• No results found

The contribution of marine biology to biomedical research: Past, present, future

N/A
N/A
Protected

Academic year: 2020

Share "The contribution of marine biology to biomedical research: Past, present, future"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

HELGOLANDER MEERESUNTERSUCHUNGEN Helgol~nder Meeresunters. 49, 45-56 (1995)

The contribution of marine b i o l o g y to b i o m e d i c a l

research: past, present, future

E. K i n n e - S a f f r a n 1'2 & R. K. H. K i n n e 1'2

1 Max-Planck-Institut ffir molekulare Physiologie, Abteilung Fpithelphysiologie; Postfach 1026 64, D-44026 Dortmund, Germany

and

2Mount Desert Island Biological Laboratory, Salsbury Cove, Maine, USA

"Ask the fish of the sea, and they will declare unto thee" (Job 12:8)

I N T R O D U C T I O N

This c o n t r i b u t i o n focusses on the role m a r i n e biology - or m o r e p r e c i s e l y m a r i n e species or m a r i n e m o d e l systems - h a v e p l a y e d in the e l u c i d a t i o n of basic p h y s i o l o g i c a l processes. M a n y of t h e s e h a v e t u r n e d out to b e of utmost s i g n i f i c a n c e in u n d e r s t a n d i n g the function of the h u m a n b o d y in h e a l t h a n d d i s e a s e or in d e v e l o p i n g t h e r a p e u t i c a l m e a n s to cure h u m a n maladies. T h e particular u s e f u l n e s s of m a r i n e m o d e l s in a v a r i e t y of t h e s e s e m i n a l d i s c o v e r i e s can b e t r a c e d b a c k to t h r e e m a i n reasons: (a) A b u n d a n c e of species, size of b i o l o g i c a l m o d e l system, and r e a d y accessibility l e a d to an e a s e of e x p e r i m e n t a t i o n . (b) In s e v e r a l m a r i n e species, that r e p r e s e n t early steps in m a m m a l i a n evolution, o r g a n structure is often q u i t e simple and o r g a n function is h i g h l y specialized. Such " u n i f u n c t i o n a l i t y " contrasts to the "multifunctionality" usually f o u n d in m a m m a - lian a n d h u m a n tissues and facilitates the i n v e s t i g a t i o n of a particular function in a defined, h o m o g e n e o u s cell population. (c) Most importantly, it has b e c o m e clear, m a i n l y t h r o u g h the r e c e n t a d v a n c e s in m o l e c u l a r biology a n d cell biology, that b i o d i v e r s i t y in cellular function does not r e q u i r e an i n c o m p r e h e n s i b l e n u m b e r of functionally different units: it can b e r e d u c e d to the e x i s t e n c e of a limited n u m b e r of families of closely r e l a t e d m o l e c u l e s that are e m p l o y e d by n a t u r e to p e r f o r m basic cellular functions (Kinne. 1991a). T h e s e similarities allow us to d r a w conclusions from findings on m a r i n e o r g a n i s m s as to the function of a h u m a n o r g a n w i t h e v e n m o r e certainty.

In the following, mainly contributions of m a r i n e m o d e l s to r e n a l p h y s i o l o g y and p a t h o p h y s i o l o g y will b e h i g h l i g h t e d , b u t it should be e m p h a s i z e d t h a t t h e r o l e of m a r i n e models was e q u a l l y i m p o r t a n t in o t h e r areas of cell research. In the a r e a of o o g e n e s i s , s p e r m a t o g e n e s i s , cytokinesis, and r e p r o d u c t i o n , n u m e r o u s studies on t h e e g g s of s e a urchins, s a n d dollars, and snails h a v e laid a firm basis for our u n d e r s t a n d i n g of cell division a n d its t e m p o r a l and spatial o r g a n i z a t i o n (Rappaport, 1991). E l a s m o b r a n c h testes h a v e recently b e e n d i s c o v e r e d to p r o v i d e an i d e a l m o d e l system for the studies of different p h a s e s of s p e r m a t o g e n e s i s a n d the v i v i p a r o u s dogfish is a suitable m o d e l for

(2)

46 E. K i n n e - S a f f r a n & R. K. H. K i n n e

i n v e s t i g a t i o n s of the h o r m o n a l r e g u l a t i o n of r e p r o d u c t i o n (Callard, 1991; Koob & Callard, 1991). In n e r v e physiology, the g i a n t axon of the squid was - a n d c o n t i n u e s to be - one of the prime m o d e l systems i n which the properties of n u m e r o u s ion c h a n n e l s a n d ion p u m p s have b e e n characterized a n d their role in n e r v e c o n d u c t i o n i d e n t i f i e d (Boron & Knakal, 1992; H o d g k i n & Huxley, 1952). Also the Na-K-ATPase, the p r i m a r y p u m p m a i n t a i n i n g i n t r a c e l l u l a r ion homeostasis a n d cell volume, was first d e s c r i b e d b y Skou in the leg n e r v e s of crabs (Skou, 1957), t h e r e b y p r o v i d i n g the first link of a n A T P - c o n s u m i n g cellular reaction to the translocation of i n o r g a n i c electrolytes across cell m e m b r a n e s (Skou, 1989). This e n z y m e w a s later f o u n d b y S c h a t z m a n n (1967) to b e i n h i b i t e d b y "cardiac glycosides" which are u s e d for the t r e a t m e n t of heart failure. U n t i l today, the s o d i u m chloride-secreting rectal g l a n d of the shark is one of the richest sources of this e n z y m e for b i o c h e m i c a l a n d biophysical studies (Medzihradsky et al., 1967). T h e rectal g l a n d also, very early on, p l a y e d a n i m p o r t a n t role in e l u c i d a t i n g the m e c h a n i s m s of h o r m o n a l r e g u l a t i o n of salt transport a n d i n t r a c e l l u l a r s i g n a l l i n g - a n area still p u r s u e d vigorously u s i n g this o r g a n as m o d e l system (Schofield et al., 1991).

MARINE BIOLOGY AND RENAL PHYSIOLOGY

In Figure 1, a s c h e m e of a m a m m a l i a n n e p h r o n is r e p r e s e n t e d with its proximal tubule, H e n l e ' s loop, the distal t u b u l e a n d the collecting duct. In all t h e s e parts of the k i d n e y , studies on m a r i n e o r g a n i s m s have c o n t r i b u t e d essential i n f o r m a t i o n on the function of t h e s e s e g m e n t s a n d the cellular a n d m o l e c u l a r basis for their function.

For the proximal tubule, in 1923, the q u e s t i o n was solved w h e t h e r m a m m a l i a n k i d n e y s h a v e the capability to excrete c o m p o u n d s from the blood into the p r i m a r y urine (Marshall & Vickers, 1923) i n addition to the - at that time - w i d e l y - a c c e p t e d functions of filtration in the g l o m e r u l u m a n d r e a b s o r p t i o n a l o n g the t u b u l e (Cushny, 1917). Definite proof of secretory processes i n this s e g m e n t could b e o b t a i n e d b y the use of t h e goosefish

active secretion: aglomerular fishes (goosefish,toadfish)

active coupled NaCI transport: flounder

(urinary bladder)

active chloride transl~ort: - dogfish

(rectal gland) organic osmolytes:

various marine species

\

Fig. 1. Schematic representation of a mammalian (human) nephron indicating some of the main segments where marine biology has considerably contributed to elucidating the cellular a n d

(3)

M a r i n e biology a n d b i o m e d i c a l r e s e a r c h 47

(Lophius piscatorius),

i.e. an a g l o m e r u l a r fish, in w h i c h no filtration occurs, a n d substan- ces transferred from the blood to the urine must h a v e p a s s e d the r e n a l cell in a secretory direction (Marshall & Grafflin, 1928). This process w a s first f o u n d for a variety of organic dyes and later l e d to the d e v e l o p m e n t of contrast m e d i a to trace the urinary tract, or to m e a s u r e r e n a l b l o o d flow. This route is still e m p l o y e d for the t a r g e t i n g of antibiotics in r e n a l infection or of diuretics to their i n t r a t u b u l a r site of action. T h e cellular m e c h a n i s m u n d e r l y i n g t u b u l a r secretion w a s also first u n v e i l e d using fish models, such as the flounder, (Forster & Taggart, 1950; Kinter, 1966). In F i g u r e 2, studies are s h o w n in w h i c h

Fig 2. 3H-chlorphenol red autoradiograph of proximal tubules dissected from the kidney of the winter flounder

(Pseudopleuronectes americanus)

and incubated Eor 60 rain at 20~ in 10 ~M tritiated chlorphenol red. Individual tubules are shown both in cross and longitudinal sections m a low-magnification dark-field photomicrograph (autographic silver grams appear as white dots). For

further details see Kinter, 1975 (reprinted with kind permissionl

(4)

48 E. K i n n e - S a f f r a n & R. K. H. Kinne

Lumen

H*,

I

'H§

,,~

%'S- . . .

organic cations

Lumen

~/S

PAH.~

Blood

NG~,. I IA-

pA~ -~

weak organic acids

NQ§

S0/2-

sulfate

Fig. 3. Transport scheme for the secretion of the weak organic acid p-aminohippurate (PAH) across a proximal tubular cell (upper right panel). Uptake from blood into the cell involves indirect coupling to a sodium-A- cotransport system. (A- stands for glutarate or other dicarboxylic acids). Transfer across the luminal membrane involves an electrogenic transporter driven by the electrical potential difference across the cell membrane. The two other schemes show additional kinds of indirect coupling of sodium cotransport transport systems in the renal secretion of sulfate in winter flounder and organic cations (S) in mammals. For further information see Kinne. 1988a (reprinted with kind

permission)

intracellularly a c c u m u l a t e d g l u t a r a t e w i t h a w e a k o r g a n i c acid, comprises t h e s e q u e n c e of e v e n t s that u l t i m a t e l y l e a d to the i n t r a c e l l u l a r a c c u m u l a t i o n of the w e a k o r g a n i c acid. S u c h a m e c h a n i s m has p r o v e d to b e o p e r a t i n g also for e x a m p l e in the e x c r e t i o n of uric acid in c r u s t a c e a n s (A. N i e s et al., unpubl, obs.) as well as in m a m m a l s (Maxild et al.. 1981).

(5)

M a r i n e b i o l o g y a n d b i o m e d i c a l r e s e a r c h 49

Blood Lumen

No-K- i

ATPose K+

T A L H Cell

\

__.2

2CI - /

/ K +

K /

/ No ~"

~

K § NoCI-KCI

cotronsport

2Ci- .~- Ba + +

-- NO +

B l o o d Rectal Gland C e l l L u m e n

\

No-K- "/ ~ 1 - 1 - ~ N ~ 2 4 7 ATPose j K+ ~ , ~

NoCI-KCI i

N~ § ~x/~

K + _ ~

cotronsport fl 2CI

2No + - - - ~ /

J

2CI -,, \

Fig. 4. Schematic representation of transcellular active chloride secretion in rectal gland cells of elasmobranchs and active chloride reabsorption in the thick ascending limb of Henle's loop in

mammalians (modified after Epstein & Silva, 1985, with kind permission)

d o c u m e n t e d in F i g u r e 5 [ K i n n e & K i n n e - S a f f r a n 1979). T h i s l i n k l e d to a w o r k i n g m o d e l for a c t i v e c h l o r i d e t r a n s p o r t i n t h e m a m m a l i a n t h i c k a s c e n d i n g l i m b - a n d t h e o p e r a t i o n of all t h e a b o v e m e n t i o n e d transport s y s t e m s c o u l d a l s o b e d e m o n s t r a t e d in t h e k i d n e y ( G r e g e r , 1985). It w a s further s h o w n t h a t t h e s e t r a n s p o r t s y s t e m s h a v e s i m i l a r p r o p e r t i e s - as d e p i c t e d for t h e N a - K - 2 C 1 c o t r a n s p o r t e r in T a b l e 1 ( K i n n e , 1 9 8 8 a ) - b u t t h a t their c e l l u l a r l o c a l i z a t i o n is d i f f e r e n t , in o r d e r to e n a b l e t h e m a m m a l i a n c e l l s to r e a b s o r b c h l o r i d e r a t h e r t h a n to s e c r e t e c h l o r i d e as t h e r e c t a l g l a n d c e l l s do. To this e n d a N a - K - 2CI c o t r a n s p o r t e r a n d a p o t a s s i u m c h a n n e l a r e k n o w n to b e t r a n s f e r r e d i n t o the l u m i n a l c e l l m e m b r a n e , w h e r e a s a c h l o r i d e c h a n n e l is in t h e c o n t r a l u m i n a l m e m b r a n e . S u c h t r a n s p o s i t i o n r a i s e s i n t e r e s t i n g q u e s t i o n s on t h e m o l e c u l a r i d e n t i t y of t h e t r a n s p o r t s y s t e m s a n d t h e n a t u r e of t h e s i g n a l s c o n t r o l l i n g their i n t r a c e l l u l a r s o r t i n g a n d t a r g e t i n g ( S i m o n s & Fuller, 1985) - q u e s t i o n s c u r r e n t l y b e i n g i n v e s t i g a t e d - a g a i n u s l n q m a r i n e m o d e l s y s t e m s .

A n o t h e r g r o u p of d i u r e t i c s t h e t h i o z i a z i d e s , are k n o w n to i n h i b i t salt t r a n s p o r t in the l a t e d i s t a l t u b u l e [ s e e F i g u r e 6; [ E l l i s o n e t al,, 1987]), a s e g m e n t of v e r y h i g h cell h e t e r o g e n e i t y i n t h e m a m m a l s . H e r e t h e d i s c o v e r y of a s i m i l a r t r a n s p o r t s y s t e m in f l o u n d e r u r i n a r y b l a d d e r ( T a b l e 2; [ S t o k e s e t al,, 1984]), a r a t h e r s i m p l e e p i t h e l i u m , will u n d o u b t e d l y l e a d to a d e t a i l e d c h a r a c t e r i z a t i o n of t h e t r a n s p o r t s y s t e m a n d to a m u c h b e t t e r u n d e r s t a n d i n g of t h e m e c h a n i s m of a c t i o n o f t h e s e d r u g s .

(6)

G, Table 1. Properties of the Na-K-2 C1 cotransporter in secretory and absorptive epithelia (Reprinted with permission from Kinne, 1988a, Pergamon Press Ltdl Rabbit TALH Rectal gland Number per cell Turnover rate Sodium binding site

Affinity Specificity

Potassium

binding

site

Affinity Specificity

Chloride

binding

site

1

Affinity Specificity

Chloride

binding

site

2

Affinity Specificity

Interaction with loop diuretics Affinity (bumetanide) Specificity Apparent molecular weight {radiation inactivation} 5 X 104 6000/S 1.3 mM Na > Li>> NH4 >> K 0.3 mM K > NH4 > Cs >> Na >> choline 1.0 mM Br = CI >> NOa = SCN > 15raM Br > Cl > NO3 = SCN 2.5 x 10 -6 M bumetanide > piretanide > furosemide 80 000-90 000 17 • 104 1000/s 4,3 mM Na > Li = NH4 15 mM K-> NH4 = K = Rb = choline > Cs overall 75 mM Br = CI>>NO3 Br > CI > NO3 0.5 x 10 -5 M bumetanide > piretanide > furosemide 43 000-50 0(30 {affinity chromatography)

(7)

M a r i n e b i o l o g y a n d b i o m e d i c a l r e s e a r c h 51

0 U

0

0

0

0

"-- oO c"

c ~ E r~ o

0 C ~

>, E

rn ~ LL CO

c" O

fL

E (D

o

LL

t ~

T M

! !

Fig. 5. Effects of v a r i o u s "loop d i u r e t i c s " o n t h e r a t e of fluid s e c r e t i o n (i.e: s o d i u m chloride) in "in situ p e r f u s e d " rectal g l a n d s of S c i l l i o r r h m u s c a n i c u l u s (L.). Loop d i u r e t i c s are k n o w n to i n h i b i t c h l o r i d e r e a b s o r p t i o n in h u m a n k i d n e y at t h e t h i c k a s c e n d i n g l i m b of H e n t e ' s loop. S e c r e t i o n at v a r i o u s c o n c e n t r a t i o n s of t h e d i u r e t i c s is g i v e n in p e r c e n t of control. For f u r t h e r details s e e K i n n e & K i n n e -

Saffran, 1979 ( r e p r i n t e d w i t h k i n d p e r m i s s i o n )

":1= I=

C

E

0

E

i z

600

400

200

.200

Sodium transport

Chloride transport

800

\

\

. . . . ~ . . o

~ o

r

E

O

u 0

-200

P < .001

\

%

P < . 0 0 1

-400 -4OO

A I F A I F * C T Z A I F A I F + C T Z

Fig. 6. Effect of c h l o r o t h i a z i d e (CTZ) o n s a l t r e a b s o r p u o n m d i s t a l t u b u l e s of r a b b i t k i d n e y . N o t e t h a t s o d i u m a n d c h l o r i d e t r a n s p o r t a r e i n h i b i t e d to t h e s a m e e x t e n t s u g g e s t i n g t h e p r e s e n c e of a n e l e c t r o n e u t r a l NaC1 c o t r a n s p o r t in t h i s r e n a l s e g m e n t . For f u r t h e r i n f o r m a t i o n s e e E l l i s o n et al. 1987

(8)

52 E. K i n n e - S a f f r a n & R. K. H. K i n n e

Table 2. Effect of hydrochlerothiazide on simultaneously determined sodium and chloride tracer fluxes in the urinary bladder of the winter flounder

{Pseudopleuronectes americanus).

Mucosa-to- serosa denotes the fluxes m e a s u r e d w h e n tracer ions w e r e present at the surface r e p r e s e n t i n g the lumen of the bladder; serosa-to-mucosa depicts fluxes w h e n tracer ions were p r e s e n t at the outside of the bladder. Net fluxes r e p r e s e n t the difference b e t w e e n the fluxes found in the mucosa-to-serosa direction and those observed in the serosa-to-mucosa direction. Note the similarity of sodium and chloride net fluxes and the parallel inhibition by hydrochlorothiazide. Modified after Stokes et al.,

1984, with kind permission

Flux

Mucosa-to-serosa (n = 8) Serosa-to-mucosa (n = 7) N e t fluxes

JNa Jcl JNa Jcl JNa Jcl

~M/cm 2 9 h ~M/cm 2 - h

Control 1.70 2.45 0.52 1.34 1.18 1.11

• 0.25 • 0.30 • 0.07 • 0.12

HCTZ 0.40 0.69 0,23 0.29 0.17 0.40

(0.1 mM) _ 0.05 • 0.24 • 0.02 • 0.04

P < 0.005 < 0.005 < 0.002 < 0.001 - -

JNd ~ sodium flux; Jcl = chloride flux

o s m o l y t e s in t h e v o l u m e r e g u l a t i o n of t h e s e c e l l s ( G a r c i a - P e r e z & Burg, 1991). D u r i n g t h e f o r m a t i o n of c o n c e n t r a t e d u r i n e , t h e s e c e l l s a r e e x p o s e d to s a l i n i t i e s w h i c h a r e s i m i l a r to or e x c e e d t h o s e e n c o u n t e r e d b y m a r i n e o r g a n i s m s . T h e s e o r g a n i c o s m o l y t e s h a v e for a l o n g t i m e a l r e a d y b e e n i d e n t i f i e d i n m a r i n e o r g a m s m s / s e e T a b l e 3: [ Y a n c e y e t al., 1982]) a n d a r e a l s o f o u n d in t h e m a m m a l i a n p a p i l l a ( T a b l e 4). T h e r e g u l a t i o n of t h e i r i n t r a c e l l u - l a r c o n c e n t r a t i o n s a c c o r d i n g to t h e e x t e r n a l o s m o l a r i t y h a s b e e n e x t e n s i v e l y s t u d i e d for e x a m p l e i n s k a t e e r y t h r o c y t e s ( G o l d s t e i n & Brill 19911. A g a i n n u m e r o u s s i m i l a r i t i e s h a v e b e c o m e a p p a r e n t , a n d it is to b e e x p e c t e d t h a t t h e c r o s s - t a l k b e t w e e n d i s c i p l i n e s - a s m t h e o t h e r e x a m p l e s m e n t i o n e d a b o v e - will y i e l d fruitful a n d i m p o r t a n t i n s i g h t s i n t o g e n e r a l p h y s i o l o g i c a l m e c h a n i s m s .

C O N C L U D I N G R E M A R K S

In t h e f u t u r e , m a r i n e b i o l o g i c a l m o d e l s w i l l c o n t i n u e to f o s t e r p r o g r e s s in t h e u n d e r s t a n d i n g of m o l e c u l a r , c e l l u l a r a n d s y s t e m i c p r o c e s s e s in b i o m e d i c i n e . U n d o u b - t e d l y , a m a j o r i m p a c t will b e m a d e b y s t u d i e s o n t h e m o l e c u l a r b i o l o g y of b a s i c p h y s i o l o g i c a l a n d p a t h o p h y s i o l o g i c a l e v e n t s . A t t h e s a m e t i m e h o w e v e r , a n e q u a l l y s t r o n g e m p h a s i s s h o u l d b e p l a c e d o n i n t e g r a t i v e a s p e c t s in m a r i n e b i o l o g y a n d b i o m e d i c i n e alike: o n l y t h e i n t e g r a t i o n of k n o w l e d g e o b t a i n e d a t v a r i o u s l e v e l s of c o m p l e x i t y a n d i n v a r i o u s a r e a s of r e s e a r c h w i l l l e a d to a t h o r o u g h u n d e r s t a n d i n g of life o n t h i s p l a n e t a n d to t h e d e v e l o p m e n t of s t r a t e g i e s to p r o t e c t it.

(9)

M a r i n e b i o l o g y a n d b i o m e d i c a l r e s e a r c h 53 Table 3. Organic osmolytes in marine species. T a k e n from Yancey et al., 1982; copyright 1982 by the

AAAS, with kind permission. For references see Yancey et al. 1982

Osmolyte system Principal osmolytes

(occurrences)

C y a n o b a c t e r i a

Synechococcus sp. F u n g i

Saccharomyces rouxii Asteromyces cruciatus

Lichens

Lichina p y g m e a e

Unicellular algae

Dunaliella spp.

Chlorella pyrenoidosa Ochromonas maihamensis

Multicellular algae

Fucus spp. Vascular plants

Gossypium hirsutum L.

Insects ~freeze-tolerant or -resistant)

Eurosta solidaginis (Diptera)

Bracon cephi (Hymenopteral C r u s t a c e a n s

Artemia salina (emerging larvae/ Vertebrates

A. Polyhydric a l c o h o l s - p o l y o l s

glucosylglycerol arabitol

arabitol, glycerol, mannitol m a n n o s i d o m a n n i t o l glycerol

sucrose isofloridoside mannitol

glucose, fructose sucrose glycerol, sorbito] glycerol

glycerol, trehalose

Eubacteria

Klebsiella aerogenes Salmonella oranienburg Streptococcus faecalis

Protozoa

1Vfiemiensis avidus

Vascular plants

Spartina townsendii Atriplex spongzosa Aster tripolium

M e s e m b r y a n t h e m u m nodiflorum

I n v e r t e b r a t e s

All phyla of m a r i n e v e r t e b r a t e s

Balanus nubilus (barnacle)

Eriocheir sinensis (crab)

Parastichopus sp. (echinoderm)

Sepia officinalis (mollusk)

Cyclostomes

A/fyxine glutinosa (hagfish)

A m p h i b i a

Bufo marmus

glutamic acid proline glutamic acid proline y-aminobutyric acid, prolin~ glycine, alanine, proline b e t a i n e

b e t a i n e proline proline

v a n o u s amino acids various amino acids various amino acids various amino acids various amino acids

v a n o u s amino acids

Hyla versicola glycerol

(10)

54

Osmolyte system (occurrences)

E. K i n n e - S a f f f a n & R. K. H. K i n n e Table 3 (continued)

Principal osmolytes

C. Urea and methylamines

Cartilaginous fishes {elasmobranchs) Vertebrates

Squalus acanthias (dogfish) Dasyatis americana

(ray)

Raja erinacea

(ray)

urea, trimethylamine-N- oxide urea, t n m e t h y l a m i n e - N-oxide urea, amino acids

D. Urea: estivating forms

Mollusks

Bulimulus dealbatus

Lungfishes: African a n d South A m e r i c a n A m p h i b i a n s

Scaphiopus couchi (spadefoot toad)

E. Inorganic ions

A r c h a e b a c t e r i a

Halobacterium spp. K-

Table 4 0 s m o l y t e s in renal i n n e r medulla of antidiuretic animals. Units are m m o l / k g protein or m m o l / k g wet w e i g h t (in brackets). GPC = glycerophosphorylcholine. Taken from Garcia-Perez &

Burg, 1991. with kind permission. For references see Garcia-Perez & Burg, 1991

Species Urea Sodium Sorbitol Inositot GPC Betaine

Rabbit [7] [ 11] [ 13] [56]

[269] [21] [21] [35]

[346] [279] [80] [16] [41] [42]

1.017 1.890 221 97 195 235

[21]

[20l

Rat [49]

[380] [248] 854 331 2.498 132

4.405 178 517 214

145 214 443

Vole [349] [I71] [26] [12] [43] [19]

Deer m o u s e [695] [278] [19] [14] [65] [21]

Pocket m o u s e [1.129] [350] [53] [14] [71] [50]

Sheep

[54]

Dog [67]

[376]

[304]

[14]

(11)

M a r i n e b i o l o g y a n d b i o m e d i c a l r e s e a r c h 55

L I T E R A T U R E C I T E D

Boron, W. F. & Knakal, R. C., 1992. N a l + L d e p e n d e n t C1-HCO3 e x c h a n g e in the s q u i d axon. - J . gen. Physiol. 99, 817-837.

Callard, G. V., 1991. Reproduction in m a l e e l a s m o b r a n c h fishes. - C o m p . Physiol. 10, 104-154. C u s h n y , A. R., 1917. T h e secretion of urine. L o n g m a n s G r e e n , London, 288 pp.

Ellison, D. H., Vel~zquez, H. & Wright, F. S., 1987. T h i a z i d e - s e n s i t i v e s o d i u m chloride c o t r a n s p o r t in early distal t u b u l e . - Am. J. Physiol. 253, F546-F554.

Epstein, F. H. & Silva, P., 1985. Na-K-C1 c o t r a n s p o r t in c h l o r i d e - t r a n s p o r t i n g epithelia. - A n n . N. Y. Acad. Sci. 456, 187-197.

Eveloff, J., Kinne, R. & Kinter, W., 1979. p - A m i n o h i p p u r i c acid t r a n s p o r t into b r u s h b o r d e r vesicles isolated f r o m f l o u n d e r kidney. - Am. J. Physiol. 237, F291-F298.

Forster, R. P. & T a g g a r t , J. V., 1950. Use of isolated r e n a l t u b u l e s for the e x a m i n a t i o n of m e t a b o l i c p r o c e s s e s a s s o c i a t e d with active cellular t r a n s p o r t . - J. cell. comp. Physiol. 36, 251-270. Garcia-Perez, A. & Burg, M.B., 1991. Renal m e d u l l a r y o r g a n i c osmolytes. - Physiol. Rev. 71,

1081-1115.

Goldstein, L. & Brill S. R., 1991. V o l u m e - a c t i v a t e d t a u r i n e efflux from skate erythrocytes: p o s s i b l e b a n d 3 i n v o l v e m e n t . - Am. J. Physiol. 260, R1014-R1020.

G r e g e r , R., 1985. Ion t r a n s p o r t m e c h a n i s m s in thick a s c e n d i n g limb of H e n l e ' s loop of m a m m a l i a n n e p h r o n . - Physiol. Rev. 65. 760-797.

H o d g k i n . A. L. & Huxley, A. F.. 1952. A q u a n t i t a t i v e description of m e m b r a n e c u r r e n t a n d its application to c o n d u c t i o n and excitation in nerve. - J Physiol. I 17. 500-544.

K i n n e R. K. H.. 1988a. S o d i u m c o t r a n s p o r t s y s t e m s in epithelial secretion. - C o m p . Biochem Physiol 90A, 721-726.

Kinne, R., 1988b T h e N a / K / C l - c o t r a n s p o r t e r in epithelia: a p e r s o n a l r e m i n i s c e n c e . - Bull. Mt D e s e r t [sl. biol. Lab. 51-56.

Kinne. R. K.H. I991a. F r o m diversity to similarity in biological transporL - I s s u e s Biomed. 15, 69-94 Kinne R . K . H . . 1991b. Molecular p r o p e r t i e s of the Na-K-C1 c o t r a n s p o r t e r . In: N e p h r o l o g y . Ed. by M

Hatano. S p r i n g e r , Tokyo, 2. 1095-1102.

Kinne R. & Kinne-Saffran. E.. 1979. Effect of 'loop diuretics' on the salt secretion in s h a r k rectal gland. - Mar. Ecol. Prog. Ser. 1. 129-132.

Kinter. W. B.. 1966. C h l o r p h e n o l red influx a n d efflux: m i c r o s p e c t r o p h o t o m e t r y of f l o u n d e r k i d n e y t u b u l e s . - Am. J. Physiol. 211, 1152-1164.

Kinter. W. B. 1975. Structure a n d f u n c t i o n of r e n a l t u b u l e s isolated from fish kidneys. - Fortschr. ZooI. 23. 223-231.

Koob T. J. & C a l l a r d [. P., 1991. R e p r o d u c t i o n in f e m a l e e l a s m o b r a n c h s , - C o m p . Physiol. I0, 155-209.

Marshall. E. K. & Grafflin. A. L. 1928. T h e s t r u c t u r e a n d f u n c t i o n of the k i d n e y of L o p h i u s piscatorius. - Bull. J o h n s H o p k i n s Hosp. 43. 205-235.

Marshall. E. K. & Vickers J. L.. 1923. T h e m e c h a n i s m of the elimination of p h e n o s u l p h o n e o p h t h a - Iein b y the k i d n e y - a proof of s e c r e t i o n b y the c o n v o l u t e d t u b u l e s . - t~ull. J o h n s H o p k i n s Hosp. 34. 1-16.

Maxild. J., Moiler, J. V. & Sheikh, M. I.. 1981. A n e n e r g y - d e p e n d e n t , s o d i u m - i n d e p e n d e n t c o m p o - n e n t of active p - a m i n o h i p p u r a t e t r a n s p o r t in r a b b i t r e n a l cortex. - J. Physiol., Lond. 310. 2 7 3 - 2 8 3

M e d z i h r a d s k y , F., K.line M. H. & H o k i n L. E., 1967. S t u d i e s on the c h a r a c t e r i z a t i o n of t h e s o d i u m - p o t a s s i u m t r a n s p o r t a d e n o s i n e t r i p h o s p h a t a s e . I.: Solubilization, stabilization, a n d e s t i m a t i o n of a p p a r e n t m o l e c u l a r weight. - A r c h s Biochem. Biophys. 121, 311-316.

Pritchard. J. B.. 1990. Rat r e n a l cortical slices d e m o n s t r a t e p - a m i n o h i p p u r a t e / g l u t a r a t e e x c h a n g e a n d s o d i u m / g l u t a r a t e c o u p l e d p - a m i n o h i p p u r a t e t r a n s p o r t . - ft. PharmacoL exp. Thor. 255. 969-975

R a p p a p o r t . R., 1991. Cytokinesis. - C o m p . Physiol. I0. 1-36.

S c h a t z m a n n , H. J., 1967. Effect of cardiac g l y c o s i d e s o n active N a - K - t r a n s p o r t . - P r o t o p l a s m a 63. 136-142.

(12)

56 E. K i n n e - S a f f r a n & R. K. H~ K i n n e

S h i m a d a , H., M o e w e s , B. & Burckhardt, G., 1987. Indirect c o u p l i n g to N a + of p - a m i n o h i p p u r i c acid u p t a k e into rat r e n a l b a s o l a t e r a l m e m b r a n e vesicles. - Am. J. Physiol. 253, F 7 9 5 - F 8 0 1 . Simons, K. & Fuller, S.D., 1985. Cell s u r f a c e polarity in epithelia. - A. Rev. Cell Biol. I, 243-288~ Skou, J. C., 1957. T h e i n f l u e n c e of s o m e cations on the a d e n o s i n e t r i p h o s p h a t a s e from p e r i p h e r a l

nerves. - Biochim. b i o p h y s . Acta 23, 394-401.

Skou, J. C., 1989. T h e identification of the s o d i u m - p u m p as the m e m b r a n e - b o u n d N a §

a c o m m e n t a r y on ' T h e i n f l u e n c e of s o m e cations on an a d e n o s i n e t r i p h o s p h a t a s e from p e r i p h e r a l n e r v e s ' . - Biochim. b i o p h y s . Acta I000, 435-438.

Stokes, J. B., Lee, I. & D'Amico, M., 1984. S o d i u m chloride a b s o r p t i o n by the u r i n a r y b l a d d e r of the w i n t e r flounder. - J. clin. Invest. 74, 7-16.

Figure

Fig. 1. Schematic representation of a mammalian (human) nephron indicating some of the main segments where marine biology has considerably contributed to elucidating the cellular and molecular mechanism of their function
Fig 2. 3H-chlorphenol red autoradiograph of proximal tubules dissected from the kidney of the in 10 ~M tritiated chlorphenol red
Fig. 3. Transport scheme for the secretion of the weak organic acid p-aminohippurate (PAH) across a sulfate proximal tubular cell (upper right panel)
Fig. 4. Schematic representation of transcellular active chloride secretion in rectal gland cells of elasmobranchs and active chloride reabsorption in the thick ascending limb of Henle's loop in mammalians (modified after Epstein & Silva, 1985, with kind permission)
+6

References

Related documents

In their new role as organisational linch-pin and mediator between external and internal units, procurement personnel must both develop an understanding of technical areas such

Field experiments were conducted at Ebonyi State University Research Farm during 2009 and 2010 farming seasons to evaluate the effect of intercropping maize with

Collaborative Assessment and Management of Suicidality training: The effect on the knowledge, skills, and attitudes of mental health professionals and trainees. Dissertation

The paper assessed the challenges facing the successful operations of Public Procurement Act 2007 and the result showed that the size and complexity of public procurement,

19% serve a county. Fourteen per cent of the centers provide service for adjoining states in addition to the states in which they are located; usually these adjoining states have

Eksperimenti su pokazali da je za mutiranu tRNA Trp , koja nosi supstituciju u D-ruci, smanjena točnost procesa translacije na način da su reakcije koje se odvijaju

It was decided that with the presence of such significant red flag signs that she should undergo advanced imaging, in this case an MRI, that revealed an underlying malignancy, which

Also, both diabetic groups there were a positive immunoreactivity of the photoreceptor inner segment, and this was also seen among control ani- mals treated with a