• No results found

Triple eyewall experiment of the 2012 typhoon Bolaven using cloud resolving ensemble forecast

N/A
N/A
Protected

Academic year: 2021

Share "Triple eyewall experiment of the 2012 typhoon Bolaven using cloud resolving ensemble forecast"

Copied!
27
0
0

Loading.... (view fulltext now)

Full text

(1)

“The

 

3

rd

Research

 

meeting

 

of

 

Ultrahigh

 

Precision

 

Meso

Scale

 

Weather

 

Prediction”

   

Thu 21 Mar 2013

Thu.

 

21

 

Mar.

 

2013

Triple

 

eyewall experiment

 

of

 

the

 

2012

 

typhoon

 

“Bolaven”

 

using

 

cloud

 

resolving

 

ensemble

 

forecast

 

Seiji

 

ORIGUCHI, Kazuo

 

SAITO,

 

Hiromu SEKO,

 

Wataru MASHIKO

 

(MRI)

Tohru KURODA

 

(JAMSTEC)

(2)

JMA’s

 

Radar

 

image

 

(RISS)

04JST 26 05JST 26 06JST 26 07JST 26 03JST 26 07JST 26 08JST 26 09JST 26 10JST 26 11JST 26 12JST 26 13JST 26 14JST 26 15JST15JST  2626 16JST 26 17JST 26 18JST 26 19JST 26 20JST 26 21JST 26 Nago station 15JST;  Outer eyewall 18JST; Middle eyewall 18JST 26 20JST 26 21JST 26 18JST;  Middle eyewall 20JST;  Inner eyewall 21JST;  Center position  of typhoon
(3)

Surface

 

observation

 

data

 

(Nago station)

26 – 27 Aug 2012

40

1020

Sea

 

level

 

pressure

Maximum

 

instantaneous

 

wind

 

velocity

Wind

 

direction(36dir)

26

 

27

 

Aug

 

2012

 

Wind peak; 1530JST

Wind

 

peak;

 

1830JST

hPa

m/s

dir

 

Local maximum wind velocity

35

1000

1010

Wind

 

peak;

 

1530JST

p

;

Local maximum wind velocity 

caused by outer rainband Local maximum wind velocity 

caused by outer rainband

25

30

980

990

15

20

960

970

10

15

940

950

Wind

 

peak;

 

2010JST

0

5

920

930

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Difference between minimum sea level pressure(2116JST) 

and minimum of maximum instantaneous wind velocity (2149JST) 826010 0 826020 0 826030 0 826040 0 826050 0 826060 0 826070 0 826080 0 826090 0 826100 0 826110 0 826120 0 826130 0 826140 0 826150 0 826160 0 826170 0 826180 0 826190 0 826200 0 826210 0 826220 0 826230 0 827000 0 827010 0 827020 0 827030 0 827040 0 827050 0 827060 0 827070 0 827080 0 827090 0 827100 0 827110 0 827120 0 827130 0 827140 0 827150 0 827160 0 827170 0

JST

(4)

Surface

 

observation

 

data

 

(Nago station)

Approaching period,

21JST 26 Aug

40 1020

Sea level pressure Maximum instantaneous wind velocity Wind direction(36dir)

Approaching

 

period,

  

21JST

 

26

 

Aug

hPa

m/s

dir

 

About

 

120km

35 1000 1010 25 30 980 990

About

 

50km

20 960 970 10 15 940 950 960

About

 

10km

0 5 920 930 940 0 920 397.6 389.4 381.3 373.1 364.9 356.7 348.6 340.4 332.2 324.0 315.9 307.7 299.5 291.3 283.2 275.0 266.8 258.6 250.5 242.3 234.1 225.9 217.8 209.6 201.4 193.2 185.1 176.9 168.7 160.5 152.4 144.2 136.0 127.8 119.7 111.5 103.3 95.1 87.0 78.8 70.6 62.5 54.3 46.1 37.9 29.8 21.6 13.4 5.2

km

(5)

JMA’s

 

Radar

 

image

 

(RISS)

04JST 26 05JST 26 06JST 26 07JST 26 03JST 26 07JST 26 08JST 26 09JST 26 10JST 26 11JST 26 12JST 26

Targeting

 

period

 

of

 

ensemble

 

experiment

13JST 26 14JST 26 15JST 26 16JST 26 17JST 26 19JST 26 18JST 26 20JST 26 21JST 26 Nago station 15JST;  Outer eyewall 18JST; Middle eyewall 18JST; Middle eyewall 20JST;  Inner eyewall 21JST;  Center position  of typhoon

(6)

Ensemble

 

experiment

 

under

 

the

 

changed

 

physical

 

conditions

Case1

10km

789x251

2km

400x400

[10km:

 

2mom3iceCMF+KF,

 

MYNN3, 2km:

 

2mom3iceCMF,

 

MYNN3]

3

Case2

5km

789x251

1km

800x800

[5km:

 

2mom3iceCMF,

 

MYNN3, 1km:

 

2mom3iceCMF,

 

deardorff]

2

Case3

5km

789x251

1km

800x800

[5km: 2mom3iceCMF+KF MYNN3 1km: 2mom3iceCMF deardorff]

1

[5km:

 

2mom3iceCMF+KF,

 

MYNN3, 1km:

 

2mom3iceCMF,

 

deardorff]

Case4

2km

800x800

5

[2km:

 

2mom3iceCMF,

 

MYNN3]

Case5

2km

800x800

4

2km

800x800

[2km:

 

2mom3iceCMF,

 

deardorff]

Case6

4

2km

1800x1440

500m

3000x3000

[2km:

 

2mom3iceCMF,

 

deardorff, 500m:

 

2mom3iceCMF,

 

deardorff]

(7)

Experimental

 

conditions

 

of

 

Case3

Ensemble forecast

Model settings

8/25 12UTC (FT00) 12UTC (FT24) 00UTC (FT36) 00UTC (FT12)

Ensemble

 

forecast

5km‐forecast 1km‐forecast Model JMA‐NHM

Model settings

18UTC (FT24) 06UTC (FT12)

Resolution 5km, Member 11, Forecast Time 36hr 18UTC

(FT00)

Resolution ・Grid size 5km ・721x577x50 1km ・800x800x60

Time step 24(sec) 4(sec)

Meso anal sis (NHM 4DVAR) Self‐nest (FT12) (FT24)

Resolution 1km, Member 11, Forecast Time 24hr (FT00)

Initial condition (CNTL)

Meso analysis (NHM‐4DVAR) Resolution 5km (Inner‐loop 15km, 

Increment method 5km, Window 3hr)

FT=06 of 5km  forecast Boundary condition (CNTL) GSM forecast (interval 1hr) 5km forecast (interval 1hr)

Initial condition Meso analysis + perturbation FT=06 of 5km

Analysis term 8/26 04JST~8/26 09JST(6hr)

Initial condition (ENS)

Meso analysis   perturbation 

of JMA 1 week forecast

FT 06 of 5km forecast Boundary condition

(ENS)

GSM forecast + perturbation 

of JMA 1 week forecast

5km forecast (interval 1hr)

Member 11(CNTL+ENS)

Model

 

domain

1km‐forecast

Treatment of density Full compressibility

Basic equations Elasticity NonhydrostaticSolution of HE‐VI

Cloud microphysics Convective scheme

2‐moment 3‐ice bulk method

Kain‐Fritsch scheme 2‐moment 3‐ice bulk method Layer Turbulent

scheme MYNN Level3 Deardorff(1980)

(8)

Reproducible

 

criteria

 

of

 

multiple

 

eyes?

There

 

aren’t

 

objective(numerical)

 

evaluation

 

method

 

or

 

common

 

indicator

 

between

 

researchers.

Therefore,

 

we

 

think

 

the

 

following

 

2

 

criteria.

We

 

don’t

 

decide

 

by

 

shape

 

of

 

precipitation

 

distribution

 

of

 

the

 

short

 

time.

 

We

 

judge

 

by

 

shape

 

of

 

updrafts

 

or

 

water

 

substances(

Qc+Qr

Qc+Qr

+Qi+Qs+Qg)

 

between

 

1km

 

and 5km AGL and if ring shape of updrafts or water substances keeps about 6

and

 

5km

 

AGL,

 

and

 

if

 

ring

 

shape

 

of

 

updrafts

 

or

 

water

 

substances

 

keeps

 

about

 

6

 

hours,

 

we

 

define

 

as

 

eyewall structure.

E

h

t f i

h

i l

it

t

ff f

th

h t ti

if i

Even

 

when

 

a

 

part

 

of

 

ring

 

changes

 

spiral

 

or

 

it

 

cuts

 

off

 

for

 

the

 

short

 

time,

 

if

 

ring

 

shape

 

of

 

updrafts

 

or

 

water

 

substances

 

keeps

 

overall

 

between

 

1km

 

and

 

5km

 

AGL,

 

(9)

Radar

Radar

P01

P01

P02

P02

P03

P03

P04

P04

P05

P05

Precipitation

 

1hr(prec1)

Water

 

substance(tw=lw+iw)

Updraft(w)

 

FT=03

Surf

Surface(Nago) and Radar 

observation  Radius of eyewall;   About 10km, About 50km,  About 120km Z*=3.72km 1km Ensemble forecast Inner eyewallweak About 10km

Middle eyewallstrong About 50km

Outer eyewallmoderate

Z*=3.87km

M

M01

01

M02

M02

M03

M03

M04

M04

M05

M05

CNTL

CNTL

About 120km Surf Z*=3.72km * k Z*=3.87km
(10)

Analysis

 

method

 

of

 

triple

 

eyewall

Estimation

 

of

 

center

 

position

●Braun’s method 2002 CP_m; Position decided by minimum surface pressure(Psea_m) CP_b; Position decided by Braun’s method

At fixed time Center position of ring 

At fixed time CP_m At fixed time p g (Geometric center) CP_m At fixed time CP_b CP_b Width; 1km CP_m CP_b t1 t2 t3 t4 t5 t6 t1t6

Sr;   Standard deviation(Psea) in ring of radius r and width 1km

C l l ti f S t i hb h d iti

Ring's oscillation occurs 

for each forecast time

Ring is fixed for each forecast time. Consistency with temperature and wind ①Calculation of Sp at neighborhood position

②CP_b decided by position of minimum value of Sp

Results

 

depend

 

on

 

the

 

determining

 

method

 

of

 

the

 

center

 

position,

therefore

 

we

 

decided

 

optimum

 

position

 

from

 

Braun‘s

 

method

 

2002.

 

(11)

Analysis

 

results

 

of

 

triple

 

eyewall

Estimation

 

of

 

center

 

position

Comparison of CP_m and CP_b for FT=01~06 (11member) Comparison of Psea_m and Psea_b for FT=01~06 (11member)

Different about maximum 6km between CP_m and CP_b

920.0hPa

920.0hPa 925.0hPa

Radius of inner eyewall is about 10km. So, if we don’t correct center position 

(12)

Analysis

 

method

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

Physical

 

element

 

averaged

 

in

 

the

 

ring

 

region

 

of

 

radius

 

every

 

1km(from

 

1km

 

to

 

600km)

 

and

 

width

 

1km.

 

Y

vt

vr

R

・〈

vt

vt

m

t

・〈

vr

vr

m

t

・〈

vel

vel

m

t=

(Vt+Vr)

1/2

|m

t

・〈

w

w

m

t

1km

・〈

w

w

m

t

・〈

tt

m

t

・〈

lw

lw

m

t=

(Qc+Qr)|m

t

・〈

iw

iw

m

t=

(Qi+Qs+Qg)|m

t

Center position decided 

by Braun’s method 2002 

*

m

 

:

  

Spatial

 

average

 

of

 

*

*

t

 

:

 

Temporal

 

average

 

of

 

*

X

r

600km

Average

 

region

(13)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(14)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(15)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(16)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(17)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(18)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(19)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(20)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(21)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(22)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(23)

Analysis

 

results

 

of

 

triple

 

eyewall

Averaged

 

physical

 

element

(24)

vel

velm

Radius

 

of

 

local

 

maximum

 

wind

 

speed

 

at

 

10m

 

AGL Each

 

forecast

 

time

FT=01 FT=02 FT=03 FT=04 FT=05 FT=06 vr vrm vt vtm vvttm_1 vt vtm_2

Eye_in Eye_in Eye_in Eye_in

Eye_in

Eye_out Eye_out Eye_out

Eye_md Eye_md Eye_md Eye_md Eye_md Eye_md

(25)

Radius

 

of

 

local

 

maximum

 

wind

 

speed

 

at

 

10m

 

AGL Each

 

member

vvttm_1 CNTL P01 P02 P03 P04 P05 Eye in Eye_in CNTL P01 P02 P03 P04 P05 y _ vt vtm_2 Eye_md Eye_md

Eye_md Eye_md Eye_md Eye_md

Eye_out Eye_out Eye_out

vvttm_1

M01 M02 M03 M04 M05

Eye_in

Eye_in Eye_in

As forecast time passed,  the radius of local maximum  wind speed(Eye_md) is  reduced.

vt

vtm_2

Eye out Eye out

Eye_md

Eye_out

Eye_md Eye_md Eye_md Eye_md

(26)

Conceptual

 

figure

 

of

 

triple

 

eyewall from

 

1km

 

ensemble

 

forecast

 

results

T1215(

T1215(Bolaven

Bolaven))

Z

vr

vr

vr

10

12km

vt

w

w

w

vt

vt

vt

6km

vt

vr

vr

vr

vr

vr

R

10km

50km

120km

vr

(27)

Future

 

Plan

We

 

will

 

continue

 

the

 

experiment

 

of

 

Case6

 

(2km

 

1800x1440

 →

500m

3000x3000).

3000x3000).

If

 

2km

 

or

 

500m

 

forecast

 

results

 

have

 

high

 

reproducibility

 

about

 

triple

 

eyewall,

 

References

Related documents

The objective of this study was to determine whether implementing eco initiatives to recycle water and food waste in selected Cape Town hotels would reduce

This paper presents an overview about the evaluation of risks and vulnerabilities in a web based distributed application by emphasizing aspects concerning the process of security

The litigation is not over, though. This case will go up to the Second Circuit next. Meanwhile, the cases in the district court of D.C. will also be going up on appeal and the

ACATGTTATG GGCCCGGAGC GAGATCTAGG TACACGTTTC ACAAGGGTTG TTGATTTCCC GAGGCATGGT GATTAAGGCT CGTGGACTAG GTGAAATGCG TTCATAACAG GTAATTATGC TTTAGAACTT GGTGTTACAA CCGTATGCCA

This poster presents information on a new type of hybrid course being piloted at Columbia University’s School of Social Work in Spring 2018 that uses Zoom webconferencing to

The main difference between algorithms is that IC-PCP schedules the workflow in one phase by scheduling each partial critical path on a single instance of a computation service,

Nos 3 84 Compression type single tension fitting suitable for ACSR Dog conductor Nos 3 85 C-Type wedge connector Moose-Panther Nos 82. 86 C-Type wedge connector Moose-Moose

A Objective: To examine the differential in cancer survival between Indigenous and non-Indigenous people in Queensland in relation to time after diagnosis, remoteness