• No results found

A New Ranking Principle For Ordering Trapezoidal Intuitionistic Fuzzy Numbers

N/A
N/A
Protected

Academic year: 2021

Share "A New Ranking Principle For Ordering Trapezoidal Intuitionistic Fuzzy Numbers"

Copied!
25
0
0

Loading.... (view fulltext now)

Full text

(1)

Research Article

A New Ranking Principle For Ordering Trapezoidal

Intuitionistic Fuzzy Numbers

Lakshmana Gomathi Nayagam Velu, Jeevaraj Selvaraj, and Dhanasekaran Ponnialagan

Department of Mathematics, National Institute of Technology, Tiruchirappalli, India Correspondence should be addressed to Jeevaraj Selvaraj; alba.jeevi@gmail.com

Received 27 June 2016; Revised 4 November 2016; Accepted 13 November 2016; Published 6 February 2017 Academic Editor: Jose Egea

Copyright Β© 2017 Lakshmana Gomathi Nayagam Velu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Modelling real life (industrial) problems using intuitionistic fuzzy numbers is inevitable in the present scenario due to their efficiency in solving problems and their accuracy in the results. Particularly, trapezoidal intuitionistic fuzzy numbers (TrIFNs) are widely used in describing impreciseness and incompleteness of a data. Any intuitionistic fuzzy decision-making problem requires the ranking procedure for intuitionistic fuzzy numbers. Ranking trapezoidal intuitionistic fuzzy numbers play an important role in problems involving incomplete and uncertain information. The available intuitionistic fuzzy decision-making methods cannot perform well in all types of problems, due to the partial ordering on the set of intuitionistic fuzzy numbers. In this paper, a new total ordering on the class of TrIFNs using eight different score functions, namely, imprecise score, nonvague score, incomplete score, accuracy score, spread score, nonaccuracy score, left area score, and right area score, is achieved and our proposed method is validated using illustrative examples. Significance of our proposed method with familiar existing methods is discussed.

1. Introduction

Classical set theory cannot be the better choice for modelling problems involving qualitative or imprecise information. To model such problems, fuzzy number was introduced by Jain [1] and some operations on fuzzy numbers are defined in [2, 3]. Intuitionistic fuzzy numbers are comparatively better in modelling real life problems involving uncertainties and imprecise information. Particularly, trapezoidal intuitionistic fuzzy numbers are more effective in describing impreciseness and incompleteness of a data. To resolve the task of compar-ing trapezoidal intuitionistic fuzzy numbers, many authors have proposed different ranking methods but none of them yield a total order on the class of TrIFNs with finite number of scores. Different ranking methodologies on the class of intuitionistic fuzzy numbers are discussed in [4, 5].

Nehi and Maleki [6] generalised the idea of natural ordering on real numbers to the triangular intuitionistic fuzzy numbers (TIFNs) by adopting a statistical view point. Nehi [7] compared TIFNs using lexicographic technique. Li [2] developed the idea of value and ambiguity of a triangular intuitionistic fuzzy number and introduced the

new ranking method using the concept of the ratio of the value index to the ambiguity index. Ye [8] presented the new ranking method using expected value of a trapezoidal intuitionistic fuzzy number and solved the decision-making problem using weighted expected value of TrIFN. Dubey and Mehara [9] extended the concept of value and ambiguity to the slightly modified TIFN and proposed a new approach to solve intuitionistic fuzzy linear programing problem. Nehi [7] introduced the concept of characteristic values of membership and nonmembership functions of TrIFN and proposed a new ranking method for trapezoidal intuitionistic fuzzy numbers by using it. Zhang and Nan [10] developed a compromise ratio ranking method for fuzzy multiattribute decision-making (MADM) problem based on the concept that larger TIFN among other TIFNs will be closer to the maximum value index and it will be far away from the minimum ambiguity index simultaneously. Kumar and Kaur [11] proposed the ranking method for TrIFNs by modifying Nehi’s [10] method. Zeng et al. [12] introduced a new ranking method for TrIFNs by extending the concept value and ambiguity of TIFN defined in Li [2]. Wan and Dong [13] introduced the concept of lower and upper weighted

Volume 2017, Article ID 3049041, 24 pages https://doi.org/10.1155/2017/3049041

(2)

possibility mean and possibility mean for a trapezoidal intuitionistic fuzzy numbers and proposed the new ranking method by use of it. Different ranking methods and their applications on multicriteria decision-making problem and other domains are studied in ([14–20]). Lakshmana Gomathi Nayagam et al. [19, 21, 22] have introduced a complete ranking procedure on the class of intuitionistic fuzzy numbers using countable number of parameter. In this paper, a new total ordering on the class of TrIFNs using finite number of score functions is achieved. Also the limitations and drawbacks of all the abovementioned methods are discussed and the efficiency of our proposed method is shown by comparing all existing methods.

This paper is organised in the following manner. After introduction, some important definitions on intuitionistic fuzzy numbers are given in Section 2. The different subclasses of TrIFNs are introduced and the new score functions on these subclasses are established in Section 3. In Section 4, a complete ranking on the class of trapezoidal intuitionistic fuzzy numbers by using score functions defined in Section 3 is explained. The ranking procedure is explained in detail with several examples and also our proposed method is compared with some other existing methods in the Section 5. Finally conclusions are given in Section 6.

2. Preliminaries

Here we give a brief review of some preliminaries.

Definition 1 (Atanassov [23]). Let𝑋 be a nonempty set. An

intuitionistic fuzzy set (IFS) 𝐴 in 𝑋 is defined by 𝐴 = {⟨π‘₯, πœ‡π΄(π‘₯), ]𝐴(π‘₯)⟩ | π‘₯ ∈ 𝑋}, where πœ‡π΄(π‘₯) : 𝑋 β†’ [0, 1] and ]𝐴(π‘₯) : 𝑋 β†’ [0, 1], π‘₯ ∈ 𝑋 with the conditions 0 ≀ πœ‡π΄(π‘₯) + ]𝐴(π‘₯) ≀ 1, βˆ€π‘₯ ∈ 𝑋. The numbers πœ‡π΄(π‘₯), ]𝐴(π‘₯) ∈ [0, 1] denote the degree of membership and nonmembership ofπ‘₯ to lie in𝐴, respectively. For each intuitionistic fuzzy subset 𝐴 in𝑋, πœ‹π΄(π‘₯) = 1 βˆ’ πœ‡π΄(π‘₯) βˆ’ ]𝐴(π‘₯) is called hesitancy degree of π‘₯ to lie in 𝐴.

Definition 2 (Burillo et al., [24]). An intuitionistic fuzzy

number𝐴 = (πœ‡π΄, ]𝐴) in the set of real numbers 𝑅 is defined as πœ‡π΄(π‘₯) = { { { { { { { { { { { { { { { 𝑓𝐴(π‘₯) if π‘Ž ≀ π‘₯ ≀ 𝑏1 1 if 𝑏1≀ π‘₯ ≀ 𝑏2 𝑔𝐴(π‘₯) if 𝑏2≀ π‘₯ ≀ 𝑐 0 Otherwise, ]𝐴(π‘₯) = { { { { { { { { { { { { { { { β„Žπ΄(π‘₯) if 𝑒 ≀ π‘₯ ≀ 𝑓1 0 if 𝑓1≀ π‘₯ ≀ 𝑓2 π‘˜π΄(π‘₯) if 𝑓2≀ π‘₯ ≀ 𝑔 1 Otherwise, (1) where0 ≀ πœ‡π΄(π‘₯) + ]𝐴(π‘₯) ≀ 1 and π‘Ž, 𝑏1, 𝑏2, 𝑐, 𝑒, 𝑓1, 𝑓2, 𝑔 ∈ R such that𝑒 ≀ π‘Ž, 𝑓1 ≀ 𝑏1 ≀ 𝑏2 ≀ 𝑓2, 𝑐 ≀ 𝑔, and four functions 𝑓𝐴, 𝑔𝐴, β„Žπ΄, π‘˜π΄ : R β†’ [0, 1] are the legs of membership

(0, 1) (0, 0) (e, 1) (a, 1) (b1, 1) (b2, 1) (c, 1)(g, 1) πœ‡c A πœ‡A gA β„ŽA ]A fA kA (a ,0 ) (f1 ,0 ) (b1 ,0 ) (f2 , 0) (b2 ,0 ) (c ,0 )

Figure 1: Intuitionistic fuzzy number.

functionπœ‡π΄and nonmembership function]𝐴. The functions 𝑓𝐴andπ‘˜π΄are nondecreasing continuous functions and the functionsβ„Žπ΄and𝑔𝐴are nonincreasing continuous functions. An intuitionistic fuzzy number{(π‘Ž, 𝑏1, 𝑏2, 𝑐), (𝑒, 𝑓1, 𝑓2, 𝑔)} with(𝑒, 𝑓1, 𝑓2, 𝑔) ≀ (π‘Ž, 𝑏1, 𝑏2, 𝑐)𝑐is shown in Figure 1.

Definition 3. A trapezoidal intuitionistic fuzzy number 𝐴

with parameters𝑒 ≀ π‘Ž, 𝑓1 ≀ 𝑏1≀ 𝑏2≀ 𝑓2, 𝑐 ≀ 𝑔 is denoted as 𝐴 = {(π‘Ž, 𝑏1, 𝑏2, 𝑐), (𝑒, 𝑓1, 𝑓2, 𝑔)} in the set of real numbers R is an intuitionistic fuzzy number whose membership function and nonmembership function are given as

πœ‡π΄(π‘₯) = { { { { { { { { { { { { { { { { { π‘₯ βˆ’ π‘Ž1 π‘Ž2βˆ’ π‘Ž1 if π‘Ž1≀ π‘₯ ≀ π‘Ž2 1 if π‘Ž2≀ π‘₯ ≀ π‘Ž3 π‘Ž4βˆ’ π‘₯ π‘Ž4βˆ’ π‘Ž3 if π‘Ž3≀ π‘₯ ≀ π‘Ž4 0 Otherwise, ]𝐴(π‘₯) = { { { { { { { { { { { { { { { { { π‘₯ βˆ’ 𝑐2 𝑐1βˆ’ 𝑐2 if 𝑐1≀ π‘₯ ≀ 𝑐2 0 if 𝑐2≀ π‘₯ ≀ 𝑐3 π‘₯ βˆ’ 𝑐3 𝑐4βˆ’ 𝑐3 if 𝑐3≀ π‘₯ ≀ 𝑐4 1 Otherwise. (2)

Ifπ‘Ž2 = π‘Ž3(and𝑐2 = 𝑐3) in a trapezoidal intuitionistic fuzzy number𝐴, we have the triangular intuitionistic fuzzy num-bers as special case of the trapezoidal intuitionistic fuzzy numbers.

A trapezoidal intuitionistic fuzzy number 𝐴 = {(π‘Ž, 𝑏1, 𝑏2, 𝑐), (𝑒, 𝑓1, 𝑓2, 𝑔)} with 𝑓1 ≀ 𝑏1,𝑓2 β‰₯ 𝑏2,𝑒 ≀ π‘Ž, and 𝑔 β‰₯ 𝑐 is shown in Figure 2.

We note that the condition(𝑒, 𝑓1, 𝑓2, 𝑔) ≀ (π‘Ž, 𝑏1, 𝑏2, 𝑐)𝑐 of the trapezoidal intuitionistic fuzzy number𝐴 = {(π‘Ž, 𝑏1, 𝑏2, 𝑐), (𝑒, 𝑓1, 𝑓2, 𝑔)} whose membership and nonmembership fuzzy numbers of𝐴 are (π‘Ž, 𝑏1, 𝑏2, 𝑐) and (𝑒, 𝑓1, 𝑓2, 𝑔) implies

(3)

(0, 1) (0, 0) (e, 1) (a, 1) (b1, 1) (b2, 1) (c, 1) (g, 1) πœ‡cA πœ‡A ]A (a ,0 ) (f1 ,0 ) (b1 ,0 ) (f2 , 0) (b2 ,0 ) (c ,0 )

Figure 2: Trapezoidal intuitionistic fuzzy number.

𝑓1 ≀ 𝑏1,𝑓2 β‰₯ 𝑏2,𝑒 ≀ π‘Ž, and 𝑔 β‰₯ 𝑐 on the legs of trapezoidal intuitionistic fuzzy number.

Definition 4 (Atanassov and Gargov, [25]). Let𝐷[0, 1] be the

set of all closed subintervals of the interval[0, 1]. An interval valued intuitionistic fuzzy set on a set𝑋 ΜΈ= πœ™ is an expression given by𝐴 = {⟨π‘₯, πœ‡π΄(π‘₯), ]𝐴(π‘₯)⟩ : π‘₯ ∈ 𝑋}, where πœ‡π΄ : 𝑋 β†’ 𝐷[0, 1], ]𝐴: 𝑋 β†’ 𝐷[0, 1] with the condition 0 < supπ‘₯πœ‡π΄(π‘₯)+ supπ‘₯]𝐴(π‘₯) ≀ 1.

The intervals πœ‡π΄(π‘₯) and ]𝐴(π‘₯) denote, respectively, the degree of belongingness and nonbelongingness of the ele-mentπ‘₯ to the set 𝐴. Thus for each π‘₯ ∈ 𝑋, πœ‡π΄(π‘₯) and ]𝐴(π‘₯) are closed intervals whose lower and upper end points are, respectively, denoted byπœ‡π΄πΏ(π‘₯), πœ‡π΄π‘ˆ(π‘₯) and ]𝐴𝐿(π‘₯), πœ‡π΄π‘ˆ(π‘₯). We denote𝐴 = {⟨π‘₯, [πœ‡π΄πΏ(π‘₯), πœ‡π΄π‘ˆ(π‘₯)], []𝐴𝐿(π‘₯), ]π΄π‘ˆ(π‘₯)]⟩ : π‘₯ ∈ 𝑋}, where 0 < πœ‡π΄(π‘₯) + ]𝐴(π‘₯) ≀ 1.

For each elementπ‘₯ ∈ 𝑋, we can compute the unknown degree (hesitance degree) of belongingness πœ‹π΄(π‘₯) to 𝐴 as πœ‹π΄(π‘₯) = 1 βˆ’ πœ‡π΄(π‘₯) βˆ’ ]𝐴(π‘₯) = [1 βˆ’ πœ‡π΄π‘ˆ(π‘₯) βˆ’ ]π΄π‘ˆ(π‘₯), 1 βˆ’ πœ‡π΄πΏ(π‘₯) βˆ’ ]𝐴𝐿(π‘₯)]. An intuitionistic fuzzy interval number (IFIN) is denoted by𝐴 = ([π‘Ž, 𝑏], [𝑐, 𝑑]) for convenience.

Definition 5. Let𝛼, π›½βˆˆ (0, 1]. An (𝛼, 𝛽)-cut of a trapezoidal

intuitionistic fuzzy number, denoted by(𝛼,𝛽)𝐴𝐼, is defined as

(𝛼,𝛽)𝐴 𝐼 = {(π›Όπœ‡π΄πΌ, 𝛽] 𝐴𝐼)}, where π›Όπœ‡ 𝐴𝐼and 𝛽]

𝐴𝐼 are𝛼-cut and 𝛽-cut of membership and nonmembership trapezoidal fuzzy numbers.

The(𝛼, 𝛽)-cut of trapezoidal intuitionistic fuzzy number 𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘ŽσΈ€  1], π‘ŽσΈ€ 2], π‘Ž3]σΈ€  , π‘Ž4]σΈ€  )⟩ is given by (𝛼,𝛽)𝐴 𝐼 = {[π›Όπœ‡π΄πΌπΏ,π›Όπœ‡π΄πΌπ‘ˆ], [𝛽]𝐴𝐼𝐿,𝛽]π΄πΌπ‘ˆ]} = ([π‘Ž1πœ‡ + 𝛼(π‘Ž2πœ‡ βˆ’ π‘Ž1πœ‡), π‘Ž4πœ‡βˆ’ 𝛼(π‘Ž4πœ‡βˆ’ π‘Ž3πœ‡)], [π‘ŽσΈ€  1]+ 𝛽 (π‘Ž2]σΈ€  βˆ’ π‘ŽσΈ€ 1]), π‘Ž4]σΈ€  βˆ’ 𝛽 (π‘Ž4]σΈ€  βˆ’ π‘ŽσΈ€ 3])]), whereπ›Όπœ‡π΄ 𝐼𝐿 and π›Όπœ‡

π΄πΌπ‘ˆ represents the lower and upper end points of the𝛼-cut of the membership function of 𝐴𝐼 and

𝛽]

𝐴𝐼𝐿 and𝛽]π΄πΌπ‘ˆrepresent the lower and upper end points of the𝛽-cut of the nonmembership function of 𝐴𝐼, respectively.

3. Different Classes of Trapezoidal

Intuitionistic Fuzzy Numbers

In this section the entire class of TrIFNs is partitioned into eight subclasses and further score functions using different concepts are defined in order to give total order on the entire class of TrIFNs and some theorems related to these concepts are established.

In this paper, 𝐴𝐼 and 𝐡𝐼 always denote trapezoidal intuitionistic fuzzy number (TrIFN).

𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€ , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩ with condi-tions thatπ‘ŽσΈ€ 1]≀ π‘Ž1πœ‡andπ‘Ž2]σΈ€  ≀ π‘Ž2πœ‡,π‘Ž3]σΈ€  β‰₯ π‘Ž3πœ‡andπ‘Ž4]σΈ€  β‰₯ π‘Ž4πœ‡and 𝐡𝐼 = ⟨(𝑏1πœ‡, 𝑏2πœ‡, 𝑏3πœ‡, 𝑏4πœ‡), (𝑏󸀠

1], 𝑏2]σΈ€ , 𝑏3]σΈ€  , 𝑏4]σΈ€ )⟩ with the condition that𝑏1]σΈ€  ≀ 𝑏1πœ‡and𝑏2]σΈ€  ≀ 𝑏2πœ‡,𝑏3]σΈ€  β‰₯ 𝑏3πœ‡, and𝑏4]σΈ€  β‰₯ 𝑏4πœ‡unless otherwise specifically stated.

3.1. Imprecise Score of a Trapezoidal Intuitionistic Fuzzy Number. In this subsection, a new subclass of TrIFNs is

introduced. The imprecise score function on this class of trapezoidal intuitionistic fuzzy numbers is defined and some of its properties are studied using illustrative examples.

Definition 6. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩

and𝐡𝐼= ⟨(𝑏1πœ‡, 𝑏2πœ‡, 𝑏3πœ‡, 𝑏4πœ‡), (𝑏1]σΈ€ , 𝑏2]σΈ€  , 𝑏3]σΈ€ , 𝑏4]σΈ€ )⟩ be two TrIFNs. A special subclass𝐢1of the set of TrIFNs consist of TrIFNs for which every pair of𝐴𝐼and𝐡𝐼are withπ‘Ž1πœ‡ β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡ β‰₯ 𝑏2πœ‡, π‘Ž3πœ‡ ≀ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡ and π‘Ž1]σΈ€  β‰₯ 𝑏1]σΈ€ , π‘Ž2]σΈ€  β‰₯ 𝑏2]σΈ€  , π‘Ž3]σΈ€  ≀ 𝑏󸀠

3], π‘Ž4]σΈ€  ≀ 𝑏4]σΈ€ . The imprecise relation on𝐢1is denoted asβŠ‘ and defined as follows: if𝐴𝐼, 𝐡𝐼 ∈ 𝐢1 βŠ‚ TrIFN such that 𝐴𝐼 βŠ‘ 𝐡𝐼thenπ‘Ž1πœ‡ β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡ β‰₯ 𝑏2πœ‡, π‘Ž3πœ‡ ≀ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡and π‘ŽσΈ€ 

1]β‰₯ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]β‰₯ 𝑏2]σΈ€  , π‘Ž3]σΈ€  ≀ 𝑏3]σΈ€ , π‘Ž4]σΈ€  ≀ 𝑏4]σΈ€ .

If𝐴𝐼 ⊏ 𝐡𝐼then one of the above inequalities becomes strict inequality.

Note 1. By Definition 6, we note that any pair of members of

𝐢1are related under⊏.

The score function which measures the preciseness is defined as follows.

Definition 7. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩

be a trapezoidal intuitionistic fuzzy number with π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡, π‘ŽσΈ€ 

1], π‘ŽσΈ€ 2], π‘Ž3]σΈ€  , π‘ŽσΈ€ 4]∈ [0, 1]. Then the imprecise score of a trapezoidal intuitionistic fuzzy number𝐴𝐼is defined by

𝐽1(𝐴𝐼) = ∫1 0 [π›Όπœ‡ π΄πΌπΏβˆ’π›Όπœ‡π΄πΌπ‘ˆ] 4 𝑑𝛼 + ∫ 1 0 [𝛽] π΄πΌπΏβˆ’π›½]π΄πΌπ‘ˆ] 4 𝑑𝛽 = ∫1 0 (π‘Ž1πœ‡+ 𝛼 (π‘Ž2πœ‡βˆ’ π‘Ž1πœ‡)) 4 𝑑𝛼 βˆ’ ∫1 0 (π‘Ž4πœ‡βˆ’ 𝛼 (π‘Ž4πœ‡βˆ’ π‘Ž3πœ‡)) 4 𝑑𝛼

(4)

+ ∫1 0 (π‘Ž1]σΈ€  + 𝛽 (π‘Ž2]σΈ€  βˆ’ π‘Ž1]σΈ€  )) 4 𝑑𝛽 βˆ’ ∫1 0 (π‘ŽσΈ€  4]βˆ’ 𝛽 (π‘Ž4]σΈ€  βˆ’ π‘Ž3]σΈ€  )) 4 𝑑𝛽 =(π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€ ) βˆ’ (π‘Ž3]σΈ€  + π‘ŽσΈ€ 4]) 8 . (3) The proofs of the following propositions are immediate from the above definition and hence they are omitted.

Proposition 8. For any real number π‘Ÿ ∈ [0, 1], 𝐽1(π‘Ÿ) = 0.

Proposition 9. If 𝐴𝐼 = (π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡) is a trapezoidal

fuzzy number, then𝐽1(𝐴𝐼) = ((π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡))/4.

Proposition 10. Let 𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3])⟩ be a

triangular intuitionistic fuzzy number. Then𝐽1(𝐴𝐼) = ((π‘Ž1πœ‡βˆ’

π‘Ž3πœ‡) + (π‘Ž1]σΈ€  βˆ’ π‘Ž3]σΈ€  ))/4.

Proposition 11. Let 𝐴𝐼= ([π‘Ž1πœ‡, π‘Ž2πœ‡], [π‘ŽσΈ€ 

1], π‘Ž2]σΈ€  ]) be an interval

valued intuitionistic fuzzy number. Then𝐽1(𝐴𝐼) = ((π‘Ž1πœ‡βˆ’π‘Ž2πœ‡)+

(π‘ŽσΈ€ 

1]βˆ’ π‘Ž2]σΈ€ ))/2.

Theorem 12. Let 𝐴𝐼and𝐡𝐼 ∈ 𝐢1. If𝐴𝐼⊏ 𝐡𝐼then𝐽1(𝐴𝐼) >

𝐽1(𝐡𝐼).

Proof. Let𝐴𝐼⊏ 𝐡𝐼. We claim that𝐽1(𝐴𝐼) βˆ’ 𝐽1(𝐡𝐼) > 0. By Definition 6, we have π‘Ž1πœ‡β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡β‰₯ 𝑏2πœ‡, π‘Ž3πœ‡β‰€ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]β‰₯ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]β‰₯ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]≀ 𝑏3]σΈ€  , π‘ŽσΈ€  4]≀ 𝑏4]σΈ€  . (4) Now, 8 (𝐽1(𝐴𝐼) βˆ’ 𝐽1(𝐡𝐼)) = [(π‘Ž1πœ‡βˆ’ 𝑏1πœ‡) + (π‘Ž2πœ‡βˆ’ 𝑏2πœ‡) + (𝑏3πœ‡βˆ’ π‘Ž3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(π‘Ž1]σΈ€  βˆ’ 𝑏1]σΈ€ ) + (π‘Ž2]σΈ€  βˆ’ 𝑏2]σΈ€  ) + (𝑏3]σΈ€  βˆ’ π‘ŽσΈ€ 3]) + (𝑏4]σΈ€  βˆ’ π‘ŽσΈ€ 4])] . (5)

From (4) it is very easy to see that all the terms in (5) are pos-itive. Therefore their sum is also pospos-itive. From Definition 6, we know that at least one of the above inequalities in (4) becomes strict inequality and hence we get𝐽1(𝐴𝐼) βˆ’ 𝐽1(𝐡𝐼) > 0.

Theorem 13. Let 𝐴𝐼and𝐡𝐼 ∈ 𝐢1such that𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼);

then𝐴𝐼= 𝐡𝐼.

Proof. Let𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼). We claim that 𝐴𝐼= 𝐡𝐼. By Definition 6, without loss of generality, we have

π‘Ž1πœ‡β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡β‰₯ 𝑏2πœ‡, π‘Ž3πœ‡β‰€ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]β‰₯ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]β‰₯ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]≀ 𝑏3]σΈ€  , π‘ŽσΈ€ 4]≀ 𝑏4]σΈ€  . (6) Now, 8 (𝐽1(𝐴𝐼) βˆ’ 𝐽1(𝐡𝐼)) = [(π‘Ž1πœ‡βˆ’ 𝑏1πœ‡) + (π‘Ž2πœ‡βˆ’ 𝑏2πœ‡) + (𝑏3πœ‡βˆ’ π‘Ž3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(π‘ŽσΈ€  1]βˆ’ 𝑏1]σΈ€ ) + (π‘Ž2]σΈ€  βˆ’ 𝑏2]σΈ€  ) + (𝑏3]σΈ€  βˆ’ π‘Ž3]σΈ€ ) + (𝑏4]σΈ€  βˆ’ π‘ŽσΈ€ 4])] = 0. (7)

Therefore from (6) and (7), it is clear that all the terms in (7) are positive and their sum gives zero only when each term is equal to zero. Henceπ‘Ž1πœ‡ = 𝑏1πœ‡,π‘Ž2πœ‡ = 𝑏2πœ‡,π‘Ž3πœ‡ = 𝑏3πœ‡,π‘Ž4πœ‡ = 𝑏4πœ‡andπ‘Ž1]σΈ€  = 𝑏1]σΈ€  , π‘Ž2]σΈ€  = 𝑏2]σΈ€ , π‘Ž3]σΈ€  = 𝑏3]σΈ€ , π‘ŽσΈ€ 4] = 𝑏4]σΈ€  , hence the proof.

Note 2. The imprecise score can be calculated to any TrIFN

but𝐽1gives total order in𝐢1.

Definition 14. If𝐽1(𝐴𝐼) > 𝐽1(𝐡𝐼)(𝐽1(𝐴𝐼) < 𝐽1(𝐡𝐼)), then 𝐴𝐼>

𝐡𝐼(𝐴𝐼< 𝐡𝐼).

The following example explains the ranking procedure introduced in Definition 14. Example 15. Let𝐴𝐼= ⟨(0.1, 0.2, 0.35, 0.5), (0, 0.15, 0.45, 0.6)⟩ and 𝐡𝐼 = ⟨(0.15, 0.2, 0.35, 0.45), (0.1, 0.1, 0.5, 0.55)⟩ ∈ 𝐢1. Now 𝐽1(𝐴𝐼) = βˆ’0.18125 and 𝐽1(𝐡𝐼) = βˆ’0.1625, 𝐽1(𝐴𝐼) < 𝐽1(𝐡𝐼). Hence𝐴𝐼< 𝐡𝐼. Example 16. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩ and𝐡𝐼 = ⟨(π‘Ž1πœ‡+ πœ–, π‘Ž2πœ‡+ πœ–, π‘Ž3πœ‡βˆ’ πœ–, π‘Ž4πœ‡βˆ’ πœ–), (π‘ŽσΈ€ 1]βˆ’ πœ–, π‘Ž2]σΈ€  βˆ’ πœ–, π‘Ž3]σΈ€  + πœ–, π‘Ž4]σΈ€  + πœ–)⟩ ∈ TrIFN but not in 𝐢1, whereπœ– ∈ [0, 1].

Now𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼) = ((π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž1]σΈ€  + π‘ŽσΈ€ 

2]) βˆ’ (π‘Ž3]σΈ€  + π‘Ž4]σΈ€  ))/8. But 𝐴𝐼 ΜΈ= 𝐡𝐼. Pictorial representation of this example is given in Figure 3.

Example 16 shows that𝐽1is not enough cover the entire class of TrIFNs. Therefore it is needed for us to define another

(5)

(0, 1) (0, 0) bσ³°€ 1] aσ³°€1] b σ³°€ 2] σ³°€ 2a] a2πœ‡ b2πœ‡ a1πœ‡ b1πœ‡ a3πœ‡ b3πœ‡ a4πœ‡ b4πœ‡ aσ³°€ 4] a σ³°€ 3] bσ³°€ 4] b σ³°€ 3] Figure 3: Pictorial representation of Example 16.

score function that can cover some subclass of TrIFNs which cannot be covered by𝐽1.

3.2. Nonvague Score of a Trapezoidal Intuitionistic Fuzzy Number. In this subsection, another subclass of TrIFNs is

introduced using nonvague relation. The nonvague score function on this class of trapezoidal intuitionistic fuzzy numbers is defined and some of its properties are studied using illustrative examples.

Definition 17. Let𝐴𝐼and𝐡𝐼be two TrIFNs.

A special subclass𝐢2of the set of TrIFNs consist of TrIFNs for which every pair of𝐴𝐼and𝐡𝐼are withπ‘Ž1πœ‡ β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡ β‰₯ 𝑏2πœ‡, π‘Ž3πœ‡ ≀ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡ and π‘Ž1]σΈ€  ≀ 𝑏1]σΈ€ , π‘Ž2]σΈ€  ≀ 𝑏2]σΈ€ , π‘Ž3]σΈ€  β‰₯ 𝑏󸀠

3], π‘Ž4]σΈ€  β‰₯ 𝑏4]σΈ€ . The nonvague relation on𝐢2is denoted asβŠ’ and defined as follows: if𝐴𝐼, 𝐡𝐼 ∈ 𝐢2 βŠ‚ TrIFN such that 𝐴𝐼 βŠ’ 𝐡𝐼thenπ‘Ž1πœ‡ β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡ β‰₯ 𝑏2πœ‡, π‘Ž3πœ‡ ≀ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡and π‘ŽσΈ€ 

1]≀ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]≀ 𝑏2]σΈ€  , π‘Ž3]σΈ€  β‰₯ 𝑏3]σΈ€ , π‘Ž4]σΈ€  β‰₯ 𝑏4]σΈ€ .

If𝐴𝐼 ⊐ 𝐡𝐼then one of the above inequalities becomes strict inequality.

Note 3. By Definition 17, we note that any pair of members of

𝐢2are related under⊐.

The score function which measures the nonvagueness is defined as follows.

Definition 18. Let 𝐴𝐼 be a trapezoidal intuitionistic fuzzy number. Then the nonvague score of a trapezoidal intuition-istic fuzzy number𝐴𝐼is defined by

𝐽2(𝐴𝐼) = ∫1 0 [π›Όπœ‡ π΄πΌπΏβˆ’π›Όπœ‡π΄πΌπ‘ˆ] 4 𝑑𝛼 βˆ’ ∫ 1 0 [𝛽] π΄πΌπΏβˆ’π›½]π΄πΌπ‘ˆ] 4 𝑑𝛽 =(π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€ ) + (π‘Ž3]σΈ€  + π‘ŽσΈ€ 4]) 8 . (8)

The proofs of the following propositions are immediate from Definition 18 and hence they are omitted.

Proposition 19. For any real number π‘Ÿ ∈ [0, 1], 𝐽2(π‘Ÿ) = 0.

Proposition 20. If 𝐴𝐼 = (π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡) is a trapezoidal

fuzzy number, then𝐽2(𝐴𝐼) = 0.

Proposition 21. Let 𝐴𝐼= ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡), (π‘ŽσΈ€ 

1], π‘Ž2]σΈ€  , π‘ŽσΈ€ 3])⟩ be a

triangular intuitionistic fuzzy number. Then𝐽2(𝐴𝐼) = ((π‘Ž1πœ‡βˆ’

π‘Ž3πœ‡) + (βˆ’π‘ŽσΈ€ 

1]+ π‘Ž3]σΈ€ ))/8.

Proposition 22. Let 𝐴𝐼= ([π‘Ž1πœ‡, π‘Ž2πœ‡], [π‘ŽσΈ€ 

1], π‘Ž2]σΈ€  ]) be an interval

valued intuitionistic fuzzy number. Then𝐽2(𝐴𝐼) = ((π‘Ž1πœ‡βˆ’π‘Ž2πœ‡)+

(βˆ’π‘ŽσΈ€ 1]+ π‘ŽσΈ€ 2]))/4.

Theorem 23. Let 𝐴𝐼and𝐡𝐼 ∈ 𝐢2. If𝐴𝐼⊐ 𝐡𝐼then𝐽2(𝐴𝐼) >

𝐽2(𝐡𝐼).

Proof. Let us assume𝐴𝐼⊐ 𝐡𝐼. We claim that𝐽2(𝐴𝐼)βˆ’π½2(𝐡𝐼) > 0. By Definition 17, we have π‘Ž1πœ‡β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡β‰₯ 𝑏2πœ‡, π‘Ž3πœ‡β‰€ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]≀ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]≀ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]β‰₯ 𝑏3]σΈ€  , π‘ŽσΈ€ 4]β‰₯ 𝑏4]σΈ€  . (9) Now, 8 (𝐽2(𝐴𝐼) βˆ’ 𝐽2(𝐡𝐼)) = [(π‘Ž1πœ‡βˆ’ 𝑏1πœ‡) + (π‘Ž2πœ‡βˆ’ 𝑏2πœ‡) + (𝑏3πœ‡βˆ’ π‘Ž3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(𝑏1]σΈ€  βˆ’ π‘Ž1]σΈ€  ) + (𝑏2]σΈ€  βˆ’ π‘ŽσΈ€ 2]) + (π‘ŽσΈ€ 3]βˆ’ 𝑏3]σΈ€ ) + (π‘ŽσΈ€ 4]βˆ’ 𝑏4]σΈ€ )] . (10)

From (9) it is very easy to see that all the terms in (10) are pos-itive. Therefore their sum is also pospos-itive. From Definition 17, we know that at least one of the above inequalities in (9) becomes strict inequality and hence we get𝐽2(𝐴𝐼) βˆ’ 𝐽2(𝐡𝐼) > 0.

Theorem 24. Let 𝐴𝐼and𝐡𝐼 ∈ 𝐢2. If𝐽2(𝐴𝐼) = 𝐽2(𝐡𝐼) then

𝐴𝐼= 𝐡𝐼.

(6)

By Definition 17, without loss of generality, we have π‘Ž1πœ‡β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡β‰₯ 𝑏2πœ‡, π‘Ž3πœ‡β‰€ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]≀ 𝑏1]σΈ€  , π‘ŽσΈ€  2]≀ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]β‰₯ 𝑏3]σΈ€  , π‘ŽσΈ€ 4]β‰₯ 𝑏4]σΈ€  . (11) Now, 8 (𝐽2(𝐴𝐼) βˆ’ 𝐽2(𝐡𝐼)) = [(π‘Ž1πœ‡βˆ’ 𝑏1πœ‡) + (π‘Ž2πœ‡βˆ’ 𝑏2πœ‡) + (𝑏3πœ‡βˆ’ π‘Ž3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(𝑏1]σΈ€  βˆ’ π‘Ž1]σΈ€  ) + (𝑏2]σΈ€  βˆ’ π‘ŽσΈ€ 2]) + (π‘Ž3]σΈ€  βˆ’ 𝑏3]σΈ€ ) + (π‘ŽσΈ€ 4]βˆ’ 𝑏4]σΈ€ )] = 0. (12)

Therefore from (11) and (12), it is clear that all the terms in (12) are positive; therefore their sum gives zero only when each term is equal to zero. Henceπ‘Ž1πœ‡ = 𝑏1πœ‡, π‘Ž2πœ‡ = 𝑏2πœ‡, π‘Ž3πœ‡ = 𝑏3πœ‡, π‘Ž4πœ‡ = 𝑏4πœ‡andπ‘Ž1]σΈ€  = 𝑏1]σΈ€  , π‘ŽσΈ€ 2] = 𝑏2]σΈ€ , π‘Ž3]σΈ€  = 𝑏3]σΈ€ , π‘Ž4]σΈ€  = 𝑏4]σΈ€  . Hence𝐴𝐼= 𝐡𝐼.

Note 4. The nonvague score can be calculated to any TrIFN.

But𝐽2gives total order on𝐢2.

Definition 25. If𝐽2(𝐴𝐼) > 𝐽2(𝐡𝐼)(𝐽2(𝐴𝐼) < 𝐽2(𝐡𝐼)), then 𝐴𝐼>

𝐡𝐼(𝐴𝐼< 𝐡𝐼).

Ranking relation defined above is explained in the follow-ing example. Example 26. Let𝐴𝐼 = ⟨(0.15, 0.25, 0.35, 0.45), (0.1, 0.2, 0.4, 0.5)⟩ and 𝐡𝐼 = ⟨(0.18, 0.25, 0.35, 0.4), (0, 0.15, 0.45, 0.55)⟩ ∈ 𝐢2. Now𝐽2(𝐴𝐼) = 0.025 and 𝐽2(𝐡𝐼) = 0.06625, 𝐽2(𝐡𝐼) > 𝐽2(𝐴𝐼). Hence𝐡𝐼> 𝐴𝐼.

Example 27 shows the inefficiency of𝐽1in comparing any two arbitrary TrIFNs and the importance of defining new score function𝐽2. Example 27. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩ and𝐡𝐼 = ⟨(π‘Ž1πœ‡+ πœ–, π‘Ž2πœ‡+ πœ–, π‘Ž3πœ‡βˆ’ πœ–, π‘Ž4πœ‡βˆ’ πœ–), (π‘ŽσΈ€ 1]βˆ’ πœ–, π‘Ž2]σΈ€  βˆ’ πœ–, π‘ŽσΈ€  3]+ πœ–, π‘Ž4]σΈ€  + πœ–)⟩ ∈ TrIFN and πœ– ∈ [0, 1]. Now 𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼) =(π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  ) βˆ’ (π‘ŽσΈ€ 3]+ π‘ŽσΈ€ 4]) 8 󳨐⇒ 𝐴𝐼= 𝐡𝐼. (13) (0, 1) (0, 0) b1σ³°€] a1σ³°€] b σ³°€ 2] a σ³°€ 2] a2πœ‡ b2πœ‡ a1πœ‡ b1πœ‡ a3πœ‡b3πœ‡ a4πœ‡ b4πœ‡ a4σ³°€] a σ³°€ 3] b4σ³°€] b σ³°€ 3] Figure 4: Pictorial representation of Example 28.

But 𝐽2(𝐴𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]) + (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) 8 , 𝐽2(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]) + (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) 8 + πœ–. (14) Therefore𝐽2(𝐡𝐼) > 𝐽2(𝐴𝐼); hence 𝐡𝐼> 𝐴𝐼. Example 28. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩ and𝐡𝐼 = ⟨(π‘Ž1πœ‡+ πœ–, π‘Ž2πœ‡+ πœ–, π‘Ž3πœ‡+ πœ–, π‘Ž4πœ‡+ πœ–), (π‘ŽσΈ€ 1]+ πœ–/2, π‘Ž2]σΈ€  + πœ–/2, π‘ŽσΈ€ 

3]+πœ–/2, π‘Ž4]σΈ€  +πœ–/2)⟩ ∈ TrIFN and πœ– ∈ [0, 1] but not in 𝐢2. Now 𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]) βˆ’ (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) 8 , 𝐽2(𝐴𝐼) = 𝐽2(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]) + (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) 8 . (15) But𝐴𝐼 ΜΈ= 𝐡𝐼.

Pictorial representation of this example is given in Fig-ure 4.

From Example 28 it is easy to see that𝐽1and𝐽2are not enough to cover the entire class of TrIFNs. Therefore in the next subsection we are introducing a new score function which covers some more subclasses of TrIFNs that cannot be covered by𝐽1and𝐽2.

3.3. Incomplete Score of a Trapezoidal Intuitionistic Fuzzy Number. In this subsection, another class of TrIFNs is

(7)

trapezoidal intuitionistic fuzzy numbers is defined and some of its properties are studied using illustrative examples.

Definition 29. Let𝐴𝐼and𝐡𝐼be two TrIFNs.

A special subclass𝐢3of the set of TrIFNs consist of TrIFNs for which every pair of𝐴𝐼and𝐡𝐼are withπ‘Ž1πœ‡ ≀ 𝑏1πœ‡, π‘Ž2πœ‡ ≀ 𝑏2πœ‡, π‘Ž3πœ‡ ≀ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡ and π‘Ž1]σΈ€  β‰₯ 𝑏1]σΈ€ , π‘Ž2]σΈ€  β‰₯ 𝑏2]σΈ€ , π‘Ž3]σΈ€  β‰₯ 𝑏󸀠

3], π‘Ž4]σΈ€  β‰₯ 𝑏4]σΈ€  . The incomplete relation on𝐢3 is denoted as βŠ† and defined as follows: if 𝐴𝐼, 𝐡𝐼 ∈ 𝐢3 βŠ‚ TrIFN such that 𝐴𝐼 βŠ† 𝐡𝐼thenπ‘Ž1πœ‡ ≀ 𝑏1πœ‡, π‘Ž2πœ‡ ≀ 𝑏2πœ‡, π‘Ž3πœ‡ ≀ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡and π‘ŽσΈ€ 

1]β‰₯ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]β‰₯ 𝑏2]σΈ€  , π‘Ž3]σΈ€  β‰₯ 𝑏3]σΈ€ , π‘Ž4]σΈ€  β‰₯ 𝑏4]σΈ€ .

If𝐴𝐼 βŠ‚ 𝐡𝐼then one of the above inequalities becomes strict inequality.

Note 5. By Definition 29, we note that any pair of members

of𝐢3are related underβŠ‚.

The incomplete score function which measures the com-pleteness is defined as follows.

Definition 30. Let 𝐴𝐼 be a trapezoidal intuitionistic fuzzy number. Then the incomplete score of𝐴𝐼is defined by

𝐽3(𝐴𝐼) = ∫1 0 βˆ’ [π›Όπœ‡π΄πΌπΏ +π›Όπœ‡π΄πΌπ‘ˆ] 4 𝑑𝛼 + ∫1 0 [𝛽] 𝐴𝐼𝐿+𝛽]π΄πΌπ‘ˆ] 4 𝑑𝛽 = (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘Ž3]σΈ€  + π‘Ž4]σΈ€  ) βˆ’ (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) 8 . (16)

The proofs of the following propositions are immediate from the above definition and hence they are omitted.

Proposition 31. For any real number π‘Ÿ ∈ [0, 1], 𝐽3(π‘Ÿ) = 0.

Proposition 32. If 𝐴𝐼 = (π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡) is a trapezoidal

fuzzy number, then𝐽3(𝐴𝐼) = 0.

Proposition 33. Let 𝐴𝐼= ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡), (π‘ŽσΈ€ 

1], π‘ŽσΈ€ 2], π‘Ž3]σΈ€ )⟩ be a

triangular intuitionistic fuzzy number. Then

𝐽3(𝐴𝐼) = (π‘Ž σΈ€  1]+ 2π‘ŽσΈ€ 2]+ π‘ŽσΈ€ 3]) βˆ’ (π‘Ž1πœ‡+ 2π‘Ž2πœ‡+ π‘Ž3πœ‡) 8 . (17) Proposition 34. Let 𝐴𝐼= ([π‘Ž1πœ‡, π‘Ž2πœ‡], [π‘ŽσΈ€  1], π‘ŽσΈ€ 2]]) be an interval

valued intuitionistic fuzzy number. Then

𝐽3(𝐴𝐼) = (π‘Ž σΈ€ 

1]+ π‘Ž2]σΈ€  ) βˆ’ (π‘Ž1πœ‡+ π‘Ž2πœ‡)

4 . (18)

Theorem 35. Let 𝐴𝐼, 𝐡𝐼 ∈ 𝐢3. If 𝐴𝐼 βŠ‚ 𝐡𝐼then 𝐽3(𝐴𝐼) >

𝐽3(𝐡𝐼).

Proof. Let us assume that𝐴𝐼 βŠ‚ 𝐡𝐼. We claim that𝐽3(𝐴𝐼) βˆ’ 𝐽3(𝐡𝐼) > 0. By Definition 29, we have π‘Ž1πœ‡β‰€ 𝑏1πœ‡, π‘Ž2πœ‡β‰€ 𝑏2πœ‡, π‘Ž3πœ‡β‰€ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]β‰₯ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]β‰₯ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]β‰₯ 𝑏3]σΈ€  , π‘ŽσΈ€ 4]β‰₯ 𝑏4]σΈ€  . (19) Now, 8 (𝐽3(𝐴𝐼) βˆ’ 𝐽3(𝐡𝐼)) = [(𝑏1πœ‡βˆ’ π‘Ž1πœ‡) + (𝑏2πœ‡βˆ’ π‘Ž2πœ‡) + (𝑏3πœ‡βˆ’ π‘Ž3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(π‘ŽσΈ€ 1]βˆ’ 𝑏1]σΈ€ ) + (π‘Ž2]σΈ€  βˆ’ 𝑏2]σΈ€ ) + (π‘ŽσΈ€ 3]βˆ’ 𝑏3]σΈ€ ) + (π‘ŽσΈ€ 4]βˆ’ 𝑏4]σΈ€ )] . (20)

From (19) it is very easy to see that all the terms in (20) are positive. Therefore their sum is also positive. From Defini-tion 29, we know that at least one of the above inequalities in (19) becomes strict inequality and hence we get𝐽3(𝐴𝐼) βˆ’ 𝐽3(𝐡𝐼) > 0, hence the proof.

Theorem 36. Let 𝐴𝐼, 𝐡𝐼 ∈ 𝐢3. If𝐽3(𝐴𝐼) = 𝐽3(𝐡𝐼) then 𝐴𝐼 =

𝐡𝐼.

Proof. Let us assume𝐽3(𝐴𝐼) = 𝐽2(𝐡𝐼). We prove that 𝐴𝐼= 𝐡𝐼. By Definition 29, without loss of generality, we have

π‘Ž1πœ‡β‰€ 𝑏1πœ‡, π‘Ž2πœ‡β‰€ 𝑏2πœ‡, π‘Ž3πœ‡β‰€ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]β‰₯ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]β‰₯ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]β‰₯ 𝑏3]σΈ€  , π‘ŽσΈ€ 4]β‰₯ 𝑏4]σΈ€  . (21) Now, 8 (𝐽3(𝐴𝐼) βˆ’ 𝐽3(𝐡𝐼)) = [(𝑏1πœ‡βˆ’ π‘Ž1πœ‡) + (𝑏2πœ‡βˆ’ π‘Ž2πœ‡) + (𝑏3πœ‡βˆ’ π‘Ž3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(π‘ŽσΈ€ 1]βˆ’ 𝑏1]σΈ€ ) + (π‘Ž2]σΈ€  βˆ’ 𝑏2]σΈ€ ) + (π‘Ž3]σΈ€  βˆ’ 𝑏3]σΈ€ ) + (π‘Ž4]σΈ€  βˆ’ 𝑏4]σΈ€ )] = 0. (22)

(8)

Therefore from (21) and (22), it is clear that all the terms in (22) are positive and therefore their sum gives zero only when each term is equal to zero. Henceπ‘Ž1πœ‡ = 𝑏1πœ‡, π‘Ž2πœ‡ = 𝑏2πœ‡, π‘Ž3πœ‡ = 𝑏3πœ‡, π‘Ž4πœ‡ = 𝑏4πœ‡andπ‘Ž1]σΈ€  = 𝑏1]σΈ€  , π‘ŽσΈ€ 2] = 𝑏2]σΈ€ , π‘Ž3]σΈ€  = 𝑏3]σΈ€ , π‘Ž4]σΈ€  = 𝑏4]σΈ€  . Hence𝐴𝐼= 𝐡𝐼.

Note 6. The incomplete score can be calculated to any TrIFN.

But𝐽3gives total order on𝐢3.

Definition 37. If𝐽3(𝐴𝐼) > 𝐽3(𝐡𝐼)(𝐽3(𝐴𝐼) < 𝐽3(𝐡𝐼)), then 𝐴𝐼>

𝐡𝐼(𝐴𝐼< 𝐡𝐼).

The following example is used to explain the ranking procedure defined in Definition 37.

Example 38. Let𝐴𝐼 = ⟨(0.15, 0.3, 0.4, 0.45), (0.1, 0.25, 0.45,

0.6)⟩ and 𝐡𝐼 = ⟨(0.2, 0.4, 0.45, 0.55), (0, 0.15, 0.45, 0.55)⟩ ∈ 𝐢3. Now𝐽3(𝐴𝐼) = 0.0125 and 𝐽3(𝐡𝐼) = βˆ’0.05625, 𝐽3(𝐴𝐼) > 𝐽3(𝐡𝐼).

Hence𝐴𝐼> 𝐡𝐼.

The inefficiency of the score functions 𝐽1 and 𝐽2 in discriminating any two arbitrary TrIFNs and the ability of 𝐽3in comparing arbitrary TrIFNs is shown in the following example. Example 39. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩ and𝐡𝐼= ⟨(π‘Ž1πœ‡+ πœ–, π‘Ž2πœ‡+ πœ–, π‘Ž3πœ‡+ πœ–, π‘Ž4πœ‡+ πœ–), (π‘ŽσΈ€ 1]+ πœ–/2, π‘Ž2]σΈ€  + πœ–/2, π‘ŽσΈ€  3]+ πœ–/2, π‘ŽσΈ€ 4]+ πœ–/2)⟩ ∈ TrIFN and πœ– ∈ [0, 1]. Now 𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]) βˆ’ (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€ ) 8 , 𝐽2(𝐴𝐼) = 𝐽2(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]) + (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€ ) 8 . (23) But 𝐽3(𝐴𝐼) =(π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘Ž3]σΈ€  + π‘Ž4]σΈ€  ) βˆ’ (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) 8 , 𝐽3(𝐡𝐼) =(π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘Ž3]σΈ€  + π‘Ž4]σΈ€  ) βˆ’ (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) 8 +πœ–4 󳨐⇒ 𝐽3(𝐡𝐼) > 𝐽3(𝐴𝐼) . (24) Hence𝐡𝐼> 𝐴𝐼.

The inefficiency of the score functions𝐽1to𝐽3in the task of comparing TrIFNs is explained in the following example.

(0, 1) (0, 0) b1σ³°€] a1σ³°€] b σ³°€ 2] a σ³°€ 2] a2πœ‡ b2πœ‡ a1πœ‡ b1πœ‡ a3πœ‡ b3πœ‡ a4πœ‡ b4πœ‡ a4σ³°€] a σ³°€ 3] b4σ³°€] b σ³°€ 3] Figure 5: Pictorial representation of Example 40.

Example 40. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩

and𝐡𝐼= ⟨(π‘Ž1πœ‡+πœ–, π‘Ž2πœ‡+πœ–, π‘Ž3πœ‡+πœ–, π‘Ž4πœ‡+πœ–), (π‘Ž1]σΈ€  +πœ–, π‘ŽσΈ€ 2]+πœ–, π‘Ž3]σΈ€  + πœ–, π‘ŽσΈ€ 

4]+ πœ–)⟩ ∈ TrIFN and πœ– ∈ [0, 1] but not in 𝐢3. Now 𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€ ) βˆ’ (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€ ) 8 , 𝐽2(𝐴𝐼) = 𝐽2(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€ ) + (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€ ) 8 , 𝐽3(𝐴𝐼) = 𝐽3(𝐡𝐼) = (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) βˆ’ (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) 8 . (25) But𝐴𝐼 ΜΈ= 𝐡𝐼.

Pictorial representation of this example is given in Fig-ure 5.

Example 40 shows that𝐽1, 𝐽2, and𝐽3cannot be sufficient to cover the entire class of TrIFNs and the class of TrIFNs in the above example excite us to define new score function that can fill the subclass of TrIFNs which cannot be covered by𝐽1, 𝐽2, and𝐽3.

3.4. Accuracy Score of a Trapezoidal Intuitionistic Fuzzy Number. In this subsection, a new subclass of TrIFNs using

accuracy relation is introduced and the accuracy score func-tion on this class of trapezoidal intuifunc-tionistic fuzzy numbers is defined and some of its properties are studied using illustrative examples.

(9)

Definition 41. Let𝐴𝐼and𝐡𝐼be two TrIFNs.

A special subclass𝐢4of the set of TrIFNs consist of TrIFNs for which every pair of𝐴𝐼and𝐡𝐼are withπ‘Ž1πœ‡ ≀ 𝑏1πœ‡, π‘Ž2πœ‡ ≀ 𝑏2πœ‡, π‘Ž3πœ‡ ≀ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡ and π‘Ž1]σΈ€  ≀ 𝑏1]σΈ€ , π‘Ž2]σΈ€  ≀ 𝑏2]σΈ€ , π‘Ž3]σΈ€  ≀ 𝑏󸀠

3], π‘Ž4]σΈ€  ≀ 𝑏4]σΈ€  . The accuracy relation on𝐢4is denoted asβͺ― and defined as follows: if𝐴𝐼, 𝐡𝐼 ∈ 𝐢4 βŠ‚ TrIFN such that 𝐴𝐼 βͺ― 𝐡𝐼thenπ‘Ž1πœ‡ ≀ 𝑏1πœ‡, π‘Ž2πœ‡ ≀ 𝑏2πœ‡, π‘Ž3πœ‡ ≀ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡and π‘ŽσΈ€ 

1]≀ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]≀ 𝑏2]σΈ€  , π‘Ž3]σΈ€  ≀ 𝑏3]σΈ€ , π‘Ž4]σΈ€  ≀ 𝑏4]σΈ€ .

If𝐴𝐼 β‰Ί 𝐡𝐼then one of the above inequalities becomes strict inequality.

Note 7. By Definition 41, we note that any pair of members of

𝐢4are related underβ‰Ί.

The score function which measures the accuracy is defined as follows.

Definition 42. Let 𝐴𝐼 be a trapezoidal intuitionistic fuzzy number. Then the accuracy score of𝐴𝐼is defined by

𝐽4(𝐴𝐼) = ∫1 0 [π›Όπœ‡ 𝐴𝐼𝐿 +π›Όπœ‡π΄πΌπ‘ˆ] 4 𝑑𝛼 + ∫ 1 0 [𝛽] 𝐴𝐼𝐿 +𝛽]π΄πΌπ‘ˆ] 4 𝑑𝛽 = (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘ŽσΈ€ 3]+ π‘ŽσΈ€ 4]) 8 . (26)

The proofs of the following propositions are immediate from Definition 42 and hence they are omitted.

Proposition 43. For any real number π‘Ÿ ∈ [0, 1], 𝐽4(π‘Ÿ) = π‘Ÿ.

Proposition 44. For any trapezoidal fuzzy number 𝐴𝐼 =

(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), 𝐽4(𝐴𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡)/4.

Proposition 45. Let 𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡), (π‘ŽσΈ€ 

1], π‘ŽσΈ€ 2], π‘Ž3]σΈ€  )⟩ be a

triangular intuitionistic fuzzy number. Then𝐽4(𝐴𝐼) = ((π‘Ž1πœ‡+

2π‘Ž2πœ‡+ π‘Ž3πœ‡) + (π‘ŽσΈ€ 

1]+ 2π‘Ž2]σΈ€  + π‘Ž3]σΈ€  ))/8.

Proposition 46. Let 𝐴𝐼= ([π‘Ž1πœ‡, π‘Ž2πœ‡], [π‘ŽσΈ€ 1], π‘Ž2]σΈ€  ]) be an interval

valued intuitionistic fuzzy number. Then𝐽4(𝐴𝐼) = ((π‘Ž1πœ‡+π‘Ž2πœ‡)+

(π‘Ž1]σΈ€  + π‘Ž2]σΈ€ ))/4.

Note 8. The accuracy score can be calculated to any TrIFN.

But𝐽4gives total order on𝐢4which is proved in Theorems 47 and 48.

Theorem 47. Let 𝐴𝐼, 𝐡𝐼 ∈ 𝐢4. If𝐴𝐼 β‰Ί 𝐡𝐼 then𝐽4(𝐴𝐼) <

𝐽4(𝐡𝐼).

Proof. Let us assume that𝐴𝐼 β‰Ί 𝐡𝐼. We claim that𝐽4(𝐡𝐼) βˆ’ 𝐽4(𝐴𝐼) > 0. By Definition 41, we have π‘Ž1πœ‡β‰€ 𝑏1πœ‡, π‘Ž2πœ‡β‰€ 𝑏2πœ‡, π‘Ž3πœ‡β‰€ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]≀ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]≀ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]≀ 𝑏3]σΈ€  , π‘ŽσΈ€ 4]≀ 𝑏4]σΈ€  . (27) Now, 8 (𝐽4(𝐡𝐼) βˆ’ 𝐽4(𝐴𝐼)) = [(𝑏1πœ‡βˆ’ π‘Ž1πœ‡) + (𝑏2πœ‡βˆ’ π‘Ž2πœ‡) + (𝑏3πœ‡βˆ’ π‘Ž3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(𝑏1]σΈ€  βˆ’ π‘Ž1]σΈ€  ) + (𝑏󸀠 2]βˆ’ π‘ŽσΈ€ 2]) + (𝑏3]σΈ€  βˆ’ π‘ŽσΈ€ 3]) + (𝑏4]σΈ€  βˆ’ π‘ŽσΈ€ 4])] . (28)

From (27) it is very easy to see that all the terms in (28) are positive. Therefore their sum is also positive. From Defini-tion 41, we know that at least one of the above inequalities in (27) becomes strict inequality and hence we get𝐽4(𝐡𝐼) βˆ’ 𝐽4(𝐴𝐼) > 0.

Theorem 48. Let 𝐴𝐼, 𝐡𝐼∈ 𝐢4such that𝐽4(𝐴𝐼) = 𝐽4(𝐡𝐼); then

𝐴𝐼= 𝐡𝐼.

Proof. Let us assume𝐽4(𝐴𝐼) = 𝐽4(𝐡𝐼). We claim that 𝐴𝐼= 𝐡𝐼. By Definition 41, without loss of generality, we have

π‘Ž1πœ‡β‰€ 𝑏1πœ‡, π‘Ž2πœ‡β‰€ 𝑏2πœ‡, π‘Ž3πœ‡β‰€ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]β‰₯ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]β‰₯ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]β‰₯ 𝑏3]σΈ€  , π‘ŽσΈ€ 4]β‰₯ 𝑏4]σΈ€  . (29) Now, 8 (𝐽4(𝐡𝐼) βˆ’ 𝐽4(𝐴𝐼)) = [(𝑏1πœ‡βˆ’ π‘Ž1πœ‡) + (𝑏2πœ‡βˆ’ π‘Ž2πœ‡) + (𝑏3πœ‡βˆ’ π‘Ž3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(𝑏1]σΈ€  βˆ’ π‘Ž1]σΈ€  ) + (𝑏2]σΈ€  βˆ’ π‘ŽσΈ€ 2]) + (𝑏3]σΈ€  βˆ’ π‘ŽσΈ€ 3]) + (𝑏4]σΈ€  βˆ’ π‘Ž4]σΈ€  )] = 0. (30)

Therefore from (29) and (30), it is clear that all the terms in (30) are positive and therefore their sum gives zero only when each term is equal to zero. Henceπ‘Ž1πœ‡ = 𝑏1πœ‡, π‘Ž2πœ‡ = 𝑏2πœ‡, π‘Ž3πœ‡ = 𝑏3πœ‡, π‘Ž4πœ‡ = 𝑏4πœ‡andπ‘ŽσΈ€ 1] = 𝑏1]σΈ€ ,π‘Ž2]σΈ€  = 𝑏2]σΈ€  , π‘ŽσΈ€ 3] = 𝑏3]σΈ€  , π‘ŽσΈ€ 4] = 𝑏4]σΈ€  . Hence𝐴𝐼= 𝐡𝐼.

(10)

Definition 49. If𝐽4(𝐴𝐼) > 𝐽4(𝐡𝐼)(𝐽4(𝐴𝐼) < 𝐽4(𝐡𝐼)) then 𝐴𝐼>

𝐡𝐼(𝐴𝐼< 𝐡𝐼).

Ranking procedure defined in Definition 49 is illustrated in the following example.

Example 50. Let 𝐴𝐼 = ⟨(0.1, 0.25, 0.37, 0.49), (0.1, 0.2, 0.4,

0.6)⟩ and 𝐡𝐼 = ⟨(0.2, 0.37, 0.47, 0.6), (0.15, 0.32, 0.52, 0.7)⟩ ∈ 𝐢4. Now𝐽4(𝐴𝐼) = 0.31375 and 𝐽4(𝐡𝐼) = 0.41625, 𝐽4(𝐴𝐼) < 𝐽4(𝐡𝐼).

Hence𝐴𝐼< 𝐡𝐼.

The relative importance of the score function 𝐽4 in discriminating two different TrIFNs when𝐽1, 𝐽2, and𝐽3fail to discriminate them is explained by Example 51.

Example 51. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩ and𝐡𝐼 = ⟨(π‘Ž1πœ‡+ πœ–, π‘Ž2πœ‡+ πœ–, π‘Ž3πœ‡+ πœ–, π‘Ž4πœ‡+ πœ–), (π‘ŽσΈ€ 1]+ πœ–, π‘Ž2]σΈ€  + πœ–, π‘ŽσΈ€  3]+ πœ–, π‘Ž4]σΈ€  + πœ–)⟩ ∈ TrIFN, and πœ– ∈ [0, 1]. Now 𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  ) βˆ’ (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) 8 , 𝐽2(𝐴𝐼) = 𝐽2(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  ) + (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) 8 , 𝐽3(𝐴𝐼) = 𝐽3(𝐡𝐼) = (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘Ž3]σΈ€  + π‘Ž4]σΈ€  ) βˆ’ (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) 8 . (31) But 𝐽4(𝐴𝐼) =(π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘Ž3]σΈ€  + π‘ŽσΈ€ 4]) 8 , 𝐽4(𝐡𝐼) =(π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘Ž3]σΈ€  + π‘ŽσΈ€ 4]) 8 + πœ– 󳨐⇒ 𝐽4(𝐴𝐼) < 𝐽4(𝐡𝐼) . (32) Hence𝐴𝐼< 𝐡𝐼. Example 52. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩ and𝐡𝐼 = ⟨(π‘Ž1πœ‡+ πœ–, π‘Ž2πœ‡βˆ’ πœ–, π‘Ž3πœ‡+ πœ–, π‘Ž4πœ‡βˆ’ πœ–), (π‘ŽσΈ€ 1]+ πœ–, π‘Ž2]σΈ€  βˆ’ πœ–, π‘Ž3]σΈ€  + πœ–, π‘Ž4]σΈ€  βˆ’ πœ–)⟩ ∈ TrIFN and πœ– ∈ [0, 1] but not in 𝐢4.

(0, 1) (0, 0) b σ³°€ 1] a σ³°€ 1] b σ³°€ 2] σ³°€ 2a] a2πœ‡ b2πœ‡ a1πœ‡ b1πœ‡ a3πœ‡ b3πœ‡ a4πœ‡ b4πœ‡ a σ³°€ 4] a σ³°€ 3] b σ³°€ 4] b σ³°€ 3] Figure 6: Pictorial representation of Example 52.

Now 𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€ ) βˆ’ (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€ ) 8 , 𝐽2(𝐴𝐼) = 𝐽2(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€ ) + (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€ ) 8 , 𝐽3(𝐴𝐼) = 𝐽3(𝐡𝐼) = (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) βˆ’ (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) 8 , 𝐽4(𝐴𝐼) = 𝐽4(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘ŽσΈ€ 3]+ π‘ŽσΈ€ 4]) 8 . (33) But𝐴𝐼 ΜΈ= 𝐡𝐼.

Pictorial representation of this example is given in Fig-ure 6.

Example 52 shows that even 𝐽1, 𝐽2, 𝐽3, and𝐽4 altogether are not enough to cover the entire class of TrIFNs; the class of TrIFNs in the above example excite us to define new score function that can cover the class of TrIFNs which cannot be covered by𝐽1, 𝐽2, 𝐽3, and𝐽4.

3.5. Spread Score of a Trapezoidal Intuitionistic Fuzzy Number.

In this subsection, another subclass of TrIFNs is introduced. The spread score function on this class of trapezoidal intu-itionistic fuzzy numbers is defined and some of its properties are studied using illustrative examples.

Definition 53. Let𝐴𝐼and𝐡𝐼be two TrIFNs.

A special subclass𝐢5of the set of TrIFNs consist of TrIFNs for which every pair of𝐴𝐼and𝐡𝐼are withπ‘Ž1πœ‡ β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡ ≀ 𝑏2πœ‡, π‘Ž3πœ‡ β‰₯ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡ and π‘Ž1]σΈ€  β‰₯ 𝑏1]σΈ€ , π‘Ž2]σΈ€  ≀ 𝑏2]σΈ€  , π‘Ž3]σΈ€  β‰₯ 𝑏3]σΈ€ , π‘Ž4]σΈ€  ≀ 𝑏4]σΈ€ . The preference relation on𝐢5 is denoted as

(11)

⊴ and defined as follows: if 𝐴𝐼, 𝐡𝐼 ∈ 𝐢5 βŠ‚ TrIFN such that 𝐴𝐼 ⊴ 𝐡𝐼thenπ‘Ž1πœ‡ β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡ ≀ 𝑏2πœ‡, π‘Ž3πœ‡ β‰₯ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡and π‘ŽσΈ€ 

1]β‰₯ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]≀ 𝑏2]σΈ€  , π‘Ž3]σΈ€  β‰₯ 𝑏3]σΈ€ , π‘Ž4]σΈ€  ≀ 𝑏4]σΈ€ . If𝐴𝐼⊲ 𝐡𝐼then one of the above inequalities becomes strict inequality.

Note 9. By Definition 53, we note that any pair of members

of𝐢5are related under⊲.

The score function which measures the spread is defined as follows.

Definition 54. Let 𝐴𝐼 be a trapezoidal intuitionistic fuzzy number. Then the spread score of𝐴𝐼is defined by

𝐽5(𝐴𝐼) = (π‘Ž1πœ‡+ π‘Ž3πœ‡) βˆ’ (π‘Ž2πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  2]+ π‘ŽσΈ€ 4]) + (π‘ŽσΈ€ 1]+ π‘Ž3]σΈ€ ) 8 . (34)

The proofs of the following propositions are immediate from Definition 54 and hence they are omitted.

Proposition 55. For any real number π‘Ÿ ∈ [0, 1], 𝐽5(π‘Ÿ) = 0.

Proposition 56. If 𝐴𝐼 = (π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡) is a trapezoidal

fuzzy number, then𝐽5(𝐴𝐼) = ((π‘Ž1πœ‡+ π‘Ž3πœ‡) βˆ’ (π‘Ž2πœ‡+ π‘Ž4πœ‡))/4.

Proposition 57. Let 𝐴𝐼= ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡), (π‘ŽσΈ€ 

1], π‘ŽσΈ€ 2], π‘Ž3]σΈ€  )⟩ be a

triangular intuitionistic fuzzy number. Then𝐽5(𝐴𝐼) = (βˆ’(π‘Ž3πœ‡βˆ’

π‘Ž1πœ‡) βˆ’ (π‘ŽσΈ€ 

3]βˆ’ π‘Ž1]σΈ€  ))/8.

Proposition 58. Let 𝐴𝐼= ([π‘Ž1πœ‡, π‘Ž2πœ‡], [π‘Ž1]σΈ€  , π‘ŽσΈ€ 2]]) be an interval

valued intuitionistic fuzzy number. Then𝐽5(𝐴𝐼) = 0.

Theorem 59. Let 𝐴𝐼, 𝐡𝐼 ∈ 𝐢5. If𝐴𝐼 ⊲ 𝐡𝐼 then𝐽5(𝐴𝐼) >

𝐽5(𝐡𝐼).

Proof. Let us assume that𝐴𝐼 ⊲ 𝐡𝐼. We claim that𝐽5(𝐴𝐼) βˆ’ 𝐽5(𝐡𝐼) > 0. By Definition 53, we have π‘Ž1πœ‡β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡β‰€ 𝑏2πœ‡, π‘Ž3πœ‡β‰₯ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]β‰₯ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]≀ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]β‰₯ 𝑏3]σΈ€  , π‘ŽσΈ€  4]≀ 𝑏4]σΈ€  . (35) Now, 8 (𝐽5(𝐴𝐼) βˆ’ 𝐽5(𝐡𝐼)) = [(π‘Ž1πœ‡βˆ’ 𝑏1πœ‡) + (𝑏2πœ‡βˆ’ π‘Ž2πœ‡) + (π‘Ž3πœ‡βˆ’ 𝑏3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(π‘ŽσΈ€ 1]βˆ’ 𝑏1]σΈ€ ) + (𝑏2]σΈ€  βˆ’ π‘ŽσΈ€ 2]) + (π‘ŽσΈ€ 3]βˆ’ 𝑏3]σΈ€ ) + (𝑏4]σΈ€  βˆ’ π‘Ž4]σΈ€  )] . (36)

From (35) it is very easy to see that all the terms in (36) are positive. Therefore their sum is also positive. From Defini-tion 53, we know that at least one of the above inequalities in (35) becomes strict inequality and hence we get𝐽5(𝐴𝐼) βˆ’ 𝐽5(𝐡𝐼) > 0.

Theorem 60. Let 𝐴𝐼, 𝐡𝐼 ∈ 𝐢5. If𝐽5(𝐴𝐼) = 𝐽5(𝐡𝐼) then 𝐴𝐼=

𝐡𝐼.

Proof. Let us assume𝐽5(𝐴𝐼) = 𝐽5(𝐡𝐼). We claim that 𝐴𝐼= 𝐡𝐼. By Definition 53, without loss of generality, we have

π‘Ž1πœ‡β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡β‰€ 𝑏2πœ‡, π‘Ž3πœ‡β‰₯ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]β‰₯ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]≀ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]β‰₯ 𝑏3]σΈ€  , π‘ŽσΈ€ 4]≀ 𝑏4]σΈ€  . (37) Now, 8 (𝐽5(𝐴𝐼) βˆ’ 𝐽5(𝐡𝐼)) = [(π‘Ž1πœ‡βˆ’ 𝑏1πœ‡) + (𝑏2πœ‡βˆ’ π‘Ž2πœ‡) + (π‘Ž3πœ‡βˆ’ 𝑏3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(π‘ŽσΈ€ 1]βˆ’ 𝑏1]σΈ€ ) + (𝑏2]σΈ€  βˆ’ π‘ŽσΈ€ 2]) + (π‘Ž3]σΈ€  βˆ’ 𝑏3]σΈ€ ) + (𝑏4]σΈ€  βˆ’ π‘ŽσΈ€ 4])] = 0. (38)

Therefore from (37) and (38), it is clear that all the terms in (38) are positive and therefore their sum gives zero only when each term is equal to zero. Henceπ‘Ž1πœ‡ = 𝑏1πœ‡, π‘Ž2πœ‡ = 𝑏2πœ‡, π‘Ž3πœ‡ = 𝑏3πœ‡, π‘Ž4πœ‡ = 𝑏4πœ‡andπ‘Ž1]σΈ€  = 𝑏1]σΈ€  , π‘ŽσΈ€ 2] = 𝑏2]σΈ€ , π‘Ž3]σΈ€  = 𝑏3]σΈ€ , π‘Ž4]σΈ€  = 𝑏4]σΈ€  . Hence𝐴𝐼= 𝐡𝐼.

Note 10. The spread score can be calculated to any TrIFN. But

𝐽5gives total order on𝐢5which is seen from Theorems 59 and 60.

Definition 61. If𝐽5(𝐴𝐼) > 𝐽5(𝐡𝐼)(𝐽5(𝐴𝐼) < 𝐽5(𝐡𝐼)) then 𝐴𝐼>

𝐡𝐼(𝐴𝐼< 𝐡𝐼).

The following example is used to explain the ranking procedure defined on𝐢5.

(12)

Example 62. Let 𝐴𝐼 = ⟨(0.15, 0.23, 0.31, 0.45), (0.1, 0.16, 0.35, 0.5)⟩ and 𝐡𝐼 = ⟨(0.1, 0.25, 0.25, 0.5), (0, 0.2, 0.3, 0.6)⟩ ∈ 𝐢5. Now𝐽5(𝐴𝐼) = βˆ’0.05375 and 𝐽5(𝐡𝐼) = βˆ’0.1125, 𝐽5(𝐴𝐼) > 𝐽5(𝐡𝐼). Hence𝐴𝐼> 𝐡𝐼. Example 63. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩ and𝐡𝐼 = ⟨(π‘Ž1πœ‡+ πœ–, π‘Ž2πœ‡βˆ’ πœ–, π‘Ž3πœ‡+ πœ–, π‘Ž4πœ‡βˆ’ πœ–), (π‘ŽσΈ€ 1]+ πœ–, π‘Ž2]σΈ€  βˆ’ πœ–, π‘ŽσΈ€  3]+ πœ–, π‘Ž4]σΈ€  βˆ’ πœ–)⟩ ∈ TrIFN and πœ– ∈ [0, 1]. Now 𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]) βˆ’ (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€ ) 8 , 𝐽2(𝐴𝐼) = 𝐽2(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]) + (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€ ) 8 , 𝐽3(𝐴𝐼) = 𝐽3(𝐡𝐼) = (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) βˆ’ (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) 8 , 𝐽4(𝐴𝐼) = 𝐽4(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘ŽσΈ€ 3]+ π‘ŽσΈ€ 4]) 8 . (39) But 𝐽5(𝐴𝐼) =(π‘Ž1πœ‡+ π‘Ž3πœ‡) βˆ’ (π‘Ž2πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 3]) βˆ’ (π‘Ž2]σΈ€  + π‘Ž4]σΈ€  ) 8 , 𝐽5(𝐡𝐼) =(π‘Ž1πœ‡+ π‘Ž3πœ‡) βˆ’ (π‘Ž2πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 3]) βˆ’ (π‘Ž2]σΈ€  + π‘Ž4]σΈ€  ) 8 + πœ– 󳨐⇒ 𝐽5(𝐡𝐼) > 𝐽5(𝐴𝐼) . (40)

Hence 𝐡𝐼 > 𝐴𝐼. In this example the importance of 𝐽5 in ranking arbitrary TrIFNs is shown.

The inability of𝐽5in comparing any two TrIFNs is shown in the following example.

Example 64. Let𝐴𝐼 = ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡), (π‘Ž1]σΈ€  , π‘Ž2]σΈ€  , π‘ŽσΈ€ 3], π‘Ž4]σΈ€  )⟩

and𝐡𝐼= ⟨(π‘Ž1πœ‡+πœ–, π‘Ž2πœ‡βˆ’πœ–, π‘Ž3πœ‡+πœ–, π‘Ž4πœ‡βˆ’πœ–), (π‘Ž1]σΈ€  βˆ’πœ–, π‘ŽσΈ€ 2]+πœ–, π‘Ž3]σΈ€  βˆ’ πœ–, π‘Ž4]σΈ€  + πœ–)⟩ ∈ TrIFN and πœ– ∈ [0, 1] but not in 𝐢5.

(0, 1) (0, 0) b σ³°€ 1] σ³°€ 1a] b σ³°€ 2] a σ³°€ 2] a2πœ‡ b2πœ‡ a1πœ‡ b1πœ‡ a3πœ‡ b3πœ‡ a4πœ‡ b4πœ‡ a σ³°€ 4] a σ³°€ 3] b σ³°€ 4] b σ³°€ 3] Figure 7: Pictorial representation of Example 64.

Now 𝐽1(𝐴𝐼) = 𝐽1(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]) βˆ’ (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) 8 , 𝐽2(𝐴𝐼) = 𝐽2(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡) βˆ’ (π‘Ž3πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]) + (π‘ŽσΈ€ 3]+ π‘Ž4]σΈ€  ) 8 , 𝐽3(𝐴𝐼) = 𝐽3(𝐡𝐼) = (π‘Ž σΈ€  1]+ π‘Ž2]σΈ€  + π‘Ž3]σΈ€  + π‘Ž4]σΈ€  ) βˆ’ (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) 8 , 𝐽4(𝐴𝐼) = 𝐽4(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž2πœ‡+ π‘Ž3πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 2]+ π‘Ž3]σΈ€  + π‘Ž4]σΈ€ ) 8 , 𝐽5(𝐴𝐼) = 𝐽5(𝐡𝐼) = (π‘Ž1πœ‡+ π‘Ž3πœ‡) βˆ’ (π‘Ž2πœ‡+ π‘Ž4πœ‡) + (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 3]) βˆ’ (π‘ŽσΈ€ 2]+ π‘Ž4]σΈ€  ) 8 . (41) But𝐴𝐼 ΜΈ= 𝐡𝐼.

Pictorial representation of this example is given in Fig-ure 7.

Example 64 shows that all the above defined scores are not enough to cover the entire class of TrIFNs; therefore we are introducing another score function in the next subsection.

3.6. Nonaccuracy Score of a Trapezoidal Intuitionistic Fuzzy Number. In this subsection, a new subclass of TrIFNs is

introduced. The nonaccuracy score function on this class of trapezoidal intuitionistic fuzzy numbers is defined and some of its properties are studied using illustrative examples.

(13)

Definition 65. Let𝐴𝐼and𝐡𝐼be two TrIFNs.

A special subclass𝐢6of the set of TrIFNs consist of TrIFNs for which every pair of𝐴𝐼and𝐡𝐼are withπ‘Ž1πœ‡ β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡ ≀ 𝑏2πœ‡, π‘Ž3πœ‡ β‰₯ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡ and π‘Ž1]σΈ€  ≀ 𝑏1]σΈ€ , π‘Ž2]σΈ€  β‰₯ 𝑏2]σΈ€ , π‘Ž3]σΈ€  ≀ 𝑏󸀠

3], π‘Ž4]σΈ€  β‰₯ 𝑏4]σΈ€ . The exact relation on𝐢6is denoted as⊡ and defined as follows: if𝐴𝐼, 𝐡𝐼∈ 𝐢6βŠ‚ TrIFN such that 𝐴𝐼⊡ 𝐡𝐼 thenπ‘Ž1πœ‡ β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡ ≀ 𝑏2πœ‡, π‘Ž3πœ‡ β‰₯ 𝑏3πœ‡, π‘Ž4πœ‡ ≀ 𝑏4πœ‡and π‘ŽσΈ€ 1] ≀ 𝑏󸀠

1], π‘Ž2]σΈ€  β‰₯ 𝑏2]σΈ€ , π‘Ž3]σΈ€  ≀ 𝑏3]σΈ€ , π‘Ž4]σΈ€  β‰₯ 𝑏4]σΈ€  . If𝐴𝐼⊳ 𝐡𝐼then one of the above inequalities becomes strict inequality.

Note 11. By Definition 65, we note that any pair of members

of𝐢6are related under⊳.

The score function which measures the nonaccuracy is defined as follows.

Definition 66. Let 𝐴𝐼 be a trapezoidal intuitionistic fuzzy number. Then the nonaccuracy score of𝐴𝐼is defined by

𝐽6(𝐴𝐼) = (π‘Ž2πœ‡+ π‘Ž4πœ‡) βˆ’ (π‘Ž1πœ‡+ π‘Ž3πœ‡) + (π‘Ž σΈ€  1]+ π‘ŽσΈ€ 3]) βˆ’ (π‘ŽσΈ€ 2]+ π‘Ž4]σΈ€ ) 8 . (42)

The proofs of the following propositions are easy and hence they are omitted.

Proposition 67. For any real number π‘Ÿ ∈ [0, 1], 𝐽6(π‘Ÿ) = 0.

Proposition 68. If 𝐴𝐼 = (π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡, π‘Ž4πœ‡) is a trapezoidal

fuzzy number, then𝐽6(𝐴𝐼) = 0.

Proposition 69. Let 𝐴𝐼= ⟨(π‘Ž1πœ‡, π‘Ž2πœ‡, π‘Ž3πœ‡), (π‘ŽσΈ€ 

1], π‘Ž2]σΈ€ , π‘Ž3]σΈ€  )⟩ be a

triangular intuitionistic fuzzy number. Then𝐽6(𝐴𝐼) = ((π‘Ž1]σΈ€  βˆ’

π‘ŽσΈ€ 

3]) βˆ’ (π‘Ž1πœ‡βˆ’ π‘Ž3πœ‡))/8.

Proposition 70. Let 𝐴𝐼= ([π‘Ž1πœ‡, π‘Ž2πœ‡], [π‘ŽσΈ€ 

1], π‘ŽσΈ€ 2]]) be an interval

valued intuitionistic fuzzy number. Then𝐽6(𝐴𝐼) = 0.

Note 12. The nonaccuracy score can be calculated to any

TrIFN. But 𝐽6 gives total order on 𝐢6 which is proved in Theorems 71 and 72.

Theorem 71. Let 𝐴𝐼, 𝐡𝐼 ∈ 𝐢6. If𝐴𝐼 ⊳ 𝐡𝐼then𝐽6(𝐴𝐼) <

𝐽6(𝐡𝐼).

Proof. Let us assume that𝐴𝐼 ⊳ 𝐡𝐼. We claim that𝐽6(𝐡𝐼) βˆ’ 𝐽6(𝐴𝐼) > 0. By Definition 65, we have π‘Ž1πœ‡β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡β‰€ 𝑏2πœ‡, π‘Ž3πœ‡β‰₯ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]≀ 𝑏1]σΈ€  , π‘ŽσΈ€ 2]β‰₯ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]≀ 𝑏3]σΈ€  , π‘ŽσΈ€ 4]β‰₯ 𝑏4]σΈ€  (43) and at least one of these inequalities becomes strict.

Now,

8 (𝐽6(𝐡𝐼) βˆ’ 𝐽6(𝐴𝐼)) = [(π‘Ž1πœ‡βˆ’ 𝑏1πœ‡) + (𝑏2πœ‡βˆ’ π‘Ž2πœ‡) + (π‘Ž3πœ‡βˆ’ 𝑏3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(𝑏1]σΈ€  βˆ’ π‘Ž1]σΈ€  ) + (π‘ŽσΈ€ 2]βˆ’ 𝑏2]σΈ€ ) + (𝑏3]σΈ€  βˆ’ π‘Ž3]σΈ€  ) + (π‘Ž4]σΈ€  βˆ’ 𝑏4]σΈ€  )] .

(44)

From (43) it is very easy to see that all the terms in (44) are positive and therefore their sum is also positive. From Definition 65, we know that at least one of the above inequalities in (43) becomes strict inequality and hence we get𝐽6(𝐡𝐼) βˆ’ 𝐽6(𝐴𝐼) > 0.

Theorem 72. Let 𝐴𝐼, 𝐡𝐼 ∈ 𝐢6. If𝐽6(𝐴𝐼) = 𝐽6(𝐡𝐼) then 𝐴𝐼 =

𝐡𝐼.

Proof. Let us assume𝐽6(𝐴𝐼) = 𝐽6(𝐡𝐼). We claim that 𝐴𝐼= 𝐡𝐼. By Definition 65, without loss of generality, we have

π‘Ž1πœ‡β‰₯ 𝑏1πœ‡, π‘Ž2πœ‡β‰€ 𝑏2πœ‡, π‘Ž3πœ‡β‰₯ 𝑏3πœ‡, π‘Ž4πœ‡β‰€ 𝑏4πœ‡, π‘ŽσΈ€ 1]≀ 𝑏1]σΈ€  , π‘ŽσΈ€  2]β‰₯ 𝑏2]σΈ€  , π‘ŽσΈ€ 3]≀ 𝑏3]σΈ€  , π‘ŽσΈ€ 4]β‰₯ 𝑏4]σΈ€  . (45) Now, 8 (𝐽6(𝐡𝐼) βˆ’ 𝐽6(𝐴𝐼)) = [(π‘Ž1πœ‡βˆ’ 𝑏1πœ‡) + (𝑏2πœ‡βˆ’ π‘Ž2πœ‡) + (π‘Ž3πœ‡βˆ’ 𝑏3πœ‡) + (𝑏4πœ‡βˆ’ π‘Ž4πœ‡)] + [(𝑏1]σΈ€  βˆ’ π‘Ž1]σΈ€  ) + (π‘ŽσΈ€ 2]βˆ’ 𝑏2]σΈ€ ) + (𝑏3]σΈ€  βˆ’ π‘Ž3]σΈ€  ) + (π‘Ž4]σΈ€  βˆ’ 𝑏4]σΈ€  )] = 0. (46)

Therefore from (45) and (46), it is clear that all the terms in (46) are positive and therefore their sum gives zero only when each term is equal to zero. Henceπ‘Ž1πœ‡ = 𝑏1πœ‡, π‘Ž2πœ‡ = 𝑏2πœ‡, π‘Ž3πœ‡ = 𝑏3πœ‡, π‘Ž4πœ‡ = 𝑏4πœ‡andπ‘Ž1]σΈ€  = 𝑏1]σΈ€  , π‘ŽσΈ€ 2] = 𝑏2]σΈ€ , π‘Ž3]σΈ€  = 𝑏3]σΈ€ , π‘Ž4]σΈ€  = 𝑏4]σΈ€  . Hence𝐴𝐼= 𝐡𝐼.

Definition 73. If𝐽6(𝐴𝐼) > 𝐽6(𝐡𝐼)(𝐽6(𝐴𝐼) < 𝐽6(𝐡𝐼)), then 𝐴𝐼>

𝐡𝐼(𝐴𝐼< 𝐡𝐼).

Ranking procedure introduced in Definition 73 is explained in Example 74.

References

Related documents

While scorable rates may vary by lender, account type, consumer segment and data provider, roughly 85% of US consumer credit files meet the above minimum score criteria, allowing for

The CANSTAR Car Insurance Star Ratings calculations are based on a comparison of costs (including the average premium and the gap between the minimum and maximum premiums and any

As a self-pay patient, I understand that I may receive a bill for additional charges after being seen as it is impossible to know beforehand all the charges that may be involved

selection was more important than time of treatment for a good outcome, a further study indicated that alteplase was non-significantly associated with lower infract growth and

[r]

Don’t expect people to be able to optimize their score with diet alone.. Most people will not radically change their

Closing credit cards will decrease credit scores as well, as it will decrease the total credit limit and, thus, increase the ratio of available credit used. Avoid lowering your

The impact of past credit problems on your FICO score fades as time passes and as recent good payment patterns show up on your credit report.. And good FICO scores weigh any credit