,maIand

maR,andtheangles,IandR,aresetat1and0,respectively.

2.3. VSC-HVDCdynamicmodel

TheVSC capacitor’s dynamics play an importantrole inthe behaviouroftheHVDClinkwhensubjectedtovoltageandpower variationscomingfromtheexternalACnetwork.Ontheotherhand, inthisVSCapplication,DCvoltagecontrolisatargetinorderto pursueastableoperationoftheDClink.Theinverterconverteris theonethattakesonsuchatask,wherethefollowing relation-shipholdsatitsDCterminals:ic=−IDCR−IDCI,beingIDCRandIDCI

thecurrentsinjectedatrectifier’sDCbusandatinverter’sDCbus,

Fig.3.VSC-HVDCdynamiccontrollerfortheDCvoltage.

respectively.Substitutingthiscurrentrelationshipintothe expres-sionthatallowscalculatingthecapacitor’scurrentic=CDCdEdtDC,we

getthedifferentialequationwithwhichtheDCvoltagedynamics arerepresented. dEDCI dt = −IDCR−IDCI CDC (18) IDCR= P0vR EDCR (19) ThevalueofCDCisestimatedfromtheamountofenergystored

inthecapacitor:Wc= 1

2CDCE2DC.Theelectrostaticenergystoredin

theDCcapacitorcanbeassociatedwithanequivalentinertia con-stantHc[s]asWc=HcSnom,whereSnomwouldcorrespondtothe

ratedapparentpoweroftheVSC.Thistimeconstantissmallandit maybetakentobeHc≈5ms[16].Hence,theper-unitvalueofthe

capacitorwouldbeCDC=2SnomHc/E2DC.

Arguably,thecurrentbalanceshownin(18)isakintothepower balanceinsidetheHVDClinkforsteady-stateoperatingconditions whenthederivativetermbecomeszero.Thus,wheneverthe cur-rent/powerbalanceisdisturbed,voltagevariationswillappearin theDClink.AsshowninFig.3,thedynamiccontroloftheHVDC’sDC voltageiscarriedoutbyusingtheDCcurrententeringtheinverter converter,IDCI,asthecontrolvariable.Theerrorbetweentheactual

voltageEDCIandEDCInomisusedbyaPIcontroller,withgainsKpedc

andKiedc,toobtainnewvaluesofDCcurrentIDCI.

Thedifferential andalgebraic equationsarising fromtheDC voltagedynamiccontrollerare

dIDCIaux

dt =Kiedc(EDCI−EDCInom) (20)

IDCI=Kpedc(EDCI−EDCInom)+IDCIaux (21)

Simultaneously,therectifier converter must ensurethat the activepowerleavingthisstationbekeptatthescheduledvaluePsch.

FromFig.1,itcanbeinferredthatthepowerenteringtheinverter stationisPschminusthepowerlossincurredbytheDCcable

resis-tor.Iftheinverterstationisselectedtoperformthecontrolofthe DClinkvoltageEDCIthentheDCvoltageattherectifier’sside,EDCR,

canbecomputedatanytimebyapplyingKirchhoff’svoltagelaw intheDCcircuit,asfollows:

EDCR=EDCI−RDCIDCR (22)

Theangularaperturebetweenthephase-shiftingangleofthe rectifier R and the voltage angle vR is related to the power

exchangeoccurringatanytimebetweenthenetworkandthe rec-tifier’sDCbus.Hence,theangulardifferenceR=vR−R isalso

akeyparameterthatrequiresproperregulationwiththeaimto achievethescheduledactivepowertransferPschfromtherectifier

stationtowardstheinverterstation.Then,thepursuedpower bal-anceontheDCsidewillnowbegivenbythefollowingexpression: P0vR+Psch=0,asshowninFig.4.

The equations that allow the assessment of the dynamic behaviourforthescheduledpowercontrollerare

dRaux

(4)

Fig.4. DC-powertransfercontrollerfortheVSC-HVDClink.

R=Kppdc(Psch+P0vR)+Raux (24)

TheACvoltagedynamiccontroloftheVSC-HVDCcallsfortwo controlloops,asshowninthefirst-ordercontrolblocksofFig.5. ThemodulationindicesmaIandmaRareresponsibleforeither,

con-trollingthevoltagemagnitudesattheACsidesoftherectifierand inverterstations ofatthescheduledvalues, VvI0 andVvR0,orto

exertthefixedreactivepowersetpoint:Qref

I andQRref.Thecontrols

aredesignedinsuchawaythatthemodulationindicesmaIand

maRarereadjustedateverytimestepaccordingtothevoltageor

reactivepowercommands.

The differentialequations representing the dynamics of the modulationindiceswhenvoltagecontrolisselectedare

d (dmaR) dt = KmaR(VvR0−VvR)−dmaR TmaR (25) d (dmaI) dt = KmaI(VvI0−VvI)−dmaI TmaI (26)

3. Dynamicframeofreference

Inthis papertheinterest isin assessingtheeffectiveness of thenewVSC-HVDCmodeltoregulatevoltagemagnitudeateither terminaloftheACsystem,followingachangeinthepower net-worksuchasa stepchangeinsystemloadorthetrippingof a transmissionlineortransformer.Hence,thesolutionmethod pre-sented in [13],is selected toimplement theVSC-HVDC model developedinSectionII.Thisapproachcombinesthesetofalgebraic equations(27)representingthepowernetworkwiththesystem ofdifferentialequations (28)describingthedynamic behaviour ofthesynchronous generatorsand theircontrols,toobtainthe solutionasafunctionoftimein aunifiedframeofreference.It usestheimplicit trapezoidalmethod(seeAppendixC)which is knowntobenumericallystable,preservingareasonableaccuracy

[13,14],

0=f (X,Y ) (27)

˙y=g (X,Y,t) (28)

Fig.5.AC-busvoltagecontrollers:(a)rectifierstationand(b)inverterstation.

whereXandYarevectorsofvariablesthatarecomputedatdiscrete pointsintime.

Theseequations areefficiently solved usingtheNR method. In this case, theconventional power flow Jacobian matrix, J,is enlargedtoaccommodatethepartialderivativesthatarisefrom thediscretiseddifferentialequationsanditscontrolvariables.The NRmethodprovidesanaccuratesolutiontothesetofequations givenbyF(Z)=0,bysolvingforZinthelinearisedproblemJZ=− F(Z),inarepetitivefashion.InthiscaseZisavectorthatcontains thenetwork’sstate variables andthe statevariables pertaining tothesynchronousgeneratorsandtheircontrolsor,indeed,any othercontroldevicesuchastheVSC-HVDClink.Inanexpanded form,

QP F(y)

=

P



P

V

P

y

Q



Q

V

Q

y

F(y)



F(y)

V

F(y)

y

V y

(29)

where P and Qare theactive and the reactivepower mis-match vectors, respectively; F(y) is a vector that contains the discretiseddifferentialequationsofeachmachineorcontrolling device; , V and y represent the vectors of incremen-tal changes in nodal voltage angles and magnitudes, as well as the state variables arising from each differential equation. TheNR methodstartsfroman initialguessfor Z0 and updates

the solution at each iteration i, i.e., Zi+1=Zi+Zi, until a

pre-defined toleranceis fulfilled. In this unified solution,all ofthe statevariables areadjustedsimultaneouslyinordertocompute the newequilibrium point of the power systemat every time step.

3.1. DiscretisationandlinearisationoftheVSC-HVDCequations fordynamicsimulations

Toenableasuitablerepresentationinthisunifiedframeof ref-erence,theVSC-HVDCdifferentialequations arediscretisedand expressedintheformofamismatchequationinthesameformas thatofthenetwork’sactiveandreactivepowermismatch equa-tions: FEDCI=EDCI,t−t+ t 2 ˙EDCI,t−t−

EDCI,t− t 2 ˙EDCI,t



=0 (30) FIDCIaux=IDCIaux,t−t+ t 2 ˙IDCIaux,t−t −

IDCIaux,t− t 2 ˙IDCIaux,t



=0 (31) FRaux=Raux,t−t+ t 2 ˙Raux,t−t−

Raux,t− t 2 ˙Raux,t



=0 (32) FdmaR=dmaR,t−t+ t 2 d ˙maR,t−t−

dmaR,t− t 2 d ˙maR,t



=0 (33) FdmaI =dmaI,t−t+ t 2 d ˙maI,t−t−

dmaI,t−t 2 d ˙maI,t



=0 (34) where, ˙EDCI,t=CDC−1



−IDCR,t−IDCI,t



(35)

(5)

˙EDCI,t−t=CDC−1



−IDCR,t−t−IDCI,t−t



(36)

˙IDCIaux,t=Kiedc



EDCI,t−EDCInom



(37)

˙IDCIaux,t−t=Kiedc



EDCI,t−t−EDCInom



(38) ˙Raux,t=Kipdc



Psch+P0vR,t



(39) ˙Raux,t−t=Kipdc



Psch+P0vR,t−t



(40) d ˙maR,t=TmaR−1



KmaR



VvR0−VvR,t



−dmaR,t



(41) d ˙maR,t−t=TmaR−1



KmaR



VvR0−VvR,t−t



−dmaR,t−t



(42) d ˙maI,t=TmaI−1



KmaI



VvI0−VvI,t



−dmaI,t



(43) d ˙maI,t−t=TmaI−1



KmaI



VvI0−VvI,t−t



−dmaI,t−t



(44) TheEqs.(30)–(44)governthedynamicbehaviourofthe VSC-HVDCmodel.ThefirsttwoequationscapturetheDCvoltageand currentperformance oftheDC linkwhentheenergybalanceis perturbedowingtoadisturbanceintheACnetwork.Likewise,the equationinvolvingtheangular apertureR (32)deals withthe

powerunbalancepresentintheDClink.Also,theEqs.(33)and

(34)enablethecomputationofthenewvaluesofthemodulation indiceswithwhichthetargetACvoltagesareacquiredfortheactual ACnetwork’soperatingconditions.InordertolinktheVSC-HVDC’s controlvariableswiththegrid’sstatevariablesatnodesvRandvI, thealgebraicpowermismatchEqs.(7)–(10)mustbeused. How-ever,tocompletethemodelfordynamicsimulationpurposes,two morealgebraicequationsareneeded.Oneforcalculatingthe volt-ageEDCRattherectifierstation’sDCbus(45)andanothertoenable

theHVDCtoachievethepowerbalanceattheinverter’sDCbus

(46).

E0R=EDCR−EDCI+RDCIDCR (45)

P0I=EDCIIDCI−P0vI (46)

Eqs. (7)–(10), (45)–(46) and (30)–(34) constitute the set of mismatchequations that mustbeassembled togetherwiththe equationsofthewholenetwork,synchronousgeneratorsandtheir correspondingcontrollers.ThelinearisedformoftheVSC-HVDC mathematicalmodelisgivenby,

F=



J11 J12 J21 J22



z (47)

F=



PvR QvR PvI QvI E0R P0I FEDCI FIDCI,aux FRaux FdmaR FdmaI



T

z=



vR VvR vI VvI EDCR I EDCI IDCI,aux Raux dmaR dmaI



T

whereJ11comprisesthefirst-orderpartialderivativesofthepower

mismatchequationsandinnerVSC-HVDC’smismatchequations withrespecttothenetwork’sandVSC-HVDC’sstatevariables. Like-wise,J12containsthefirstorderpartialderivativesarisingfromthe

algebraicmismatchequationswithrespecttothecontrolvariables oftheVSC-HVDClink.ThematrixJ21consistsofpartialderivatives

oftheVSC-HVDC’sdiscretiseddifferentialequationswithrespect totheACvoltagesandangles,thephase-shiftingangleIandthe

DCvoltageEDCR.Lastly,J22isamatrixthataccommodatesthe

first-orderpartialderivativesoftheVSC-HVDC’sdiscretiseddifferential equationswithrespecttotheirowncontrolvariables.

J11=

∂PvR ∂vR ∂PvR ∂VvR 0 0 ∂PvR ∂EDCR 0 ∂QR ∂vR ∂QvR ∂VvR 0 0 ∂QvR ∂EDCR 0 0 0 ∂PvI ∂vI ∂DPvI ∂VvI 0 ∂PvI ∂I 0 0 ∂QvI ∂vI ∂QvI ∂VvI 0 ∂QvI ∂I ∂E0R ∂vR ∂E0R ∂VvR 0 0 ∂E0R ∂EDCR 0 0 0 ∂P0I ∂vI ∂P0I ∂VvI 0 ∂P0I ∂I

, J12=

0 0 0 ∂PvR ∂dmaR 0 0 0 0 ∂QR ∂dmaR 0 ∂PvI ∂EDCI 0 0 0 ∂PvI ∂dmaI ∂QvI ∂EDCI 0 0 0 ∂QvI ∂dmaI ∂E0R ∂EDCI 0 0 ∂E0R ∂dmaR 0 ∂P0R ∂EDCI 0 0 0 ∂P0R ∂dmaI

J21=

∂FEDCI ∂vR ∂FEDCI ∂VvR 0 0 ∂FEDCI ∂EDCR 0 0 0 0 0 0 0 ∂FRaux ∂vR ∂FRaux ∂VvR 0 0 ∂FRaux ∂EDCR 0 0 ∂FdmaR ∂VvR 0 0 0 0 0 0 0 ∂FdmaI ∂VvI 0 0

, J22=

∂FEDCI ∂EDCI 0 0 0 ∂FEDCI ∂dmaI ∂FIDCI,aux ∂EDCI ∂FIDCI,aux ∂IDCI,aux 0 0 0 0 0 ∂FRaux ∂Raux ∂FRaux ∂dmaR 0 0 0 0 ∂FdmaR ∂dmaR 0 0 0 0 0 ∂FdmaI ∂dmaI

(48)

The steady-state conditions that are employed to start the dynamic simulation are calculated through the conventional Newton–RaphsonpowerflowalgorithmincludingtheVSC-HVDC linksteady-statemodel,asdiscussedinSection2.2.Sucha solu-tionwillprovideadequatestartingconditionstoensurereliable dynamicsimulations.

(6)

Fig.6.TestsystemusedtovalidatetheproposedVSC-HVDCmodel.

4. StudyCases

4.1. ValidationofthenewVSC-HVDCmodel

TheprowessofthenewVSC-HVDClinkmodelisdemonstrated bycarryingoutacomparisonagainstthewidely-usedEMT-type simulationsoftwareSimulink®.Itshouldbementionedthatboth types of simulation tools enable dynamic assessments of elec-tricalpower networks but they takea fundamentally different approach.Simulink® representseverycomponent ofthepower gridbymeansofRLCcircuits andtheircorresponding differen-tialequationsrequirediscretisationatrathersmalltimesteps,in theorderofmicro-seconds,toensureastablenumericalsolution. Conversely,thesolutionoftheRMS-typemodelintroducedinthis paperrequiresonlyonephaseofthenetwork(positivesequence), usingfundamental-frequencyphasorsofvoltagesandcurrentsas opposedtothethree-phaserepresentationalong with instanta-neouswaveformsofvoltagesandcurrentsusedinanEMTtoolsuch asSimulink®.

TheVSC-HVDCmodelcomparisoniscarriedoutusingarather simplepowersystemcomprisingtwoindependentACnetworks (2000MVA,230kV,50Hz)which areinterconnectedthrough a VSC-HVDClink(200MVA,±100kVDC)withaDCcablelengthof 75km,asshowninFig.6.Bothconverterstationscompriseeach astep-downtransformer,ACfilters,converterreactor,DC capaci-torsandDCfilters,wherethechangesofthetransformers’tapare notsimulated.Themodelofthepowersystemincludingthe VSC-HVDClinktogetherwithitsparameterscanbefoundinthesection of‘demos’inSimulink®as:VSC-BasedHVDCTransmissionSystem (DetailedModel),whereastheparametersofthenewVSC-HVDC modelareshowninAppendixD.Toensureareliablenumerical solution,theEMT-typesimulationpackagediscretisesthepower systemandthecontrolsystemwithasampletimeof7.406␮sand 74.06␮s,respectively,whereasforthedevelopedRMS-typemodel, anintegrationstepof1msisused.Alltheresultsshowninp.u. valuesarebasedontheHVDCstation’srating.

Initiallytherectifierstationissettocontroltheactivepower transmissionatPsch=200MW(1p.u.),theinverterisresponsible

forcontrollingtheDCvoltageatEDCInom=200kV(1p.u.).The

rec-tifierandinverterstationsaresettocomplywithafixedreactive powercommandof0p.u.and−0.1p.u.,respectively.Inorderto reachthesteady-stateequilibriumpointinSimulink®,the simula-tionisrunuptot=1s.Atthispoint,theactivepowertransmission isreducedfrom200MWto100MW,thatis,a−50%stepisapplied tothereferencescheduledDCpower.Furthermore,att=3s,astep changeof−5%isappliedtothereferenceDCvoltageoftheinverter, i.e.,theDCvoltageisdecreasedfrom1p.uto0.95p.u.

TheDCvoltagesattheconverters’DCterminalsareshownin

Fig.7correspondingtocaseswherestepchangesinthereference DCpowerandDCvoltageareapplied.Asexpected,some differ-encescanbeseenfromtheresultsobtainedusingbothsolution techniques.Thedynamicperformance oftheDC voltagesofthe RMS-typemodel followswellthedynamic pattern obtainedby theswitching-basedHVDCmodelsimulatedinSimulink®.Avery considerabledifferenceexistsbetweenthetwoapproachesatthe start ofthesimulation (0.5sof thesimulation), a factthat can beexplainedbytheverydifferentmannerinwhichbothpower

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.85 0.9 0.95 1 1.05 1.1 Time [s] DC voltage [p.u] EDCR EDCI EDCR EDCI Proposed model

Simulink model Step change in DC power

Step change in DC voltage

Fig.7. DCvoltageperformancefortheproposedandSimulinkVSC-HVDCmodel.

systemsimulationsareinitialised;ourproposedVSC-HVDCsystem usesanaccuratestartingconditionfurnishedbyapowerflow solu-tionwhereastheSimulink®modelstartsfromitscustomaryzero initialcondition,i.e.,thecurrentsandvoltagesoftheinductorsand capacitors,respectively,aresettozeroatt=0s.

Similarconclusionscanbedrawnwhenanalysingthedynamic responseof theDCpowerfollowing theapplicationofthestep changesinDCpowerandDCvoltage,asshowninFig.8.Asforthe changeintheDCpowerreference,itcanbeseenthatthepower sta-bilisesinnomorethan0.5s;thisshowstheratherquickresponse androbustnessaffordedbythedynamiccontrolsoftheVSC-HVDC linkevenintheeventofadrasticchangeinthetransmittedDC power.Ontheotherhand,thestepchangeintheDCvoltage ref-erencecausesmomentarypowerflowoscillationsintheDClink whicharealsodampedoutquiterapidly.

ThedynamicbehaviouroftheHVDC’smodulationindicesare depictedinFig.9.ThenegativestepchangeintheDCpower refer-enceyieldsaverynoticeablevariationinthemodulationindices; thedynamicperformanceofthemodulationindicesascalculated bybothSimulink®andtheproposedHVDCmodel,followthesame trendalthoughanexact matchwasnotexpected.Afterthefirst disturbance,a steady-stateerrorof0.87%and1.67%is obtained forthemodulationindices of therectifierand inverter, respec-tively.Similarly,oncetheoscillationsdue tothestepchangein thereferenceDCvoltagehavebeendamped,thedifferencesinthe modulationindicesstandat0.07%and1.16%,respectively.These relativelysmallvariationsmaybeexplainedbytheverydifferent modellingandsolutionapproachesusedbythetwoquitedifferent simulationtechniquesusedforthecomparison,theinitial steady-statevaluesoftheconverters’indicesandmostimportantlydueto

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.4 0.6 0.8 1 1.2 Time [s] DC power [p.u] Simulink Proposed model

Step change in DC power

Step change in DC voltage

(7)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.7 0.8 0.9 1 1.1 Time [s] Modulation index maR maI maR maI Proposed model

Step change in DC power

Step change in DC voltage Simulink model

Fig.9. ModulationindicesperformancefortheproposedandSimulinkVSC-HVDC model.

Fig.10.RelevantareaoftheNewEnglandtestsystem.

theDCvoltagebehaviourasthishasastrongimpactonthe per-formanceofthemodulationindices.Moreimportantly,theresults furnishedbythetwosoftwaresimulationsfollowthesametrend.

Forthesakeofcomparison,Table1showstheVSC-HVDCresults asobtainedbythenewmodelandtheSimulink®modelat differ-entpointsintimeofsimulation.Table1alsoshowsthecomputing timesrequiredtosimulatethetestsystemusingboththeRMS-type VSC-HVDC modeland theEMT-typesimulation tool Simulink®, withthenewmodelbeingapproximatelyninetimesfasterthanthe EMTsimulation.Thesignificantcomputationaltimesavingwithout jeopardisingtheaccuracyoftheresultsmakesthedeveloped VSC-HVDClinkmodelasuitableoptionforlarge-scalepowersystem simulations,specificallyinstudiesthatrequirelongersimulation timessuchasthoseinvolvingsynchronousgenerators’frequency variationsandlong-termvoltagestabilityissues.

4.2. NewEnglandtestsystemwithembeddedVSC-HVDClink TheNew England test system[17] is modified, asshown in

Fig.10,toincorporatethemodelofaVSC-HVDCwiththe parame-tersshowninAppendixD.Thetransmissionlineconnectingnodes 4and14isreplacedbyaVSC-HVDClink.TheDCcableresistanceis assumedtobe0.24%ontheVSCs’base:Snom=300MVA,resulting

Fig.11.Voltageperformanceatdifferentnodesofthenetwork.

inthesameresistancevalueasthatofthereplacedtransmission lineforthesystem’sbase:0.08%.Therectifierandinverterstations, VSCRandVSCI,exertvoltagecontrolattheirrespectiveACterminals

atVvR=1.01p.uandVvI=1.03p.u,respectively.Forthesteady-state

conditions,thehigh-voltagesideoftheLTCtransformers,which correspondtonodes4and14,areheldfixedatthesamevoltage levelasthosefortheconverters’terminals,VvRandVvI;underthese

conditions,theLTC’stapsarecomputedthroughthesteady-state powerflowalgorithm;theirvaluesarekeptconstantduringthe dynamicsolution.Inadditiontoprovidingreactivepowercontrol, theHVDClinkperformsactivepowerregulationattherectifier station’sDCbus atPsch=100MW,whichimplies thattheactive

powerisdrawnfromnode4andinjectedtonode14,asdepicted inFig.10.Theactiveandreactivepowerspresentedintheanalysis forthesteady-stateanddynamicoperatingregimesaregivenat thehigh-voltagesideofeachLTCtransformer.Allresultsshownin p.u.valuesarebasedontheHVDCstation’sratings.

Duringsteadystate,therectifierstationisdelivering153.359 MVArtothenetworksoastoupholditstargetvoltagemagnitude withamodulationratioof0.8282,whereastheinverterstation operateswithamodulationratioof0.8423,injecting27.306MVAr tothegrid.InthecaseoftheactivepowerflowingthroughtheHVDC system,thepowerenteringtherectifierstationstandsat101.159 MWandthepowerleavingtheinverterstationtakesa valueof 99.641MW.Itisclearthatthedifferencebetweenthesetwo pow-ersisthetotalpowerlossincurredbytheHVDCsystemincluding thatproducedbytheDClinkcable.Takingasareferencethe nomi-nalapparentpowerforeachconverterSnom,thetotalpowerlosses

standat0.504%ofwhich0.386%correspondstotherectifierstation and0.112%totheinverterstationwhilstthepowerlossproduced byJoule’seffectintheDCcablestandsat0.006%,recallingthatits magnitudeisdependentonthelengthoftheDCtransmissionline.

Table2showsthemainVSC-HVDCresultsasgivenbythe steady-statepowerflowsolutionwhichservesthepurposeofinitialising thedynamicsimulation.

Hence,usingvaluesfromthesteady-statepowerflowsolution, itiseasytoproceedwiththecalculationoftheinitialvaluesforthe controlvariablestakingpartinthedynamicsoftheVSC-HVDClink; theseareemployedtoinitialisethedynamicsimulationofthetest network,whensubjectedtothedisconnectionofthetransmission lineslinkingnodes25-2,2-3and3-4,att=0.1s.

Table1

ComparisonofVSC-HVDCvariablesfortheproposedmodelandtheSimulink®model.

Time(s) Proposedmodel Simulink®model

EDCR EDCI maR maI PDCI EDCR EDCI maR maI PDCI

t=1− 1.0105 1.0000 0.8553 0.8296 0.9895 1.0007 0.9968 0.8499 0.8301 0.9897

t=3− 1.0053 1.0000 0.8389 0.8172 0.4974 1.0044 0.9996 0.8476 0.8005 0.4977

t=5 0.9556 0.9500 0.9329 0.8711 0.4971 0.9554 0.9494 0.9336 0.8827 0.4954

(8)

Table2

ComputedVSC-HVDCvariablesbythepowerflowsolution.

Qgen EDC ma  Beq LTC’stap Ploss

VSCR 153.359MVAr 1.0002p.u. 0.8282 −2.6655◦ 0.5182p.u. 1.0252 1.1595MW

VSCI 27.306MVAr 1.0000p.u. 0.8423 6.8416◦ 0.0918p.u. 1.0044 0.3383MW

Fig.12.Dynamicbehaviouroftheconverters’modulationindices.

Fig.13.ReactivepowergeneratedbybothconvertersmakinguptheHVDClink.

Fig.11showsthevoltagemagnitudesatvariousnodesfollowing achangeinthenetwork’stopology.Duringthetransientperiod,the targetvoltagesetpointisachievedveryquicklybytheactionofthe AC-busvoltagecontrollersthatregulatetheconverters’modulation indicesmaRandmaI,asshowninFig.12.Theratherpromptaction

ofbothcontrollersleadstoveryrapidreactivepowerinjectionat bothconvertersACterminals,ascanbeseeninFig.13,resultingin theveryeffectivedampingofthevoltageoscillationsandenabling asmoothvoltagerecoverythroughoutthegrid.

AssoonasthedisturbancetakesplaceintheACsystem,the energybalanceintheDClinkisbroken;thevoltagesagsthattake placeatbothconvertersACterminalsreducetheactivepowerbeing transferredthroughtheDClink;thecurrent-IDCRthatflowsfrom

therectifierstationVSCR towardstheinverterstationVSCIdrops

abruptlyfrom0.166p.uto0.146p.u,asillustrated bytheblue lineinFig.14.Amomentarymismatchbetweenbothconverters DCcurrentsisthenproducedbecausetheDCcurrentcannotbe instantlyre-establishedduetothetimeconstantsinvolvedinthe

Fig.14.DCcurrentbehaviourfortherectifierandinverter.

Fig.15.DCvoltagebehaviourfortherectifierandinverter.

Fig.16.VSC-HVDC’sACactivepowerandDC-powertransferbehaviour.

currentcontrolleroftheinverterstation;asaresult,DCvoltage deviationstakeplace,asshownin Fig.15,reachingaminimum valueof0.978p.u.duringthetransientevent.Nevertheless,once thiscontrollerstartsrespondingtotheDCvoltagevariations,the currentIDCI,depictedbythegreen lineinFig.14,startstracing

theDCcurrentoftherectifierIDCRtocompensateforthevoltage

drop,enablingaspeedyrecoveryoftheDClinkvoltage.Itshould beremarkedthatinviewofthefactthatthecableresistanceis relativelysmall,soisthevoltagedropalongtheDCtransmission line,resultinginquitesimilarmagnitudesand,ofcourse,dynamic behavioursofthevoltagesatbothDCbuses,EDCRandECDI.

ThesimulationresultsfortheactivepowerandDC-power trans-ferfollowingthedisconnectionofthetransmissionlinescloseto theHVDClinkareillustratedinFig.16.Thebluelinerepresentsthe activepowerenteringthehigh-voltagesideoftheload-tapchanger transformer coupledto the rectifier station whereas the green linecharacterizestheactivepowerperformanceattheinverter’s LTC’shigh-voltageside.Thepowerdifferencerepresentsthepower lossesincurredbytheVSC-HVDClink,includingthoseproducedby theDCcable.TheDC-powertransferPschconsistingoftheproduct

ofvoltageEDCRandcurrent−IDCR,isalsoshowninthesamegraph.

Sincethevoltageandcurrentcontrolshavebeenshowntooperate efficiently,asillustratedinFig.14andFig.15,thenafastpower recoveryis achievedinspiteoftheseveredisturbanceoccurred inthenetwork.Giventhatthepowerflowing fromtherectifier towardstheinverterstationhasbeenbroughtbacktoitsinitial targetpowertransferof0.333p.u,thedeviationofthepowerangle Rsuffersameremarginalincrease,ascanbeseeninFig.17,only

toagreewiththenewreachedsteady-stateconditionswhere dif-ferentcurrentsand,therefore,activepowerlossesareproduced.

(9)

Fig.17.DynamicperformanceofvariousanglesinvolvedintheVSC-HVDC dynam-ics.

therectifierandinverterconverters,RandI.Asexpected,these

anglesfollowthesamepatternasthoseobtainedbythenetwork’s voltageangles,atthenodeswheretheVSC-HVDCsystemis con-nected.

5. Conclusions

AnewVSC-HVDCmodelforRMSdynamicsimulationsof large-scalepower systemshasbeen introducedin thispaper. Thisis anall-encompassingmodelthatfacilitatestheback-to-backand point-to-pointrepresentationoftheVSC-HVDCbysimply mod-ifyingthe DC cable resistancevalue. Themodel possesses four degreesoffreedom,acharacteristicthatconformstoactual VSC-HVDClinks,i.e.,itexertssimultaneousvoltagecontrolonitstwo ACterminalsandatitsDCbusandtransmittedpowerthroughthe DClink.

ThemodelsolutioniscarriedoutusingtheNRmethodwhich solvessimultaneouslythealgebraicanddifferentialequationsat eachtimestep.Thepoint-to-pointVSC-HVDCmodelcomprisestwo series-connectedVSCstationsandaDCcable.EachVSCmodeluses anidealphase-shiftingtransformerasitscoreelement.The con-ductionlossesandtheswitchinglossesoftheHVDCconvertersare wellcapturedinthemodel.Furthermore,theVSC-HVDCdynamic modelisfittedwithindependentcontrollersfortheACandDC cir-cuitstorepresentthequitedistinctdynamicperformancesofthe twocontrolcircuits.

Thepoint-to-pointVSC-HVDCmodelintroducedinthispaper has been validated using the EMT simulation tool Simulink®, wheretheresultsobtainedfromthetwofundamentallydifferent approachesagreedquitewellwitheachother.Nevertheless,itwas shownthatthegreaterlevelofdetailneededinanEMTsolution comeswithanonerousprice-tagtopayintermsofavery consider-ablecomputationaltimecomparedtothecomputingtimeincurred bythenewRMS-typeVSC-HVDCmodel.

TheperformanceofthenewVSC-HVDCmodelwastestedina largernetworkwhichiswidelyusedinacademiccircles, compris-ing39nodes.TheVSC-HVDClinkmodelperformedwellinterms ofitsmodellingflexibilityandinattainingthesetcontroltargets.It wasshownthattheDCcurrentcontrollerandtherectifier’sangular aperturecontrolleroperateefficientlytostabilizeboththeDC volt-ageandtheDCpower,respectively.Likewise,theACvoltagecontrol wasquicklyachievedduetotheproperactionofthecontrollers actinguponthemodulationindicesoftheconverters.

AppendixA.

EDC:DCvoltage.IDC:DCcurrent.CDC:DCcapacitance.RDC:DC

transmissionlineresistance. Inom: VSC’s nominalcurrent.Snom:

VSC’snominalpower.Psch:Scheduledactivepower.ma:VSC’s

mod-ulationindex.ϕ:VSC’sphase-shiftingangle.k2=



3

8:Constant

foratwo-level,three-phaseVSC.G0:Shuntresistorwhichaccounts

fortheswitchinglossesoftheVSC.Beq:Equivalentvariableshunt

susceptance.Y1:VSC’sseriesadmittanceassociatedwith

conduc-tion losses and interface magnetics.V: Complex nodal voltage. I:Complexcurrentinjection.S: Complexnodalpowerinjection. Kpedc,Kiedc:ProportionalandintegralgainsfortheDCvoltage

con-trol.Kppdc,Kipdc:ProportionalandintegralgainsfortheDCpower

control.Kma,Tma:Proportionalgainandtimeconstantforthe

mod-ulationindex control.Subscripts Rand Istandfor rectifier and inverter,respectively.

AppendixB.

InconnectionwithFig.2,thevoltageandcurrentrelationships intheidealphase-shiftingtransformerare:

V1 EDCI = k2maI∠I 1 and k2maI∠−I 1 = I2 I1 (A.1) ThecurrentthroughtheimpedanceconnectedbetweenvIand 1is:

I1=Y1(VvI−V1)=Y1VvI−k2maI∠IY1EDCI=IvI (A.2)

whereY1=(R1I+jX1I)−1.

Atnode0vI,thefollowingrelationshipholds, I0vI=−I2+GswIEDCI=−k2maI∠−IY1VvI+k22m2aIY1EDCI

+jBeqIk22maI2EDCI+GswIEDCI (A.3)

RearrangingEqs.(A.2)and(A.3)yields:



IvI I0vI



=



Y1 −k2maI∠IY1 −k2maI∠−IY1 k22m2aI



Y1+jBeqI



+GswI





VvI EDCI



(A.4) Thereforethepowerinjectionswouldbe,



SvI S0vI



=



VvI EDCI



×



Y1∗ −k2maI∠−ϕIY1∗ −k2maI∠ϕIY1∗ k22m2aI



Y1∗−jBeqI



+GswI





VvI EDCI



(A.5) AppendixC.

Asafirststep,theimplicittrapezoidalmethodcallsfor alge-braizingany differentialequation ˙y bymeansof expressingits step-by-stepsolutionasanintegralform,

˙y(t)−F(X(t),Y (t))=0 (B.1) Y (t)−Y (t−t)− t



t−t F(X(t),Y (t))dt=0 (B.2)

AssumingthatallfunctionsF(·)varylinearlyoverthetime inter-val[t−t,t],theareaundertheintegralcanbeapproximatedbya trapezium;thedifferentialalgebraicequationgivenintheformof amismatchequationisthen,

FY=Yt−t+t2 ˙Yt−t−

Yt− t 2 ˙Yt



=0 (B.3)

(10)

AppendixD.

ParametersusedinSection4.1:(i)Theparametersofthepower systemcanbefoundinthesectionof‘demos’inSimulink®as: VSC-BasedHVDCTransmissionSystem(DetailedModel).(ii)VSC-HVDC databased onthe HVDC rating Snom=200MVA: RDC=0.042704

p.u.; EDCInom=1.0 p.u.; G0I=G0R=2e-3 p.u.; R1I=R1R=2e-3 p.u.;

X1I=X1R=1e-3 p.u.; Hc=0.014; Kpedc=0.6; Kiedc=35; Kppdc=0;

Kipdc=5;KmaI=KmaR=25;TmaI=TmaR=0.02;ZLTCtransf=0.005+j0.15

p.u.

Parameters used in Section 4.2: (i) Synchronous genera-tors are equipped with exciter, automatic voltage regulator, speed governor and hydro turbine. Generators and network data are available in [17]. (ii) VSC-HVDC data based on the HVDC rating Snom=300MVA: RDC=0.0024 p.u.; EDCInom=1.0

p.u.;G0I=G0R=2e-3p.u.;R1I=R1R=2e-3p.u.;X1I=X1R=0.01p.u.;

Hc=0.007; Kpedc=0.05; Kiedc=1.0; Kppdc=0.002; Kipdc=0.075;

KmaI=KmaR=25.0; TmaI=TmaR=0.02; XLTCtransf=0.05 p.u. (iii)

Load models: PL=PL0

0.2+0.4



V/V0



+0.4



V/V0



2



and QL=QL0

0.2+0.4



V/V0



+0.4



V/V0



2



,where,PL0andQL0are

thenominalactiveandreactivepowersdrawnbytheloadatrated voltageV0.

References

[1]S.Dodds,B.Railing,K.Akman,B.Jacobson,T.Worzyk,B.Nilsson,HVDCVSC (HVDClight)transmission–operatingexperiences,Cigré(2010)1–9(B4-203 2010).

[2]T.Larsson,A.Edris,D.Kidd,F.Aboytes,Eaglepassback-to-backtie:adual purposeapplicationofvoltagesourceconvertertechnology,IEEEPowerEng. Soc.3(2001)1686–1691.

[3]D.V. Hertem, M. Ghandhari, Multi-terminal VSC-HVDC for the Euro-pean supergrid: obstacles, Renew. Sust. Energy Rev. 14 (2010) 3156–3163.

[4]H.F.Latorre,M.Ghandhari,L.Söder,Activeandreactivepowercontrolofa VSC-HVDC,Electr.PowerSyst.Res.78(2008)1756–1763.

[5]E.Acha,C.R.Fuerte-Esquivel,H.Ambriz-Perez,C.Angeles-Camacho,FACTS Modeling and Simulation in Power Networks, John Wiley & Sons, Chichester,England,2005.

[6]S.Ruihua,Z.Chao,L.Ruomei,Z.Xiaoxin,VSCsbasedHVDCanditscontrol strategy,IEEE/PESTrans.Dist.Conf.Exhibit.(2005)1–6.

[7]X.P. Zhang, Multiterminal voltage-sourced converter-based HVDC models for power flow analysis, IEEE Trans. Power Syst. 19 (2004) 1877–1884.

[8]S.P.Teeuwsen,Simplifieddynamicmodelofavoltage-sourcedconverterwith modularmultilevelconverterdesign,IEEE/PESPowerSyst.Conf.Expo.PSCE (2009)1–6.

[9]S.ColeandR.Belmans,ModellingofVSCHVDCusingcoupledcurrentinjectors, IEEEPESGeneralMeeting—ConversionandDeliveryofElectricalEnergyinthe 21stCentury(2008)1–8.

[10]S. Cole, R. Belmans, A proposalfor standard VSC HVDC dynamic mod-els inpower system stabilitystudies, Electr.Power Syst.Res. 81(2011) 967–973.

[11]S. Chiniforoosh,J. Jatskevich, A.Yazdani,V. Sood,V. Dinavahi, J.A. Mar-tinez,A.Ramirez,Definitionsandapplicationsofdynamicaveragemodels for analysis of power systems, IEEE Trans. Power Deliv. 25 (2010) 2655–2669.

[12]M.M.Z.Moustafa,S.Filizadeh,AVSC-HVDCmodelwithreducedcomputational intensity,IEEEPESGen.Meet.(2012)1–6.

[13]M.Rafian,M.J.H.Sterling,M.R.Irving,Real-timepowersystemsimulation,IEE Proc.Gen.Trans.Dist.134(1987)206–223.

[14]H.W.Dommel,N.Sato,Fasttransientstabilitysolutions,IEEETrans.Power Appar.Syst.PAS-91(1972)1643–1650.

[15]E.Acha,B.Kazemtabrizi,L.M.Castro,AnewVSC-HVDCmodelforpower flowsusingtheNetwon–Raphsonmethod,IEEETrans.PowerSyst.28(2013) 2602–2612.

[16]M.M.deOliveira,PowerElectronicsforMitigationofVoltageSagsandImproved ControlofACPowerSystems,RoyalInstituteofTechnology(KTH),Stockholm, 2000(DoctoralDissertation).

[17]M.A.Pai,EnergyFunctionAnalysisforPowerSystemStability,KluwerAcademic Publishers,NewYork,USA,1989.

References

Related documents

individual item is less critical. Our starting point was an existing examination format that we believe functions well to assess the appropriate abilities. In the process of

5.1 Deployment models (four types):- Private, Community, Public and Hybrid, the four types of deployment models refers to location and management of cloud’s infrastructure

Nelson, L. in Instructional Technology, University of Central Florida). Project management in higher education. in Educational Leadership, University of North Carolina at

Marriage certificates show that in Morteros the majority of these repeated pairs belong to Italian pairs and Spanish pairs of surnames, in both immigration and post-immigration

Our new favourite thing will be to listen to music together We will be so happy when Covid is

Comparative study of various bomber aircrafts The first step in the design of aircraft is to collect data of existing aircraft of similar purpose i.e., bomber.. This step

As provided herein, the Purchased Percentage of each Future Sale Proceeds due to the Seller shall be paid to Buyer by the credit card processor approved by Buyer, or shall be